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Abstract

Objectives—Non-human primates (NHP) are model organisms for understanding the 

pathophysiology and treatment epilepsy therapy in humans, while data from human patients 

informs the diagnosis and treatment of NHP with seizures and epilepsy. We reviewed the literature 

and surveyed veterinarians at zoos and NHP research centers to 1) better define the range of 

seizures and epilepsy in NHP, 2) understand how NHPs can inform our knowledge of human 

epilepsy pathophysiology and treatment, and 3) identify gaps of knowledge and develop more 

effective guidelines to treat seizures and epilepsy in NHP.

Methods—We searched PrimateLit, Pubmed, and Google Scholar for studies on experimental 

models of epilepsy in NHP and on naturally-occurring seizures and epilepsy in NHP in captivity. 

We also created a survey to assess methods to diagnose and treat epilepsy in NHP. This survey was 

sent to 41 veterinarians at major international zoos and research facilities with NHP populations to 

study seizure phenomenology, diagnostic criteria for seizures and epilepsy, etiology, and anti-

seizure therapies in NHP.

Results—We summarize the data from experimental and natural models of epilepsy in NHP and 

case reports of epilepsy of unknown origin in captive primates. We also present survey data 

collected from veterinarians at 8 zoos and 1 research facility. Experimental data from NHP 

epilepsy models is abundant, while data from primates who develop epilepsy in the wild or in zoos 

is very limited, constraining our ability to advance evidence-based medicine.

Significance—Characterization of seizure or epilepsy models in NHP will provide insights into 

mechanisms and new therapies which cannot be addressed by other animal models. NHP research 

will better inform species-specific diagnoses, and outcomes
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1. Introduction

The neurobiological and phylogenetic proximity of nonhuman primates (NHP) and humans 

suggests that neurological disorders in primates can inform our understanding of human 

disorders while advances in human therapies can be adapted in primate care. Primate brains 

provide the closest parallels to the genetic, neurochemical, neurophysiological and 

cytoarchitectonic features of human brains, and are excellent models of physiology and 

disease1. Epilepsy occurs naturally in NHP – spontaneously (i.e., presumed genetic) and 

from symptomatic (structural) causes such as trauma and infection. In humans, focal 

epilepsies account for 20–66% of incident epilepsies in population-based studies of all 

ages2. A cause sf epilepsy is identified in 14–39% of cases; most have no identifiable cause2. 

Research in NHP may help us to better understand the underlying pathophysiology of 

human epilepsies and inform their treatment. Our knowledge of epilepsy in NHP comes 

primarily from two sources: experimental models of epilepsy and animals in captivity or 

research facilities who develop seizures or epilepsy.

The literature on seizures and epilepsy occurring in NHP in captivity or animal research 

facilities who develop symptomatic (structural) epilepsy or epilepsy of unknown origin is 

limited to case reports and small series. We need research to further assess the safety and 

efficacy of therapies and protocols for seizures, epilepsy and status epilepticus in NHP. By 

contrast, there is considerable data from experimental epilepsy models.

NHP resemble humans more closely genetically, physiologically and anatomically than any 

other animal model1. Our objective is to provide an overview of experimental epilepsy 

models in NHP, natural epilepsy models in NHP in research facilities, and the diagnosis and 

management of seizures and epilepsy in NHP in zoos, as research in NHP can build our 

knowledge of epilepsy pathophysiology, diagnosis, and treatment in both NHP and humans.

2. Methods

We systematically examined data on: the range of seizure phenomenology, the diagnosis of 

seizures and epilepsy, causes of seizures and epilepsy, and management of seizures/epilepsy 

in NHP.

2.1 Literature search for studies of epilepsy in NHP

We searched Pubmed and Google Scholar for studies on experimental models of epilepsy in 

NHP and on naturally-occurring seizures and epilepsy in NHP in captivity. Our Pubmed 

search used combinations of keywords relating to 1) epilepsy 2) seizures 3) NHP. We also 

searched for specific species i.e., “Gorilla gorilla” AND “seizure” and for all years available. 

The search was restricted to studies on NHP in English. There was no limitation on year 

published or type of article. We also searched the reference lists of all relevant studies 

(backward citation searching). We also used Google and Google Scholar to perform these 

searches and for forward citation searching.

We searched PrimateLit Database (accessed 11/1/2018) on primatology (University of 

Wisconsin-Madison Libraries) for “epilepsy” or “seizure,” which yielded >1,000 results. 
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Restricting the search to English articles for all years and article types yielded ~800 articles, 

from which we selected those on experimental epilepsy models that didn’t overlap with our 

Pubmed and Google searches, and included all case reports of epilepsy or seizures in NHP 

in captivity.

