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Abstract

Rubicon (Rubcn) was initially identified as a component of the Class III PI3K complex and a 

negative regulator of canonical autophagy and endosomal trafficking. However, Rubicon has 

attracted the most notoriety because of its critical role in LC3-associated phagocytosis (LAP), a 

form of non-canonical autophagy that utilizes some components of the autophagy machinery to 

process extracellular cargo. Additionally, Rubicon has been identified as a key modulator of the 

inflammatory response and viral replication. In this review, we discuss the known functions of 

Rubicon in LAP and other signaling pathways and examine the disease pathologies associated 

with Rubicon dysfunction in animal models and humans.
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Introduction

The Rubcn gene was first identified in 1996 from the cDNA library of human myeloid cell 

line KG-1 and named KIAA0226 [1]. In 2009, two research groups simultaneously 

identified KIA0226 as a novel Beclin 1-binding protein, and hence dubbed as Rubicon 

(RUN domain and cysteine-rich domain containing, Beclin 1 - interacting protein) [2, 3]. 

Rubicon is ubiquitously expressed in most tissue and organs [4, 5], but the mRNA 

expression of Rubcn is most abundant in the spleen, testis, cerebral cortex, and lymph node 

compared with other tissues (Figure 1A–B). The human Rubcn gene is located at 

chromosome 3q29 that can encodes three protein isoforms. The mouse Rubcn gene is 

located at chromosome 16 containing 23 exons that produce two protein isoforms by 

alternative splicing [6]. Protein alignment reveals an 84% sequence similarity between 

human and mouse Rubicon and that Rubicon is conserved among vertebrate species [7].

The Rubicon protein is comprised of multiple functional domains that modulate a variety of 

intracellular signaling cascades via interaction with its binding partners. It contains a RUN 

domain, which interacts with GTPases, two serine-rich regions (S-R), a coiled-coiled 
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domain (CCD), multiple helix-coil-rich repeats, and a cysteine-enriched FYVE-like [8, 9]. 

These different domains mediate specific protein-protein interactions that dictate its 

downstream function (Figure 1C). Furthermore, Rubicon can undergo phosphorylation 

events that can affect the protein interaction and downstream signaling [9].

Since its characterization almost a decade ago, Rubicon has been found to be involved in 

many signaling pathways and cellular responses, with its role in LC3-associated 

phagocytosis (LAP) attracting the most attention. Just as Julius Caesar crossing the river 

Rubicon committed his troops to war with Rome, activating the protein Rubicon can commit 

a cell to LAP, while inhibiting canonical autophagy. The ability to distinguish canonical 

autophagic processes from non-canonical ones is an area of great interest, as canonical 

autophagy serves a critical role in cellular quality control and the ability to specifically 

modulate non-canonical autophagy via Rubicon could prove to be beneficial therapeutically. 

In this review, we will examine the multi-faceted role of Rubicon in both canonical and non-

canonical autophagy, immunity, and inflammatory diseases.

Rubicon in macroautophagy

Macroautophagy (hereafter autophagy) is catabolic cell survival pathway by which 

eukaryotic cells sequester components of their cytoplasm in de novo autophagosomes for 

degradation and recycling during times of energetic stress, such as starvation [10]. This 

process is classically considered non-selective in nature is largely orchestrated by the ATG 

family of proteins [11]. Sensing of energy deficits, predominately by AMP-activated kinase 

(AMPK), results in the inhibition of mTOR complex 1 (mTORC1) activity, which keeps 

autophagy in check during times of nutrient abundance [12]. In response to AMPK activity 

and mTORC1 inactivation, the autophagy pre-initiation complex composed of ATG13, 

FIP200, and ULK1/2, is formed [13]. ULK1 then phosphorylates Ambra1, a Beclin 1-

binding partner, linking the activity of the pre-initiation complex, to the Class III PI3K 

complex, which is responsible for the generation of phosphatidylinositol-3-phosphate 

(PI(3)P), which plays a critical role in multiple cellular trafficking pathways and is a vital 

recruitment signal for the downstream ubiquitin-like conjugation systems of autophagy, the 

ATG5–12 and LC3-PE conjugation systems [14, 15].

