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INTRODUCTION
Hyperbaric oxygen (HBO) therapy is U.S. Food and Drug 
Administration (FDA) approved for pathologies including 
select wounds, thermal burns, and delayed radiation injury 
with emerging research suggesting promise in other patholo-
gies.1-3 HBO promotes neovascularization, modulates the 
inflammatory system, and promotes stem cell recruitment 
resulting in accelerated tissue regeneration.1,3-5 Treatments 
involve repetitive exposures (i.e., intermittent hyperoxia, 
IH), of up to 60 sessions, of high concentrations of oxygen, 
together with increased atmospheric pressure of up to 3.0 
atmospheres absolute (ATA; 1 ATA = 760 mmHg/101.325 
kPa). HBO has a direct effect on activated endothelial cells 
in vitro including downregulating genes involved in adhesion, 
angiogenesis, inflammation and oxidative stress but upregulat-
ing angiogenin, which promotes both angiogenesis and nitric 
oxide production.6 Moreover, exposure of endothelial cells to 
HBO enhances capillary tube formation and oxidative stress 
resistance.7 However, the extent to which high pressure in 
HBO treatments is critical for therapeutic effect is not entirely 
known, and at least one in vitro experiment showed that HBO 
at 1.5 ATA induces a stronger anti-inflammatory response when 
compared to 2.4 ATA.8

The effectiveness of HBO therapy may depend on some key 

factors including treatment dose selection (oxygen tension and 
duration) and patient pathology.9,10 The mechanism of HBO 
treatment includes the production of reactive oxygen species, 
which results in a large number of responses including growth 
factor production, stem progenitor cell (S/PC) mobilization, 
and reduced inflammation.11-13 The increased atmospheric pres-
sure reduces gas volume, which is instrumental in ameliorating 
pathological conditions such as arterial gas embolism and 
decompression sickness. However, these are not the majority 
of patients presenting in a clinical HBO setting. In addition, 
HBO treatment requires an expensive hyperbaric chamber, 
trained staff, and additional safety considerations. IH can also 
be delivered by exclusively increasing the oxygen concentra-
tion without changing the atmospheric pressure, referred to as 
normobaric oxygen (NBO). At sea level the partial pressure of 
oxygen is about 150 mmHg (1 mmHg = 0.1333 kPa) depend-
ing on the humidity. The resulting arterial partial pressure 
(PaO2) is 75–100 mmHg. At 100% O2 the transcutaneous 
oxygen pressure raises from 150 mmHg up to 470 mmHg.14 
Moreover, this single dose of oxygen increases the expression 
of erythropoietin in the serum of patients,14,15 increases reactive 
oxygen species formation followed by an increased production 
of glutathione.15,16 However, it is unknown if NBO promotes 
S/PC mobilization or modulates cytokine production similar 
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to HBO therapy.4,17-21 Therefore, the goal of this study was to 
examine the efficacy of NBO focusing on mobilization of S/
PCs and the expression of serum cytokines. We hypothesized 
that NBO would show biological effects similar to those previ-
ously reported for HBO.8,18

MATERIALS AND METHODS
Animals 
Twelve 10-week-old male Sprague-Dawley rats were ran-
domly divided into two groups, a control group (n = 6) and a 
NBO treatment group (n = 6). Chow and water were provided 
ad libitum. Housing was temperature controlled at 23°C with 
a 12-hour/12-hour light-dark cycle. All experiments and pro-
cedures were approved by Institutional Animal Care and Use 
Committee (IACUC) of the University of Wisconsin, Madison, 
WI, USA (approval No. M005439) on June 28, 2016.

IH exposure
Animals were exposed to NBO or room air (normoxia) in 
clear polypropylene exposure chambers (Coy Laboratories, 
Grass Lake, MI, USA). The treatment group was exposed 
for 2 hours daily for a total of 10 hours over 5 days to an 
inhaled partial pressure of oxygen (PIO2) = 300 mmHg (42% 
O2 at 1 ATM). The oxygen concentration was monitored and 
maintained continuously during the NBO exposure. Control 
animals were concurrently exposed in identical chambers with 
the doors opened to room air.  