2.2. Survey of Zoos and Research Facilities with Primates

We sent our survey to lead veterinarians at 35 international zoos and 6 research facilities. 

Questions included background information on the animal care facility and the primates it 

cares for, including demographic and clinical information of NHPs with seizures. We asked 

about the seizure semiology, diagnostic work up, the efficacy of ASMs and other treatments 

used, other medical history in the affected animal, and descriptions of any craniofacial 

trauma or episodic behavioral changes suggesting possible seizure activity.

3. Results: Nonhuman primate models of epilepsy

Multiple NHP models of epilepsy have been extensively studied in natural and experimental 

models of focal and generalized epilepsy (Table 1). These models studied the 

pathophysiology and neurophysiology underlying epileptic seizures, as well as anti-seizure 

therapies in NHP. We included models based on their relevance to understanding human 

epilepsies and their applications for further research.

3. 1 The study of epileptogenesis in experimental models

The alumina gel-induced rhesus monkey model of focal epilepsy was an early NHP mode3. 

Initial studies investigated the role of the inhibitory neurotransmitter, γ-aminobutyric acid 

(GABA) in epileptogenesis. Immunocytochemistry for GABA-synthetic enzyme, glutamate 

decarboxylase (GAD), revealed significant destruction of GABAergic neurons and GABA 

receptors at chronic cortical epileptic foci2, 3. Other studies showed that the loss of GAD-

positive terminals and neuronal somata occurs clinical seizure onset in monkeys3 suggesting 

that loss of GABAergic innervation contributes to the focal epilepsy pathogenesis.

This alumina gel temporal lobe epilepsy (TLE) model in rhesus monkeys produced parallel 

pathology, behavior, and EEG features to human chronic TLE4. Another TLE model was 

developed by inducing status epilepticus in pig-tailed macaque (Macaca nemestrina) with 

unilateral entorhinal infusions of bicuculline5. This model may inform the effects of 

prolonged seizures during infancy and the origins of human TLE. A status epilepticus model 

was generated by intravenous bicuculline in adolescent baboons (Papio papio) to study the 

effects of seizure-induced brain injury with or without hypoxia6.

3.2 The study of potential seizure therapies in experimental models

The alumina gel-induced rhesus macaque (Macaca mulatta) model of focal epilepsy has 

assessed the efficacy of anti-seizure medications (ASMs). Phenytoin and phenobarbital 

reduced seizure frequency and severity in these monkeys7. Animals given pharmacologic 

prophylaxis had only partial seizures whereas control animals exhibited secondarily 

generalized tonic-clonic seizures (GTCS). This model compared the efficacy of valproic acid 

(VPA) and ethosuximide (ESM)8. Low dose VPA reduced seizure frequency, duration, and 
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severity but a higher dose was required to attenuate focal motor seizures. Long-term seizure 

frequency was reduced with high VPA plasma levels. Ethosuximide exacerbated seizure 

frequency. Clonazepam (CZP), like VPA, controlled secondarily GTCS at low doses, while 

partial or focal motor seizures were controlled only at higher doses9. Seizure frequency was 

reduced with high doses of VPA or CZP, even after cessation of the ASM. The enduring 

effects of VPA after medication discontinuation was first demonstrated in this primate 

model8. These studies established ASM efficacy for seizure prophylaxis and suggest that 

long-term risk modification requires high doses. This model was also used to evaluate vagus 

nerve stimulation (VNS) to treat seizures. Chronic VNS Therapy reduced seizure frequency 

but not severity nor interictal epileptiform discharges (IEDs)10.

3.3 Natural model of idiopathic generalized epilepsy with photosensitivity

The propensity for visual stimuli, such as flashing lights, to trigger seizures, or 

photosensitivity, was originally encountered in wild red baboons (Papio hamadryas papio)11. 

The ability to replicate seizures in a laboratory setting by taking advantage of 

photosensitivity provided an attractive opportunity to better understand mechanisms 

underlying photoepileptic responses and test treatments. Intermittent light stimulation (ILS) 

triggers generalized interictal epileptic discharges over the frontocentral regions, as well as 

seizures, beginning with myoclonic jerking of the eyelids, then spreading to the lower face, 

neck, trunk, and upper and lower extremities11. These myoclonic seizures can develop into 

GTC seizures. Similar to humans, photosensitivity is increased by hyperventilation and 

stress, and maximal in the morning hours, especially upon awakening. In both species, 

spontaneous IEDs are more likely when the animal is relaxed with closed eyes12. 