Recent studies have described 3 functionally, molecularly, and location distinct Class III 

PI3K complexes (herein called PI3KC3) that operate during autophagy. PI3KC3s commonly 

contain VPS34, the catalytic subunit, Beclin 1, and VPS15 (also called p150), and the 

specificity of PI3KC3 are determined by different complex components which bind Beclin 1 

[16]. The PI3KC3 containing ATG14 (also called Barkor or ATG14L) is required for 

starvation-induced autophagy and is targeted to forming autophagosomes. In addition, 

ATG14 has been shown to augment PI(3)P production by VPS34, indicating that during 

canonical autophagy, ATG14 serves as both a localization agent and activity regulator of the 

PI3KC3 [17].

A second PI3KC3 lacks ATG14 but contains UVRAG (UV radiation resistance-associated 

gene), a Beclin 1-binding protein that promotes Beclin 1-VPS34 interactions as well as 

Vps34 activity [18]. The role of the UVRAG-containing PI3KC3 as been controversial, as 
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some studies have supported its role in autophagosome formation [18, 19] while other 

studies have challenged this role and rather highlighted this PI3KC3’s major role in 

endocytosis, endosomal trafficking, autophagosome maturation via its interaction with class 

C-VPS/HOPS [17, 20, 21].

The third PI3KC3 contains both UVRAG and Rubicon, and unlike the preceding two 

PI3KC3, this complex is a negative regulator of autophagy, interacting at multiple steps in 

the autophagic pathway. This inhibitory complex is partly induced by the master autophagy 

negative regulator, mTORC1. Under nutrient-rich conditions, mTORC1 binds and 

phosphorylates UVRAG, amplifying the association of UVRAG with Rubicon and the 

inhibition of autophagy [22]. Originally identified as a Beclin 1-binding partner localizing at 

the early and late endosomes, Rubicon was also described as a VPS34-bidining partner via 

its RUN domain, and this interaction inhibited VPS34 lipid kinase activity and 

autophagosome formation [16, 23]. Thus, Rubicon-deficient cells demonstrate increased 

autophagic activity, with increased ATG16L puncta, decreased levels of p62, LC3+ puncta, 

and LC3-II conversion [5, 7, 23]. However, Rubicon also plays a role in inhibiting the 

autophagosomal maturation stage, as Rubicon-deficient cells showed a higher ratio of 

autophagolysosomes to autophagosomes, compared to control cells [20].

While macroautophagy is considered the main canonical autophagic pathway and 

nonspecifically active, the autophagy machinery can also be selectively targeted to variety of 

internal substrates, such as damaged organelles (mitophagy for mitochondria) [24], 

macromolecules (lipophagy for lipids) [25], aggregated proteins (aggrephagy) [26], 

intracytoplasmic microbes (xenophagy), or phagocytosed particles such as dying cells or 

extracellular pathogens (LC3-associated phagocytosis or LAP) (Figure 2) [27–29]. While 

the role of Rubicon in most forms of non-canonical autophagy have yet to be explored, 

recent studies have identified Rubicon as a molecule required for LAP.

Rubicon in LC3-associated phagocytosis

LC3-associated phagocytosis (or LAP) is a form of non-canonical autophagy triggered by 

the uptake of a particle that engages an extracellular receptor, such as Toll-like receptors 

(TLR), Fc receptors (FcR), or a phosphatidylserine receptor (PtdSer-R). Signaling through 

these receptor families during phagocytosis results in the recruitment of some, but not all, of 

the autophagy machinery to the cargo-containing, single-membraned vesicle, termed the 

LAPosome [5, 27, 29]. This autophagic machinery facilitates the lipidation and embedding 

of LC3-II in the LAPosome membrane, which mediates its subsequent fusion to the 

lysosomes wherein the cargo is efficiently processed for degradation and the proper immune 

response is initiated [5]. As LAP is induced by a variety of stimuli, including pathogens [5, 

29], immune complexes [30], and dying cells [27, 28, 31], LAP is considered a conserved 

mechanism for inducing tolerance to exogenous threats, as LAP-deficient cells and animal 

models respond to these threats with exaggerated inflammation and pathology [5, 27, 28].

While LAP shares much of its machinery with canonical autophagy, LAP is both 

molecularly and functionally distinct. LAP does not require the activity of the pre-initiation 

complex, described above, nor is it affected my mTOR modulation [5, 27, 29, 30]. Similarly, 
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ATG14 is dispensable for LAP, which exclusively utilizes the UVRAG-containing PI3KC3, 

and its LAPosome-localized production of PI(3)P mediates the downstream recruitment of 

the ATG5–12 and LC3-PE ubiquitin-like conjugation systems [5]. Similar to canonical 

autophagy, E3-ligase complex ATG7 and ATG10 mediates the conjugation of ATG5 to 

ATG12 in association with ATG16L1 to form a stabilizing, multimeric complex. Conversion 

of cytosolic LC3-I to lipidated LC3-II is mediated by ATG4, which cleaves the LC3 

precursor allowing it to be subsequently conjugated to the lipid, phosphatidylethanolamine 

(PE), via the activity of ATG7 and ATG3 [5]. The aforementioned ATG5/12/16L1 complex 

is also required for the conversion of LC3-I to LC3-II. This lipidated LC3-II is now bound to 

the LAPosome membrane and is required for fusion to lysosomes [5, 32] (Figure 2).

