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abstract

PURPOSE We developed a precision medicine program for patients with advanced cancer using integrative
whole-exome sequencing and transcriptome analysis.

PATIENTS AND METHODS Five hundred fifteen patients with locally advanced/metastatic solid tumors were
prospectively enrolled, and paired tumor/normal sequencing was performed. Seven hundred fifty-nine tumors
from 515 patients were evaluated.

RESULTSMost frequent tumor types were prostate (19.4%), brain (16.5%), bladder (15.4%), and kidney cancer
(9.2%). Most frequently altered genes were TP53 (33%), CDKN2A (11%), APC (10%), KTM2D (8%), PTEN
(8%), and BRCA2 (8%). Pathogenic germline alterations were present in 10.7% of patients, most frequently
CHEK2 (1.9%), BRCA1 (1.5%), BRCA2 (1.5%), and MSH6 (1.4%). Novel gene fusions were identified, in-
cluding aRBM47-CDK12 fusion in ametastatic prostate cancer sample. The rate of clinically relevant alterations
was 39% by whole-exome sequencing, which was improved by 16% by adding RNA sequencing. In patients
with more than one sequenced tumor sample (n = 146), 84.62% of actionable mutations were concordant.

CONCLUSION Integrative analysis may uncover informative alterations for an advanced pan-cancer patient
population. These alterations are consistent in spatially and temporally heterogeneous samples.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Genomic profiling is widely used in cancer care to identify
actionable alterations for individual patients within the
context of precision medicine (PM).1 However, only 2%
to 11% of those patients with sequencing performed
receive a genomically matched therapy, which may be
a result of the availability and accessibility of clinical
trials,2-6 patient factors and comorbidities, disease state
or alternative options, or patient preference.5

Despite these drawbacks, PM studies continue to
provide insights into the molecular underpinnings of
cancer. We and others have shown that performing
whole-exome sequencing (WES) and RNA sequencing
is feasible in a clinical setting and may provide relevant
information beyond targeted gene panels in certain
settings.3,7,8 Sequencing matched tumor and normal
(germline) DNA has the additional benefit of uncov-
ering unforeseen hereditary conditions, including
cancer risk mutations. In particular, germline DNA
repair defects (DRDs) aremore common than previously

anticipated across adult advanced cancer populations.9-11

Robinson et al12 published their MET500 cohort with
WES and RNA sequencing data from 500 patients with
metastatic disease of varied tumor primary and biopsy
sites. Our study, obtained from our own cohort of 759
samples from 515 patients with advanced and met-
astatic cancer, complements this data set as it adds
WES data from approximately the same number of
patients. Of importance, our data add needed in-
formation about tumor evolution, clonality, and tumor
heterogeneity by analyzing multiple samples obtained
from individual patients.

PATIENTS AND METHODS

Patients with locally advanced and metastatic can-
cer were prospectively enrolled in an institutional review
board (IRB)–approved PMTrial (IRB No. 1305013903)
with written informed consent. The consent process
included explaining the risk and potential consequences
of tumor biopsy, somatic and germline sequencing, as
well as offering the opportunity to participate in a rapid
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autopsy program.13 Tumor DNA for WES was obtained from
fresh frozen or formalin-fixed, paraffin-embedded tissue.
Seventy image-guided biopsies from prostate cancer bone
metastases using an optimized bone biopsy protocol14 were
performed. Frozen or formalin-fixed, paraffin-embedded
tissue slides were evaluated by study pathologists for di-
agnosis and tumor cell content. Germline DNA was ob-
tained from blood samples (circulating mononuclear cells),
buccal swabs, or benign tissue as described previously.3

Part of the data presented in this manuscript have already
been published.3,13,15

WES was performed on each patient’s tumor/matched
germline DNA pair using previously described protocols.3

We used a clinical-grade WES test—Exome Cancer Test
Version 1—approved by New York State Department of
Health (ID# 43032) and described in detail in Rennert
et al.16 This approach allows for assessment of more than
21,000 genes through the development and implementation
of computational approaches for tumor mutational burden
and neoepitope analysis, as well as integration with other
data, including RNA sequencing, to improve the identifi-
cation of clinically relevant and actionable alterations. RNA
sequencing was performed on a subset of cases with
sufficient fresh frozen tissue available. For details of RNA
sequencing data analysis, see the Data Supplement. To
evaluate the concordance of tier 1 and tier 2 alterations
between multiple samples from the same patient and to
gain high-fidelity results, a cutoff of 20% for variant allele
frequency was used. In addition, we developed patient-
derived organoids from fresh tissues using previously de-
scribed protocols,4,17 and we used cell lines to functionally
validate outlier targetable alterations.