Photosensitive baboons also exhibit spontaneous myoclonic, absence and GTC seizures, but 

electroclinical data is more limited13.

3.4 Epidemiology of generalized photosensitive epilepsy in baboons

Photosensitivity occurs in 60% of red baboons from western Africa1, and reportedly more 

prevalent than in Papio h. anubis and Papio h. cynocephalus14. Photosensitivity was 

observed in about 40% of baboons (P.h. cynocephalus/anubis, hamadryas/anubis, and papio/
Anubis) with spontaneous GTCS, and in 40% of animals with spontaneous generalized 

interictal discharges on scalp EEG13.

The Southwest National Primate Research Center (SNPRC) in San Antonio, Texas has 

~2000 baboons, including P.h. anubis, P.h. anubis/cynocephalus crosses, P.h. hamadryas,P.h. 
papio. The SNPRC houses the oldest and largest captive baboon pedigree, spanning seven 

generations. The prevalence of seizures is 26% and recurrent seizures is 15%15. Seizure 

incidence was 25/1000 baboon years (2.5%), much higher than in humans (135/100,000 

person years or 0.135%). Most baboons have childhood or adolescent-onset of GTCS, and 

scalp EEG reveal generalized IEDs with 4–6 Hz spike- or polyspike-and-wave discharges. 

As the seizures occur predominantly in sleep or upon awakening, the number of witnessed 

seizures underestimate actual seizure counts15. Caretakers can recognize intense seizures 

and peri-ictal behavioral changes or injuries; brief and often mild myoclonic seizures, 

especially eyelid myoclonus, or absence seizures are missed unless observed by a caretaker. 

Craniofacial trauma, such as brow lacerations or bruising, related to seizure-induced falls, 
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serve as useful adjunct for identifying seizures16. Based upon the electroclinical findings, 

there are striking parallels between this baboon epilepsy syndrome and juvenile myoclonic 

epilepsy (JME) in humans13.

While the natural history of epilepsy in the baboon is uncharted, epileptic baboons have 

shorter life expectancy than nonepileptic controls17. Some epileptic baboons die suddenly 

and unexpectedly in the colony. On pathological exam they are found to have pulmonary 

edema, similar to humans with sudden unexpected death in epilepsy (SUDEP). As no other 

reasons for death are noted on necropsy, the epileptic baboon is thought to serve as a natural 

animal model for SUDEP.

3.5 Seizure pathophysiology in baboons

Developments in structural and functional neuroimaging offer an excellent opportunity for 

studying the brain networks involved in photosensitivity and spontaneous ictal or interictal 

epileptic discharges. H2
15O-PET and resting-state fMRI have been used to map 

photoepileptic responses, networks underlying interictal discharges and network responses 

to antiseizure therapies18,19. Neuroimaging has also informed the planning of intracranial 

electrode placement and ongoing histopathological analyses, which are not possible in 

people with idiopathic generalized epilepsies19. Intracranial EEG confirmed functional 

neuroimaging findings that, in addition to the frontocentral cortices, the parietal and 

occipital regions are involved in the epileptic network, and that multiregional focal 

discharges occur alongside generalized interictal epileptic discharges. Ictal discharges, 

though generalized appear to be triggered by focal discharges from frontal, parietal or 

occipital cortices. Post-mortem neuropathological studies also identify more diffuse cell loss 

in the epileptic baboon brains, including decreased cortical neurons in sensorimotor, frontal 

and parietal cortices compared to controls20. It is unclear whether the cell-loss in affected 

baboons may be related to seizure activity or cortical developmental anomalies.

3.6 The study of potential seizure therapies in baboons (Papio papio)

Early studies in the natural GGE model of epilepsy in the baboon evaluated the efficacy of 

antiseizure medications in the setting of photosensitivity6. Similar to the experimental 

seizure models, phenobarbital and benzodiazepines, including diazepam and clonazepam 

were the most efficacious in suppressing photoparoxysmal and -convulsive responses, 

whereas carbamazepine, phenytoin and ethosuximide were deemed not as effective in the 

treatment of generalized myoclonic seizures. Valproic acid was effective only at much 

higher doses than required in humans for successful treatment of seizure types associated 

with idiopathic generalized epilepsy21. But even at subtherapeutic doses, valproic acid alters 

the epileptic networks, as demonstrated in a recent functional MRI study18. There are 

surprisingly no studies evaluating the effects of chronic antiseizure medications on 

spontaneous seizure activity in the epileptic baboon. Nonetheless, in a recent study, high-

frequency microburst VNS therapy demonstrated efficacy in reducing spontaneous GTCS 

frequency in epileptic baboons monitored continuously by video22.