Sample collection 
Samples were collected 24 hours after the final 2-hour hy-
peroxia exposure. Animals were anesthetized with isoflurane 
and 8–10 mL of blood was drawn from the inferior vena cava 
using a 21-gauge needle and a heparinized 10 mL syringe. 
Blood was transferred to tubes and centrifuged at 2000 r/min 
for 10 minutes. Plasma was collected, flash frozen in liquid 
Nitrogen, and then stored at –80°C until further analysis. Red 
blood cells were lysed using ammonium chloride. The remain-
ing cells were washed twice with phosphate buffer saline and 
the cell number was determined using a Beckman Coulter Z1 
Particle Counter (Beckman Coulter Life Sciences, Indianapolis 
IN, USA). 1 × 106 cells were used for each control and sample 
staining for flow cytometry.

Flow cytometry
1 × 106 cells in 100 µL flow buffer (phosphate buffer saline 
1% albumin) were used for each staining. 5 to 10 µL antibody 
was added to each tube, mixed, and incubated for 30 minutes 
in the dark at 4°C. Then cells were washed twice and then 
fixed with 4% formaldehyde for 30 minutes, washed with 
flow buffer and stored at 4°C until analyzed the following day. 
The following antibodies were used: anti-CD34-PE (Abcam, 
Cambridge, MA, USA), anti-CD45-APC (eBioscience, Grand 
Island, NY, USA), and anti-CD133-DyLight 488 (Novus, 
Littleton, CO, USA). For live and dead cell discrimination, 
Ghost-Dye-V450 was used (Tonbo Bioscience, San Diego, 
CA, USA).22

Flow cytometry was performed on a BD LSRII (BD Bio-
sciences, San Jose, CA, USA) using DIVA software (BD 

Biosciences). Samples were analyzed using FlowJo software 
(FlowJo, Ashland, OR, USA). Lymphocytes were gated by 
forward and side scatter (Figure 1A), doublets were excluded 
(Figure 1B), and live cells were selected for further analysis 
(Figure 1C). CD45 positive cells were selected (Figure 1D) 
for further analysis of the expression of CD34 and CD133 
(Figure 1E and F).

Figure 1: Flow cytometry gating strategy. 
Note: (A–F) Lymphocytes were gated by forward and side scatter (A), doublets were 
excluded (B), and live cells were selected for further analysis (C). CD45 positive cells 
were selected (D) for further analysis of the expression of CD34 and CD133 (E, F). 

Enzyme linked immunosorbent assay
We determined the expression of selected cytokines using 
the Signosis Rat Cytokine enzyme linked immunosorbent 
assay Plate Array I (Signosis Inc., Santa Clara, CA, USA). 
Samples were thawed and immediately prepared for enzyme 
linked immunosorbent assay per manufacturer’s instructions. 
Cytokine concentration was determined according to manu-
facturer’s instructions using a microplate reader at 450 nm 
within 30 minutes.23

The cytokines measured in this experiment include tumor 
necrosis factor (TNF)-α, vascular endothelial growth factor, 
fibroblast growth factor-β, interferon-γ, leptin, monocyte 
chemotactic protein-1, stem cell factor, macrophage inflam-
matory protein (MIP)-1α, interleukins-1α, -1β, -5, -6, -15, 
-10, Rantes, and transforming growth factor-β.