WES alterations were categorized on the basis of on their
actionability and clinical or biologic relevance.3 Alterations
in 49 actionable or clinically significant genes were reported
within Category 1, alterations in 508 known cancer-associated
genes within Category 2, and somatic alterations of un-
known significance within Category 3.3 We developed an

open-access, dynamic, Web-based PM knowledge base as
an interactive online tool where variants are carefully
interpreted in the context of tumor type.18

WES results were conveyed to the referring physician in the
form of an ExomeCancer Test Version 1 report.3 Selected cases
are presented at a regular, continuing medical education–
accredited PM tumor board, which discusses sequencing
results in the context of a patient’s history, available litera-
ture, and treatment options, including active clinical trials.

Pathogenic germline findings were reported to the referring
physician if they occurred in any of the genes deemed
reportable by the American College of Medical Genetics
and Genomics (ACMG),19 and these patients were referred
for genetic counseling and results were confirmed by targeted
testing in a Clinical Laboratory Improvement Amendments–/
Clinical Laboratory Evaluation Program–certified laboratory.

Study cohort demographic data were obtained through
electronic health record search. Ethnicity was inferred
through a computational analysis (EthSEQ; https://cran.
r-project.org/package=EthSEQ) of germline single-nucleotide
polymorphisms.20

RESULTS

Patient Characteristics

Between February 2013 and December 2016, 515 patients
were prospectively enrolled (Fig 1 and Data Supplement).
Themajority of patients presented with metastatic (n = 319;
62%) or recurrent (n = 46; 8.9%) disease. Of patients, 149
(28.9%) had primary tumors available for study analysis.
Disease status was unknown for one patient (0.2%). Me-
dian number of prior systemic therapies before tissue
evaluation was three (range, zero to 14). The majority of
patients were of European (n = 231; 44.9%) or Ashkenazi
(n = 165; 32.1%) heritage (EthSEQ data; Data Supplement),
compatible with the location of the Englander Institute for
Precision Medicine (Upper East Side of Manhattan, New
York, NY).21

CONTEXT

Key objective
We assessed whether developing a multidimensional precision oncology program is feasible and informative for patients with

cancer with advanced disease.
Knowledge generated
We established a comprehensive clinical genomics program for this patient group. The rate of clinically relevant alterations

across 515 patients with advanced solid tumors was 39% by whole-exome sequencing, which was improved by 16% by
adding RNA sequencing. Multisample analysis of individual patients revealed a concordance rate of clinically significant
alterations of 84.62%.

Relevance
Multidimensional genomic analysis is feasible and informative in a clinical setting and can improve clinical care for some

patients.
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WES Results

Tier 1, 2, or 3 mutations were identified in 27.4%, 72.3%,
and 95.1% of all samples, respectively. Tier 1, 2, or 3
somatic copy number alterations were found in 52.4%,
88.4%, and 100% of all samples, respectively. Figure 1C
shows an example of a patient treated according to WES
results. Mutation rate across tumor types ranged from zero
to 37 mutations per megabase, with a mean of 1.2 mu-
tations/Mb. The highest mutation rates were observed in
tumors of the colon/rectum and bladder. Copy number
burden (megabase altered by copy number variation)
ranged from zero to 2,098 per sample (mean, 155.59 Mb).
Higher somatic copy number alteration (SCNA) values were
found in samples from endometrial and colorectal primary

tumors. The most common somatic alterations were found
in TP53 (33%), CDKN2A (11%), APC (10%), KMT2D
(8%), PTEN (8%), and BRCA2 (7%; Fig 2).