The antiseizure medication, ketamine, on the other hand, may induce spontaneous interictal 

epileptic discharges and reduce seizure threshold at subtherapeutic doses (intramuscular 
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injections of 4–6 mg/kg)13. The seizures are mainly myoclonic seizures, and rarely 

convulsive in character. If convulsive seizures occur, they are usually briefer than the 

spontaneous GTCS, and may be repetitive13,22,23. Intramuscular ketamine exceeding 8 

mg/kg raises seizure thresholds and suppresses photosensitivity23. Inhibition of the negative 

feedback influencing glutamatergic activity via antagonism of presynaptic glutamate 

receptor activity results in a proconvulsive effect, while at higher ketamine doses, the 

glutamatergic effects may be suppressed by saturation of the postsynaptic glutamate 

receptors24. Interestingly, ketamine is currently recommended for treatment of refractory SE 

in humans25. Proconvulsants, such as allyl-glycine, which inhibits GABA synthesis, or the 

GABA-receptor antagonist bicuculline, were routinely used in previous decades to reliably 

provoke photoconvulsive responses in NHP studies6,11,12.

3.7 Future directions of research in natural model of generalized epilepsy of unknown 
origin

Identification of genes underlying photosensitivity and epilepsy is an important goal in the 

baboon model for idiopathic generalized epilepsy. Baboons in the SNPRC pedigree have a 

26% prevalence of GTCS15. No genes have been identified although the heritability of 

GTCS (0.33, p<0.0000001) and IEDs (0.19, p<0.002) strongly supports a genetic 

contribution (CAS, personal communication, July 19, 2018). Genetic and epigenetic studies 

are underway to determine their contribution to photosensitivity and epilepsy in the baboons. 

Identifying baboons at high genetic risk for epilepsy will facilitate research into the 

developmental aspects of the epilepsy, including epileptogenesis. In addition to evaluating 

antiepileptogenic therapies, the epileptic baboon can be utilized to provide targets for 

neurostimulation or neurochemical interventions. Finally, this model can provide important 

insights into the co-morbidites of idiopathic generalized epilepsy, including social and 

behavioral consequences of seizures and SUDEP.

4. Results: Seizures and epilepsy of unknown cause in nonhuman 

primates

Our literature searches yielded very few case reports of seizures of unknown origin in 

captive NHP. We were unable to find any case reports of seizures observed in wild NHP. Of 

the available case reports, only one paper addressed seizure therapies (see section 4.1 

below). However, unpublished data was available on GTCS between 1993 and 2005 in non-

baboon primates at the SNPRC. This data is described in section 4.2 below.

Multiple case reports of secondary seizures in captive NHP were found in our literature 

searches (see table 2). Examples include: 14 cases of amaurotic epilepsy in primates at the 

National Zoological Park and 2 cases in primates at the Antwerp Zoo, found to be due to 

lead poisoning on necropsy26; grand mal seizures in a 22-year-old western lowland gorilla at 

the North Carolina Zoo due to amoebic meningoencephalitis caused by Balamuthia 
mandrillaris27.
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4.1 Potential seizure therapies in nonhuman primate patients

Controlling sporadic seizures, recurrent seizures (epilepsy) and status epilepticus in NHP is 

a challenge for animals in captivity and in primate research facilities. Phenobarbital remains 

the primary ASM used in zoos to treat primates and most other animals with epilepsy28. 

However, the pharmacokinetics and dosage required for safe and effective seizure control in 

NHP remains poorly defined. Side effects of phenobarbital in humans include lethargy, 

impaired cognition, dizziness, unsteadiness, rash and other allergic reactions, soft tissue 

changes (Dupuytren’s contracture, frozen shoulder), and teratogenicity.

The Milwaukee County Zoo reported on different ASM regimens for apes28. Breakthrough 

seizures were common with phenobarbital monotherapy, which was not considered an ideal 

ASM as most animals required adjunctive or alternative therapies including acetazolamide, 

carbamazepine, and levetiracetam. Oral contraceptives reduced seizures in some female apes 

with catamenial epilepsy. In three cases, adjunctive ASMs improved seizure control with a 

reduction in phenobarbital dosage28.