However, whereas Rubicon association with the UVRAG-containing PI3KC3 had an 

inhibitory role during canonical autophagy, Rubicon is required for efficient LAP [5, 28, 33]. 

Rubicon-deficient cells undergo normal levels of phagocytosis, yet fail to recruit LC3-II to 

the cargo-containing phagosome [5, 28, 33]. The Rubicon-UVRAG-containing PI3KC3 

translocates to the LAPosome, independently of pre-initiation complex activity. This 

association or stability of the entire PI3KC3 at the LAPosome seems to rely heavily on the 

presence of VPS34, as the loss of VPS34 results in the loss of Beclin 1, UVRAG, and 

Rubicon from the LAPosome. Whereas Rubicon inhibits VPS34 lipid kinase activity during 

canonical autophagy, Rubicon-deficient cells failed to produce significant amounts of PI(3)P 

in response to LAP stimuli [5].

Rubicon’s promotion of PI(3)P by VPS34 serves two critical roles during LAP – the 

recruitment of the ATG5–12 and LC3-PE conjugation systems and the stabilization and 

activation of the NOX2 complex, the major NADPH oxidase in phagocytes [5, 34]. Two 

components of this multimeric complex, gp91phox and p22phox, are constitutively associated 

in the membranes of intracellular vesicles. TLR of FcR stimulation during phagocytosis 

triggers the translocation of cytosolic factors Rac1, p47phox, p67phox, and p40phox to the 

phagosome to form the active NOX2 complex, which produces reactive oxygen species 

(ROS) in the phagosomal lumen [5, 33, 34]. The NOX2 subunit p40phox binds PI(3)P, and in 

the absence of PI(3)P generated via Rubicon’s activity on VPS34, p40phox fails to associates 

with the LAPosome and ROS production is impaired [5, 34].

NOX2-mediated ROS production is required for LAP, and Rubicon plays an additional role 

in promoting that pathway [33, 35]. Studies demonstrates that Rubicon directly interacts 

with the p22phox subunit of NOX2 to stabilize the complex for optimal ROS production [5, 

33]. In the absence of ROS (for example, in Rubicon or NOX2-deficient cells or in the 

presence of a ROS scavenger, such as Tiron or Catalase), recruitment of downstream LAP 

components, like ATG16L1, ATG7, and LC3-II, is impaired [5]. However, LAPosomes 

within NOX2−/− cells contain wild type levels of PI(3)P, and exogenous induction of 

superoxides (by H202) can increase LC3-II localization [5]. The reliance of LAP on these 

two signaling factors, PI(3)P and ROS, and the ability of Rubicon to interact with both of the 

mediating complexes (Beclin 1 via CCD domain [33]; VPS34 via RUN domain [16]; 

p22phox via S-R domain [33]) positions Rubicon to be a vital part of the LAP pathway.
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Rubicon in endosomal trafficking

Endosomal trafficking involves the sorting of cellular cargo through a series of sequentially 

maturing vesicles, classically from early endosomes to late endosomes to ultimately 

lysosomes, where the cargo is degraded and/or processed [36]. As many pathogens encode 

proteins that subvert either sequestration by or function of the endosomal trafficking 

pathway, understanding its molecular mechanisms is of clinical significance. The transition 

from early-to-late endosome initiated with the recruitment of the small GTPase Rab7 to the 

Rab5+ early endosomes, followed by Rab5 displacement and activation of Rab7, which is 

required for endosome maturation. Rab7 is activated by the guanine nucleotide exchange 

factor (GEF) class C-VPS/HOPS (homotypic fusion and vacuole protein sorting) complex, 

which promotes GTP binding to Rab7 [37].

As described above, UVRAG interacts with and positively regulates the class C-VPS/HOPS 

complex [21]. Rubicon is highly enriched on Rab5+ early endosomes, which in turn would 

prevent UVRAG interactions with late endosome localized class C-VPS/HOPS complex. 