Multiple Samples

Three hundred eighty-two spatially and temporally het-
erogeneous samples from 146 patients underwent WES. Of
these, 185 (48.4%) were metastatic, 153 (40.1%) were
primary, and 44 (11.5%) were recurrent tumor samples.
Most samples were paired primary and metastatic tumors,
and concordance of alterations between primary and
metastatic samples in clinically informative genes is shown
in Figure 3. The primary tumor was sequenced at a different
timepoint in 29 patients—for example, before and after
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FIG 1. Selected primary tumor sites of 515 Englander Institute for PrecisionMedicine patients and patient status at time of enrollment. (A) Themajority
of patients with non-CNS tumors presented with metastatic disease. (B) Most common biopsy or resection sites and information, whether a sample was
procured from a primary, metastatic, or recurrent site. (C) Clinical history of a female patient with breast cancer who participated in the precision
medicine trial. An AKT1 mutation was discovered in a liver sample and she was treated with an AKT1 inhibitor, albeit without achieving disease
remission. ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; WES, whole-exome sequencing.
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systemic therapy. Employing a variant allele frequency cutoff
of 20% for genomic alterations, multiple samples from 132
patients could be evaluated. Of Category 1 and 2 alterations,
84.62% and 85.75%, respectively, of mutations and SCNA
variations were shared.

Germline Findings

WES of germline DNA was performed in all patients to filter
single-nucleotide variants and SCNAs that are only present

in the tumor (Fig 4). Sequencing germline DNA also serves
as an internal quality control to determine whether both
samples truly originate from the same patient.22 The ClinVar
and ExAC databases are our main sources for germline
variant evaluation.23,24 Variants are reported in an internal
report using a five-tiered system as recommended by the
ACMG and the Association for Molecular Pathology.19

Deleterious germline DRDs involving 12 genes were
identified in 55 patients, comprising 10.7% of patients in
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this cohort (Data Supplement). The most frequently mu-
tated genes were CHEK2 (11 patients), BRCA2 (nine pa-
tients), BRCA1 (nine patients), MSH6 (nine patients), and
ATM (four patients; Fig 2). Twelve patients had additional
loss of function in the other allele. Positive germline findings
were confirmed by targeted sequencing for 53 patients. In
addition, 44 additional likely pathogenic variants in 38
patients in MSH6 (14 cases); APC (seven cases); CHEK2
(five cases); POLE, PMS2, MSH2 BRCA1, and ATM (three
cases each); and TP53, CDH1, andBRIP1 (one case each)
were discovered in our cohort.

The prevalence of DRD in our cohort of patients with
metastatic prostate cancer was 14.3%, with BRCA2 muta-
tions being the most frequent variants (Data Supplement).

Pathogenic germline DRDs were found in 9.2% of pa-
tients with primary brain tumors. The majority of these
were in astrocytic neoplasms with WHO classification
grades I to IV. We did not identify pathogenic mutations
involving mismatch repair genes, which have been de-
scribed in primary brain tumor patients, in particular as
biallelic losses.25 CHEK2 was altered in four cases, in-
cluding one medulloblastoma. The detected c.1100delC
mutation has not been described in medulloblastoma pa-
tients to date.

DRDs involving homologous recombination genes may
result in increased sensitivity to DNA-damaging agents,
such as poly(APD-ribose) polymerase (PARP) inhibitors or
platinum-based chemotherapy.26 Of the 55 patients with
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germline DRD defects, 12 had received platinum-based
chemotherapy with follow-up available. Ten patients showed
benefit in the form of stable disease or radiographic
response.27 Sixteen patients (28.6%) with pathogenic
germline defects succumbed to their disease. Median time
from cancer diagnosis to death was 2 years.

RNA Sequencing

RNA sequencing was performed when sufficient fresh
frozen tumor tissue was available after WES. RNA se-
quencing was performed successfully in 235 samples from
219 patients. We identified druggable outliers and poten-
tially targetable gene fusions in 89 patients (17.3%). Of
these 89 patients, 50 did not harbor a targetable genomic
alteration identified by WES, resulting in an increase in the
rate of actionable alteration detection of approximately
15%. We confirmed the drug sensitivity of select outlier
genes using cell line experiments compared with randomly
selected drugs (Fig 5).