4.2 Survey of Zoos and Research Facilities with Primates

We surveyed lead veterinarians at 35 international zoos and 6 research facilities with NHPs. 

The questions included background information about the animal care facility and primates 

cared for, demographic and clinical information of individuals with seizures, seizure 

semiology, diagnostic work up, efficacy of ASMs and other treatments, medical history in 

affected animals, and descriptions of any craniofacial trauma or episodic behavioral changes 

suggestive of possible seizure activity.

Eight of 35 (22%) zoo veterinarians and 1/6 research facilities responded. Of the 8 zoo 

responders, 3 reported no history of seizures in any primates. Two of five responders who 

had seizures in primates provided medical records, which we reviewed. Table 3 summarizes 

the zoo data; 18 NHPs with single or recurrent seizures. Affected primates included lemurs, 

colobuses, tamarins, orangutans, bonobos, and gorillas.

Unpublished seizure data on NHP species outside the baboon colony was available from an 

epidemiological study at SNPRC (NIH/NINDS 1 R01 NS047755–01). The clinical database 

(CAMP) and necropsy records between 1993 and 2005 identified suspected or witnessed 

seizures in 44 NHP: 2 grivets (Chlorocebus aethiops, both female), 2 marmosets (Callithrix 
jacchus, one female), 13 rhesus monkeys (Macaca mulatta, 9 female), 27 cynomolgus 

monkeys (Macaca fascicularis, 19 female), and two chimpanzees (Pan troglodytes, 1 

female). One grivet with chronically elevated enzymes, experienced a single seizure 

associated with ketamine at age 9 years, the other had a spontaneous seizure at age 8 years. 

Both marmosets had Langur Herpes Virus infections; seizures were witnessed only when 

handled by staff. The rhesus and cynomolgus monkeys exhibited spontaneous seizures, 

usually isolated, and suspected seizures based on craniofacial trauma or being found down in 

the cage, or induced by ketamine. The mean age of onset in the rhesus monkeys was 6.5 

(range 0.5–11) years, excluding 2 animals with only ketamine-induced seizures. Four had ≥2 

seizures; 7 had suspected seizures only. Four had terminal seizures, usually related to 

infection. The mean age of onset of epilepsy in the cynomolgus monkeys was 3 (range 0.5–
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11), excluding animals without a birthdate (N=3) and with only ketamine-induced seizures 

(N=4). All but three cynomolgus monkeys had single witnessed or suspected events, and 

these three had two events each. Four monkeys had seizures suspected based upon 

craniofacial trauma, and 2 had seizures associated with handling. In three cases, seizures 

may have resulted from chronic infections, and in 14 seizures onset was within 2 months of 

euthanasia, performed due to infection or anemia. Two chimpanzees had seizures. One had 

three spontaneous GTCS (ages 13, 18 and 19 years). She had idiopathic thrombocytopenic 

purpura, cerebral artery stenosis and intracardiac fibrosis, with brain hemorrhages at 

autopsy. The second was found confused and diagnosed postictal after his first seizure; but 

his mental status deteriorated; he was euthanized and autopsy revealed meningoencephalitis. 

Like the grivets, marmosets and macaques, who had largely symptomatic seizures, the two 

chimpanzees had symptomatic epilepsy. None of these animals underwent EEG and chronic 

ASMs were not administered.

5. Discussion

There is a serious knowledge gap with respect to the diagnosis and treatment of seizures or 

epilepsy in NHP. This study aimed to collect information from Pubmed and Google 

searches, and from zoos and primate research facilities, to better understand the overall 

approach taken by veterinarians in these respective settings. It is clear that treatment is 

provided on a case-by-case basis utilizing anti-seizure medications (ASMs) that are effective 

in humans. Some of these medications are metabolized differently by NHPs than in humans, 

but veterinarians often extrapolate from human medicine to NHP patients when diagnosing 

and treating epilepsy28. This can be problematic, however, as species differences in drug 

metabolism and toxicity between different NHPs and between NHPs and humans have not 

been studied29. There is little information with respect to diagnosis and classification of the 

seizures. The epileptic baboon demonstrates the only well-documented and classified natural 

NHP model of idiopathic generalized epilepsy with photosensitivity, affecting most of the 

known baboon subspecies. In canines, the 2015 International Veterinary Epilepsy Task 

Force, proposing a classification system for epilepsy and epileptic seizures adapted from the 

International League Against Epilepsy30, demonstrates a collaborative effort which would 

also benefit the managements of NHP patients. Developing a common terminology between 

human and veterinary neurologists and neuroscientists will facilitate both clinical and 

research efforts.