Once active, Rab7 competes for Rubicon binding, relinquishing UVRAG and promoting the 

UVRAG-class C-VPS/HOPS complex. The net result of this activity is amplification of 

Rab7 activity and early-to-late endosome maturation [8]. Biologically, Rubicon acts as a 

negative regulator of endocytic trafficking, as cells that overexpress Rubicon contain 

abnormal lysosomal morphology and decreased transport and degradation of internalized 

receptors (such as EGFR) to the lysosome [7]. Conversely, Rubicon-deficient cells 

demonstrate a defect in recycling of transferrin receptor back to the plasma membrane [7, 8].

Rubicon in the inflammatory response

Both canonical and non-canonical autophagy have been implicated in regulation of the 

inflammation in response to a variety of pathogens [38]. In the presence of cytosolic DNA, 

Rubicon is released from PI3KC3, which activates canonical autophagy and aids in the 

removal of the pathogen [39]. In response to Aspergillus fumigatus infection, animals 

deficient for LAP (including Rubcn−/− animals) demonstrated a defect in the clearance of 

this fungal pathogen and a significant increase in the production of pro-inflammatory 

cytokines [5]. Similarly, Rubcn−/− macrophages produce increased amounts of pro-

inflammatory cytokines during efferocytosis, the process of engulfing and clearing dying 

cells [28].

Recent studies have indicated that Rubicon can act as a sentinel in inflammatory response, 

possibly independent of autophagy or LAP. Rubicon is responsible for the feedback 

inhibition of the CBM complex (assembly of CARD-9, BCL-10 and MALTI). employed 

during Dectin-1 and RIG-I stimulation [9, 40]. CARD 9 is a key molecule utilized by 

various PRR signaling pathways [9, 40, 41]. To avoid excessive release of inflammatory 

cytokines, Rubicon targets CARD9 to disrupt the CBM complex and disengage the signaling 

activities [9].

Several PRRs (like TLRs and RIG-1, STING & DAI) are involved in recognition and 

response to viruses [42]. However, many viruses (such as HIV, herpes virus, Kaposi’s 
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sarcoma-associated herpesvirus [KSHV], and influenza) have adapted mechanisms to evade 

detection by manipulating the autophagy pathway [43, 44]. KSHV inhibits autophagosome 

maturation via its interaction with Rubicon [45]. Hepatitis C virus (HCV) expresses NS3–

NS5B, which can induce the expression of Rubicon protein and delay the autophagosome 

maturation [46, 47]. HCV also delays induction of UVRAG, which aids in the accumulation 

of viruses in the autophagosome during the early stages of HCV infections [46, 47].

Recently, it has been shown that high expression of Rubicon results in inhibition of IFN 

signaling and prevents establishment of anti-viral state [48, 49]. In H1N1 influenza virus and 

vesicular stomatitis viruses (VSV), Rubicon interacts with IRF3 and is responsible for 

proteasomal degradation or dephosphorylation of IRF3 [48]. Type I interferon and Type III 

interferons are inhibited by Rubicon upon interaction with NEMO suppresses anti-viral state 

in hepatitis B virus (HBV) patients [49]. Rubicon has also been shown to have an inhibitory 

effect on VSV, influenza A virus (IAV), Enterovirus 71 (EV71) and Sendai virus (SeV) [49].

Rubicon in disease pathologies

Rubicon is involved in a plethora of signaling pathways at the cellular level. Rubicon has 

also been implicated in several disease states in both human and mouse model systems 

(Figure 3). The first documentation of Rubicon’s effects on human health was reported in 

2013, wherein a homozygous mutation in Rubcn was identified in a consanguineous family 

with early onset recessive ataxia [50]. Recessive ataxia is a group of rare neurological 

disorders characterized by incoordination of gait and limbs, dysarthria, and impaired eye 

movements [51]. Based on the major sites of degeneration, it can be further classified into 

cerebellar, spinocerebellar and sensory ataxias. While mutations in the genes that encode 

mitochondrial, DNA repair, membrane cytoskeleton, and cytosolic chaperone proteins have 

been identified in ataxia patients, a homozygous frameshift mutation in Rubcn (c.2624delC, 

p.Ala875ValfsX164) was found to co-segregate with a novel form of early onset recessive 

ataxia [4]. In vitro studies further demonstrate that the truncated Rubicon lost its ability to 

co-localize with Rab7 at late endosomes, linking defective endosomal trafficking to the 

disease development [50]. Rubicon has also been implicated in other human pathologies, 

such as non-alcoholic fatty liver disease (NAFLD), cholestasis [52], and LPS-induced stroke 

[53], though the molecular mechanisms are largely unknown.