Nine novel fusions in a variety of cancer types were de-
tected. A novel RBM47-CDK12 gene fusion was found in
a prostate cancer bone metastasis, which was confirmed

by reverse-transcription polymerase chain reaction and
Sanger-Sequencing (Fig 5). An additional targetableNCOA4-
RET fusion, which has been described in papillary thyroid
cancer, non–small-cell lung cancer, and colorectal cancer,
was found in a brain metastasis of a patient with unknown
primary.28

Organoids

Part of the program was the development of patient-derived
organoids from patient biopsies for high-throughput drug
screening.4 Altogether 60 organoids were developed from
98 patients with an overall success rate of 61%. High-
throughput drug screening was performed in a subset of
patient-derived organoids as previously described.4

Case Studies

Germline results. A pathogenic MSH6 mutation was de-
tected in a 26-year-old patient with metastatic breast
carcinoma who had undergone previous outside testing for
BRCA1/2 germline mutations with a negative result. Al-
though the association between mismatch repair mutations
and breast cancer is not sufficiently established, these
patients are at risk for secondary cancers, like colorectal or
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endometrial carcinoma.29 As testing was limited to BRCA1/
2 in this case, this important germline finding inMSH6 was
originally undetected. Other potentially significant variants
in DRD genes, such as PALB2, would have been missed as
well.30 This case underlines the importance of multigene
panel or WES testing in patients not only with suspected
hereditary cancer but also in those, especially young pa-
tients, with metastatic disease to detect underrecognized
germline alterations.31

Tumor evolution and clonality. Four illustrative cases are
highlighted in Figure 3. We sequenced both the sarcoma
and adenocarcinoma components from a primary uterine
carcinosarcoma and discovered distinct molecular dif-
ferences. Uterine carcinosarcomas are thought be of
monoclonal origin.32 We detected a shared PTEN R130G
missense mutation in both histologic subtypes. A delete-
rious effect has been predicted for this variant.33 In a pre-
viously published analysis of 13 uterine carcinosarcomas
analyzed by targeted sequencing, eight cases demon-
strated 100% identical mutations in both the carcinoma

and sarcoma part.34 In contrast, we observed an early
divergence with only the one PTEN mutation of 54 non-
synonymous shared mutations. Of note, a KRAS mutation
was only observed in the sarcoma component.

In two samples of micropapillary urothelial carcinoma
obtained from the primary tumor and a regional lymph node
metastasis of one individual, a shared, potentially action-
able mutation involving ERBB2 was detected.35

The problem of multifocal lung tumors and uncertainty
regarding clinical management is not uncommon and has
been addressed before.36,37 In one patient, two histologi-
cally similar lung acinar adenocarcinomas in different lobes
were confirmed to be separate, synchronous primary tu-
mors on the basis of two distinct driver mutations in the
KRAS gene and other alterations observed by WES,
thus resulting in two pT1 tumors rather than one pT4
tumor and eliminating the need to administer adjuvant
chemotherapy.38 Whereas this alteration might also have
been detected using a targeted gene panel, a background
of different mutated genes in both samples that were
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detected by WES resulted in a stronger argument for two
synchronous primary tumors. This case again demon-
strates the importance of using next-generation sequencing
to correctly identify synchronous primary tumors.39

Another patient with metastatic neuroblastoma was con-
firmed to have an activating ALK mutation (R1275Q) in
both primary tumor and bone marrow metastasis. The
patient has had stable disease for 13 months on therapy
with sequential ALK inhibitors40 (Fig 3).

DISCUSSION

We have established a PM program for patients with ad-
vanced cancer using tumor/normal WES and integrative
molecular profiling to detect genomic and other actionable
alterations, improve clinical decision making, and study
tumor evolution in a pan-cancer cohort. The patient pop-
ulation in our study is distinct from several reported studies
in that our focus was on the evaluation of advanced
tumors.41,42 The majority of patients (70.8%) presented
with metastatic or recurrent disease at the time of
enrollment.