The limitations to collecting data on NHP are numerous. Collecting this type of data is 

challenging since the detection, classification and quantification of seizures requires close 

observation, and is often limited to convulsive seizures and peri-ictal behavioral changes or 

injuries. Recognition of more subtle seizure types, such as focal seizures with alteration of 

awareness, absence or myoclonic seizures is tenuous without access to continuous video-

EEG monitoring. Epileptic NHPs may be dangerous to house with other NHPs as they are 

not only at risk for seizure-related injuries, but also abuse by other cage-mates. Care and 

management for NHPs is expensive and challenging, and ethically, in the absence of 

treatment, is difficult to justify quality of life of NHPs with seizures.
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Experimental and natural models of epilepsy in NHP have advanced our understanding of 

mechanisms and therapies (see Table 1). The experimental models provided insight into the 

electrophysiology underlying absence seizures and focal epileptogenesis. The most 

extensively studied natural model, the epileptic baboon, advanced understanding of 

photosensitivity and reflex seizures pathophysiology, assessment ASMs, and the clinical and 

neuropathological effects of convulsive status epilepticus11. Furthermore, the genetic 

similarities between NHP and humans make NHPs uniquely valuable models of epilepsy. 

While the no specific epilepsy genotypes have been identified in the baboon or other NHP, 

once they become established, these models could provide useful platforms to study 

epileptogenesis and developmental aspects underlying or associated with epilepsy. There are 

several other advantages of NHP models for epilepsy. In contrast to rodent and mouse 

models, the epileptic baboon demonstrates seizure types and semiologies as well as ictal and 

interictal EEG findings consistent with idiopathic epilepsies in humans. NHP are better 

suited for neuroimaging studies than murine and rodent models, due to their larger brain 

volumes, similar neuroanatomy and brain connectivity to humans. Furthermore, since NHP 

can be trained to perform cognitive and fine motor tasks, relevant behavioral and treatment 

effects can be assessed and are readily translated to humans. Ideally, behavioral training also 

needs to be implemented for to reduce the need for sedation during neuroimaging and 

electrophysiological procedures.

Several decades ago, the development of genetic and experimental murine and rodent 

epilepsy models marginalized interest in the baboon model due to their lower cost, wider 

availability, miniaturization of equipment, and ethical concerns. And currently, ASM 

screening are utilizing even smaller and less expensive animal models, including zebra fish, 

Caenorhabiditis elegans and drosophila melanogaster31. Alternatively, canine epilepsy 

models can assess long-term focal seizure detection and neurostimulation32 as well as 

studies on the mechanisms underlying genetic generalized epilepsy with myoclonus and 

photosensitivity33 and the progressive myoclonic epilepsy associated with Lafora Disease34. 

Dogs are expensive to maintain but easy to purchase and handle. Dogs could become 

valuable for gene discovery, since many canine epilepsies are idiopathic (presumed genetic), 

genetic variation is reduced within breeds, and similarities between dog and human 

genomes35. The DIRAS1 gene linked to Rhodesian Ridgeback’s photosensitive epilepsy34 

and mutations in the ADAM23 gene causing familial partial epilepsy in Belgian Shepherds 

are some examples. Eight mutations for canine progressive myoclonic epilepsies occur in 

orthologs of human genes35. Similarly, NHLRC1 was identified as causing Lafora disease in 

Miniature Wire-haired Dachshunds36.

Still, our limited understanding of seizure and epilepsy in NHP species is an important 

untapped resource. NHP research will not only improve care of NHP with epilepsy, but also 

inform our understanding of human epilepsy. Hence, there is a need for more coordinated 

and systematic data collection between zoos and research facilities to identify research 

opportunities. Current research of NHP epilepsy models is limited by potential differences 

between humans and NHP in neurophysiology, pharmacodynamics, and target biology. The 

relevance of the respective NHP models for the investigation of human epilepsy needs to be 

critically considered. Critically, investigation of epilepsy and seizures in NHP must satisfy 
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the highest ethical standards, and that NHP are not used in high-risk studies, in inappropriate 

studies or in studies adequately suited for smaller animals or models.
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Key Points

• Data from experimental NHP epilepsy models is abundant, but not from 

primates developing epilepsy in the wild or in zoos.

• NHP research informs our understanding of the pathophysiology, genetics, 

and management of epilepsy in NHP as well as humans.
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