Defective immune responses against self-antigens are at the center of the development 

autoimmune and autoinflammatory disorders. Studies have shown that mutations that impair 

autophagic pathways play a role in the development of autoimmune syndromes, as GWAS 

have revealed associations between human patients of autoimmune diseases with mutations 

or single nucleotide polymorphisms (SNP), in autophagic genes controlling the autophagic 

pathway [54, 55].

Systemic lupus erythematosus (SLE) is a systemic, multifactorial autoimmune disease, with 

pathogenesis and severity linked to defective efferocytosis [56]. Animal models with 

impaired clearance of dying cells develop symptoms of a SLE-like syndrome with aging, 

including increased inflammation, cross-presentation, and lymphocyte hyperactivity. In 

Wong et al. Page 6

FEBS J. Author manuscript; available in PMC 2019 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



addition, polymorphisms in Atg5 were identified among the risk loci for SLE, supporting a 

role for autophagic processes in this disease [57].

Strikingly, Rubcn−/− mice (or mice with other defects in the LAP, but not canonical 

autophagy pathway) develop an SLE-like syndrome with aging, and pathology was shown to 

be associated with an impairment in the clearance of dying cells that occur under 

homeostatic conditions [28]. Apoptotic cells are considered “immunologically silent”, and 

as such wild type phagocytes that efferocytose them typically produce anti-inflammatory 

cytokines, such as TGFβ and interleukin-10 (IL-10), while actively suppressing pro-

inflammatory cytokines, such as tumor-necrosis factor (TNF), IL-1, and IL-12 [58]. 

However, Rubcn−/− phagocytes produce increased levels of IL-1β and IL-6 and significantly 

less anti-inflammatory cytokines, such as IL-10, upon such engulfment [28]. With age, 

Rubcn−/− mice display significantly increased serum levels of pro-inflammatory cytokines, 

serum and kidney autoantibodies, interferon signature gene expression, and kidney 

pathology, all characteristics of human SLE [28]. Whether or not mutations in Rubcn are 

linked to any autoimmune or autoinflammatory diseases is currently being investigated.

We now recognize that intestinal microbiota can regulate the development and function of 

the immune system, playing an important role in inflammatory bowel disease (IBD), 

including Crohn’s disease (CD) and ulcerative colitis (UC). Human commensal Bacteroides 
fragilis, which is packaged into outer membrane vesicles (OMVs) for delivery to intestinal 

dendritic cells, has adapted beneficial immunomodulatory properties. OMVs containing B. 
fragilis activates the LAP to maintain an immunotolerant gut environment, thus protecting 

the host from IBD/ colitis. Likewise, Rubcn−/− mice fail to elicit Treg differentiation in 

response to B. fragilis OMVs, demonstrating that Rubicon (and LAP) are critical for 

immunotolerance [59].

Rubicon and the LAP pathway at large has been demonstrated to play a critical role in the 

clearance of and immunological response to a variety of pathogens. Rubicon is required for 

the control of pathogens such as Aspergillus fumigatus [60], Listeria monocytogenes, and 

Burkholderia pseudomallei [61–64]. Conversely, during Candida albicans infection, Rubicon 

promotes the survival of the fungus [9, 65].

Rubicon has also been recently identified as a modulator of hepatitis B and C virus infection 

[46, 49]. HBV is a globally prevalent liver disease caused by the hepatitis B virus infection 

that can lead to cirrhosis and hepatocellular carcinoma. A recently study found that patients 

with HBV infection have increased Rubicon expression in peripheral blood and liver, further 

enhancing viral replication and antagonizing the type I interferon response [49]. Similarly, 

HCV induces Rubicon expression, which is beneficial for viral replication [46].

Conclusions

The identification of Rubicon as a key player in the immune response and autoimmunity 

allows researchers to examine the role of autophagy in a new light. As Rubicon participates 

in both canonical and non-canonical autophagy (albeit in opposing directions), as well as 

functions possibly unrelated to autophagy, it is poised to be a candidate for 
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immunomodulatory therapies. As Caesar’s crossing of the river Rubicon represented a point 

of no return in his quest for Rome, perhaps engaging the protein Rubicon represents a 

pivotal point in immunological fate.