Statistical analysis
All statistics were calculated using Graph Pad Prism version 
6.07 (GraphPad Software, San Diego, CA, USA). All com-
parisons between the control group and the NBO group were 
performed using the non-parametric Mann–Whitney U test 
with a P of < 0.05 to indicate a difference between the groups. 
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RESULTS
Cytokine expression in IH exposed rats
As previously described six rats were exposed to normoxia 
(150 mmHg PIO2) and six rats to NBO at 300 mmHg PIO2. 
Data from all study animals were used to determine the ef-
fect of NBO on cytokine expression. Our results revealed a 
significant decrease in TNF-α expression (Figure 2A). We 
noted possible trends in two other cytokines, a decrease in 
MIP-1α (P = 0.07; Figure 2B) and a decrease in Leptin (P = 
0.09; Figure 2C). Complete results from all cytokines tested 
are included in Figure 2D. 

Increased frequency of CD133+ S/PCs after IH exposure
The frequency of CD133+/CD45+ and CD133+/CD45+/CD34- 
S/PCs in venous blood was significantly increased in NBO 
animals compared to controls (P = 0.046 and P = 0.009 
respectively; Figure 3) whereas there was no difference in 
the frequency of CD34+/CD45+ or CD34+/CDCD133+/CD45+ 
S/PCs between the two groups.

P = 0.004

P = 0.07

P = 0.09

Figure 2: Cytokine expression in intermittent hyperoxia exposed rats. 
Note: (A) Tumor necrosis factor (TNF)-α; (B) macrophage inflammatory protein 
(MIP)-1α; (C) leptin; (D) Other cytokines. Data are expressed as the mean ± SD. 
*P < 0.05 (non-parametric Mann Whitney test). VEGF: Vascular endothelial growth 
factor; FGF: fibroblast growth factor; IFN: interferon; MCP-1: monocyte chemotactic 
protein-1; SCF: stem cell factor; IL: interleukin; TGF: transforming growth factor. 

P = 0.009P = 0.937

P = 0.459P > 0.999

CD133+/34–(45+)CD34+/133–(45+)

CD133+/45+CD34+/45+

Figure 3: Frequency of CD133+ stem progenitor cells after intermittent 
hyperoxia exposure detected by flow cytometry.
Note: (A) CD34+/CD45+ and CD133+/CD45+ stem progenitor cells; (B) CD34+/
CD133-/CD45+ and CD133+/CD34+/CD45+ stem progenitor cells. Data are 
expressed as the mean ± SD. *P < 0.05 (non-parametric Mann–Whitney U test).

DISCUSSION
The present study assessed whether repeated NBO exposures 
induce biological responses that have been previously observed 
with HBO therapy, including S/PC mobilization and inhibition 
of TNF-α expression. The main finding of the study is that in 
adult rats, daily 2-hour exposures to NBO (for a total of 10 
hours) mobilizes S/PCs and reduces serum TNF-α concentra-
tion supporting our hypothesis.

The field of therapeutic IH is dominated by the use of HBO, 
and HBO therapy is approved by the FDA to treat 15 indica-
tions.24 Additionally, although not FDA approved for these 
indications, studies appear to suggest that HBO therapy may 
ameliorate other conditions including myocardial infarction,25 

hip fractures,26-30 stroke,3,31-37 peri-surgical healing,38-42 and 
traumatic brain injury.3,35,43-46

It is a long standing practice to use up to 1.4 ATA of hy-
perbaric air resulting in the alveoli PaO2 of 209 mmHg as a 
sham in HBO research.47-52 However, the rational for the use 
of hyperbaric air as a sham remains only partially elucidated 
because of lack of data defining an exact “dose” (determined 
by tension and duration).53 In this experiment we used a PaO2 
of 300 mmHg which resulted in biologic activity, suggesting 
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that the PaO2 used as a sham in HBO research could in fact 
induce a treatment effect. Further, the results suggest that in-
creased pressure may not be required to elicit an effect. NBO 
therapy increases the transcutaneous oxygen concentration 
from 150 to 470 mmHg during a single treatment resulting in 
a biological response with increased erythropoietin levels.14,15 

This is in accordance with our study showing biologic activity 
resulting in changes in S/PC mobilization and inflammatory 
cytokine levels.