Whereas publicly accessible molecular data for several
tumor types are available, both for primary and metastatic
cancers,43,44 these specimens are rarely matched—that is,
obtained from the same patient.45 Our cohort of patients
with locally advanced andmetastatic cancer allowed for the
collection of multiple matched, often primary and meta-
static samples, resulting in a unique feature of this cohort:
Genomic data from spatially and/or temporally heteroge-
neous, matched tissue samples were available in 146
patients. Our data contribute to the understanding of tumor
evolution and heterogeneity. Of clinical importance is the
finding that almost 85% of Category 1 alterations were
shared between multiple samples from the same patient.
These results are in concordance with published data in
specific cancer types. In one study, when comparing ac-
tionable mutations between presurgery biopsies and
resected specimen in patients with non–small-cell lung
cancer, the concordance rate was found to be 79%.46

Similar findings have been reported for primary and re-
current breast cancer, with 86.6% of mutations and 85.5%
of SCNAs being concordant.47 Our data confirm that it may
reasonable to select the most accessible location or even
archival material from the primary tumor for molecular
analysis for certain cancer types.48,49

New research indicates that pathogenic germline muta-
tions are more frequently found in patients with advanced
cancer,9,12 and our data confirm this. Germline mutations
that involve the DNA repair pathway, found in 10.7% of our
patients, are predictive of response to PARP inhibitors and
platinum-based therapy and have important familial im-
plications for cancer screening.50 Family history was in-
dicative of a heritable component in only one half of these
patients. This discrepancy should be addressed to select
patients and their families for genetic counseling.

WES provides the additional advantage of uncovering
likely pathogenic mutations. According to the ACMG,
a likely pathogenic variant is backed up by sufficient
evidence to aid in clinical decision making.19 Our cohort is
enriched for patients with metastatic prostate cancer, who
have been reported to harbor DRDs in 11.8% of cases.9

This might explain, in addition to the high frequency of
Ashkenazi Jewish ancestry, why we observe a higher rate
of germline DRD compared with other pan-cancer cohorts
(Data Supplement).10

Novel gene fusions were also discovered, including
a RBM47-CDK12 gene fusion in a prostate cancer me-
tastasis. This fusion might result in the loss of CDK12
activity, which has recently been described to delineate
a distinct immunogenic subtype of metastatic castration-
resistant prostate cancer.51 In our study, WES was priori-
tized over RNA sequencing whenever tissue availability was
of concern. Biopsies in our study were usually performed
for diagnostic purposes in the context of clinical care,
hence the lower availability of fresh frozen tissue for ad-
ditional RNA sequencing.

Targeted sequencing of cancer-related genes offers several
advantages over WES, including deeper coverage, quicker
turnaround time, lower cost, and fewer requirements for an
elaborate computational pipeline. Here, we show that WES
and RNA sequencing may provide an additional and
complimentary layer of information in certain settings,
particularly for patients with advanced cancer who expe-
rience progression after standard therapies. The high-
lighted cases illustrate the potential utility of WES for
uncovering clinically informative somatic and germline
alterations. WES also considers the rapidly expanding
spectrum of actionable alterations, including alterations
for which targeted treatment may not be available at the
time of analysis, but for which clinical trials might be
planned. Emergence of resistance pathways may also be
identified.

Limitations of WES are lower coverage, higher cost, and
slower turnaround time. In addition, whereas targeted next-
generation sequencing testing of somatic DNA are some-
times ordered as part of clinical care, using germline DNA
as normal control for WES necessitates securing informed
consent.

Implementing -omic data into clinical care requires an
interdisciplinary team. Genomic data and its interpretation
in the context of tumor type and primary site must be easily
accessible to enable clinicians to integrate the data into
everyday patient care. Shared data platforms may also help
to close the gap between research and clinical care. With
the launch of the American Association of Cancer Research
Project Genomics Evidence Neoplasia Information Ex-
change for sharing genomic and clinical data sets, there are
now efforts toward developing a unified database to ulti-
mately advance clinical care.44
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One limitation of our study is the lack of uniformity of the
cohort in terms of tumor type and therapy, which prevents
us from making generalized statements about treatment
response. Its strength lies in its ability to identify outliers and
N-of-one cases. This data set also reports on a large
number of matched temporally and spatially heteroge-
neous samples, highlighting the concordance of actionable
alterations in different samples.

As other PM trials have shown, uncovering genomic alter-
ations may not be sufficient in identifying actionable alter-
ations. This study demonstrates how integrating genomics
with transcriptomic and other potential readouts may ulti-
mately improve actionability and contribute toward our
growing understanding of the molecular underpinnings of
cancer. Data for this study may be accessed through
cBioportal (http://www.cbioportal.org).52
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