Abbreviations:

AMPK AMP-activated protein kinase

ATG autophagy

BCL-10 B-cell lymphoma/leukemia 10

C-VPS/HOPS homotypic fusion and vacuole protein sorting complex

CARD9 caspase-associated recruitment domain 9

CBM CARD9, BCL-10, and MALT1

CCD coiled-coiled domain

CD Crohn’s disease

DAI-1 DNA-dependent activator of IFN-regulatory factor 1

EGFR epidermal growth factor receptor

EV71 Enterovirus 71

FcR Fc (Fragment, crystallizable) receptor

FIP200 FAK-interacting protein of 200 kDA

FYVE Fab1, YOTB, Vac1 (vesicle transport protein), and EEA1

GEF guanine nucleotide exchange factor

GTPase guanosine triphosphate-ase

GWAS genome wide association studies

HBV, HCV hepatitis B virus, hepatitis C virus

HIV human immunodeficiency virus

IAV influenza A virus

IBD inflammatory bowel disease

IFN interferon

IL interleukin

IRF interferon regulatory factor

KSHV Kaposi’s sarcoma-associated herpesvirus
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LAP LC3-associated phagocytosis

LC3 light chain 3

MALT1 mucosa-associated lymphoid tissue lymphoma 

translocation protein 1

mTOR mammalian target of rapamycin

NAFLD non-alcoholic fatty liver disease

NEMO NF-kappa-B essential modulator

NOX2 NADPH (nicotinamide adenine dinucleotide phosphate) 

oxidase

OMV outer membrane vesicle

PE phosphatidylethanolamine

PI(3)P phosphatidylinositol 3-phosphate

PI3KC3 class III PI3K complex

PRR pathogen recognition receptor

PtdSer-R phosphatidylserine receptor

Rab5, Rab7 Ras-related protein in brain

RIG-I retinoic acid-inducible gene I

ROS reactive oxygen species

Rubicon RUN domain and cysteine-rich domain containing, Beclin 

1 - interacting protein

RUN RPIP8, UNC-14, and NESCA

S-R serine-rich

SeV Sendai virus

SLE systemic lupus erythematosus

SNP single nucleotide polymorphism

STING stimulator of interferon genes

TGF transforming growth factor

TLR Toll-like receptor

TNF tumor necrosis factor

Treg regulatory T cell
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UC ulcerative colitis

ULK1/2 Unc-51 like autophagy activating kinase

UVRAG UV radiation resistance-associated gene

VPS34 VPS15: vacuolar protein sorting 34, vacuolar protein 

sorting 15

VSV vesicular stomatitis viruses
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Figure 1. Protein structure and expression pattern of Rubicon various tissues
A. The expression of mouse Rubicon in multiple organs/tissues accessed by 

immunoblotting, originally published in [5].

B. Rubcn is detected in many human tissues by mRNA sequencing (data were retrieved and 

tailored from proteinatlas, a publically available protein expression database)

C. The schematic protein structure of human Rubicon and known sites of interaction with its 

binding partners. Rubicon contains multiple functional domains that mediate the protein 

function by interacting with other proteins. RUN, RUN domain; S-R, serine-rich region; 

CCD, coiled-col domain; H-C, helix-coil-rich region; FYVE-like, FYVE-like domain.
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Figure 2: LC3-associated phagocytosis (LAP)
Upon engulfment of stimuli that engage Toll-like receptors (TLR), phosphatidylserine 

receptors (PtdSer-R), or Fc receptors (FCR), components of the LAP pathway are recruited 

to the cargo-containing LAPosome. The Class III PI3K complex, composed of Beclin-1, 

VPS34, UVRAG, and Rubicon, assembles and associates with the vesicle and is critical to 

the sustained and localized production of PI(3)P at the LAPosome. PI(3)P serves two roles

—the recruitment of the downstream conjugation systems (ATG5–12 Conjugation System 

and LC3-PE Conjugation System) and the stabilization of the NOX2 complex for the 

production of ROS. The active NOX2 complex is assembled upon receptor engagement 

when cytosolic NOX2 components (p47phox, p40phox, p67phox, and Rac1) join 

phagosomal NOX2 components (NOX2 and p22phox) at the LAPosome. Of note, Rubicon 

interaction is also required for the stabilization of the NOX2 complex. Both ROS and PI(3)P 

are required for the subsequent lipidation and translocation of LC3-II to the single 

membrane of the LAPosome, and LC3-II is required for fusion to the lysosome and 

maturation of LAPosome.
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Figure 3: Rubicon-associated diseases in animals and humans
Illustration of pathologies associated with aberrant Rubicon expression or function, to date.
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