Similar to the uncertainty of the O2 tension required to 
achieve a biological and regenerative response in HBO, the 
tension of O2 required in NBO is also not clear. The intermittent 
exposure to HBO PIO2 of 1473 mmHg and higher mobilizes 
CD34+ S/PCs in humans. Our findings are similar demonstrat-
ing that NBO with a PIO2 of 300 mmHg induces the mobiliza-
tion of S/PCs (CD133+) and decreases expression of TNF-α 
in rats.4,18,54,55 Another study investigating two oxygen doses, 
PIO2 of 1473 mmHg and PIO2 of 1777 mmHg, found a direct 
correlation between oxygen tensions and S/PC mobilization, 
suggesting a dose relationship, but little is known about the 
effect of IH using a PIO2 ≤ 1473 mmHg.4 We used 10 treatment 
sessions of two hours each and achieved a visible response with 
42% oxygen. This is in agreement with the observation that 
exposure above 40% oxygen induced an increase in derivatives 
of oxygen metabolites in the blood of exposed rats.56 However, 
more studies are required to optimize the treatment schedule 
for specific injury or disease models. The choice of treatment 
dose in this research project is based on previous research 
in mice using 100% oxygen at 2.8 ATA for one 90-minute 
treatment and another cohort for two 90-minute treatments.18 
They found significant increases in S/PC mobilization in both 
groups and a larger increase in the two-treatment group over 
the single-treatment group, suggesting a dose effect. Given the 
likelihood of a dose effect in the current experiment provided 
by repeated exposure to NBO, we utilized 42% oxygen in the 
treatment condition because it was double the FIO2 compared 
to room air with a relatively small increase in oxygen tension. 
This is comparable to the small increase in oxygen utilized as 
a sham in previous studies investigating mild traumatic brain 
injury and post-traumatic stress disorder.47-50

Whereas the best tension and duration of oxygen treatment 
for various pathologies needs to be established, a common 
finding is the mobilization of S/PCs. We focused on CD133+ 

S/PC’s based on a study by Nakanishi et al.57 showing that 
CD133+ S/PC supported the neovascularization of skin graft. 
In addition, CD133+ S/PCs differentiated into endothelial and 
myogenic lineages in a rat model of muscle injury58 and circu-
lating CD133+ cells enhance angiogenesis, astrogliosis, axon 
growth and functional recovery in a mouse spinal cord injury 
model.59 Other tissue specific stem cells may be important 
for the effect of HBO and NBO treatment, a topic that needs 
more research.

One of the major effects of HBO treatment is the control 
of inflammation. This is in part achieved by the increase in 
reactive oxygen species production associated with oxygen 
therapy which play central roles in coordinating cell signaling 
and anti-oxidant protective pathways.12 Somewhat unexpected 
is the observed downregulation of TNF-α with NBO treatment 

in our study. This downregulation is unlikely to be explained 
by a reduction in existing inflammation given that the animals 
were healthy and no injury model was tested. One possibility 
is that NBO induced an inflammatory response which was 
downregulated within 24 hours after treatment to a level that 
is below basal level.8 

Our study demonstrated that IH using NBO at much lower 
PIO2 pressure than previously tested shows a biological re-
sponse with S/PC mobilization and changes in cytokine ex-
pression similar to HBO. Future research examining oxygen/
dose relationship is needed to further elucidate the biological 
effect of various doses of IH, and ascertain differences between 
concentration and pressure, along with establishing basal ac-
tive levels of IH. In addition, future studies will be needed to 
test for efficacy in an injury model. The significance of this 
study is twofold. First, relatively small increases of IH yield a 
measurable change in S/PC mobilization and pro-inflammatory 
cytokine expression in an animal model. Second, the use of 
relatively small doses in IH as a sham in oxygen therapy 
research should be further investigated to determine if it is a 
sham or a small dose treatment.
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