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SUMMARY

Sleep has been implicated in both memory consolidation and forgetting of experiences. However, 

it is unclear what governs the balance between consolidation and forgetting. Here we tested how 

activity-dependent processing during sleep might differentially regulate these two processes. We 

specifically examined how neural reactivations during NREM sleep were causally linked to 

consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we 

found that slow oscillations (SO) and delta-waves (δ) have dissociable and competing roles in 

consolidation versus forgetting. By modulating cortical spiking linked to SO or δ waves using 

closed-loop optogenetic methods, we could respectively weaken or strengthen consolidation and 

thereby bidirectionally modulate sleep-dependent performance gains. We further found that 

changes in the temporal coupling of spindles to SO relative to δ waves could account for such 

effects. Thus, our results indicate that neural activity driven by SO and δ waves have competing 

roles in sleep-dependent memory consolidation.
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In brief

By selectively altering the balance between slow-oscillations and delta-waves during post-learning 

sleep in the rat brain, the forgetting or remembering of a new skill can be enhanced.
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INTRODUCTION

Sleep is known to be important for both selective memory consolidation as well as forgetting 

of experiences (Born et al., 2006; Buzsáki, 1989; Marshall and Born, 2007; Poe, 2017; 

Sejnowski and Destexhe, 2000; Stickgold, 2005; Tononi and Cirelli, 2014), but we still do 

not know what governs the balance between the two. This question is of fundamental 

importance as the nervous system constantly faces the challenge of whether and how to 

selectively preserve the neural correlates of new experiences through memory consolidation, 

while simultaneous supporting the weakening of memories deemed to be less important. 

Examination of learning-induced activity patterns during sleep offers one potential clue 

regarding what might regulate the balance between consolidation versus weakening: there is 

consistent evidence for the reactivation of neural ensembles that represent awake 

experiences (Gulati et al., 2014; Ji and Wilson, 2007; Joo and Frank, 2018; Nadasdy et al., 
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1999; Peyrache et al., 2009; Ramanathan et al., 2015; Wilson and McNaughton, 1994). 

Reactivation of neural ensembles thus provides a possible substrate for selective 

consolidation of memories. Yet, despite the extensive study of ensemble reactivation in 

hippocampal (Ji and Wilson, 2007; Joo and Frank, 2018; Nadasdy et al., 1999; Wilson and 

McNaughton, 1994), prefrontal (Peyrache et al., 2009), and motor regions (Gulati et al., 

2014; Ramanathan et al., 2015) during sleep, it remains an open question regarding how 

activity-dependent processing, in general, and reactivations, in specific, might differentially 

drive memory consolidation versus forgetting.

Here we show that neural reactivations differentially driven by slow-oscillations (SO) and 

delta-waves (δ) during non-rapid eye movement (NREM) sleep is essential for determining 

the extent of sleep-dependent performance gains through direct regulation of consolidation 

versus weakening of the neural traces of awake experiences. Previous studies have shown 

that during NREM sleep, SO, spindles, and their precise temporal interaction (i.e. “nesting”) 

play a role in memory consolidation (Bergmann and Born, 2018; Cairney et al., 2018; 

Diekelmann and Born, 2010; Genzel et al., 2014; Helfrich et al., 2018; Latchoumane et al., 

2017; Maingret et al., 2016; Miyamoto et al., 2017; Navarro-Lobato and Genzel, 2019; Ngo 

et al., 2013; Peyrache et al., 2009; Sejnowski and Destexhe, 2000; Staresina et al., 2015); 

however, it remains unclear how reactivation of awake experiences are linked to them. 

Interestingly, NREM sleep is also enriched in δ waves as well as SO; it remains unclear how 

these two events might interact during memory consolidation. Classic studies initially 

distinguished SO and δ waves as two distinct neurophysiological phenomena consisting of 

low-frequency waves with different spatial and temporal properties (Steriade et al., 1993a; 

Steriade and Timofeev, 2003); subsequent studies have found evidence for the existence of 

two separate classes of “slow waves” during NREM sleep across species (Bernardi et al., 

2018; Dang-Vu et al., 2008; Genzel et al., 2014; Molle et al., 2002; Siclari et al., 2014). 

While one class of slow waves are more global and have larger amplitudes, the other class 

has smaller amplitudes and are more local (Bernardi et al., 2018; Genzel et al., 2014; Siclari 

et al., 2014). Importantly, it remains unclear how these two phenomena might differentially 

drive activity-dependent processing and the reactivation of neural ensembles during sleep. 

Here we specifically classified SO (i.e. larger amplitude global slow waves) and δ waves 

(i.e. smaller amplitude local events) in NREM sleep. We then modulated spiking activity 

linked to SO or δ waves through a real-time closed-loop optogenetic system in rats. 

Furthermore, we examined how their respective coupling to spindles drove reactivations of 

novel awake experiences and thereby differentially drove selective memory consolidation 

versus memory weakening. Most remarkably, we found that SO and δ waves have 

dissociable and competing roles in determining the extent of memory consolidation during 

NREM sleep after learning of a neuroprosthetic skill.

RESULTS

SO are essential for sleep-dependent consolidation of a skill

We implanted 32-channel microelectrode arrays with an attached cannula for fiber optic 

stimulation into primary motor cortex (M1) of twelve rats that were pre-injected with 

inhibitory opsins (see Table S1). We then monitored sleep waves, i.e. SO, δ waves and 
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spindles, both before and after learning. In addition, we compared two types of 

electrophysiological recordings with one additional rat; namely, simultaneous DC-coupled 

recordings from the surface of M1 and AC-coupled recordings in layer 5 of M1 (Figure 1A). 

As shown, our detected SO and δ wave events in the AC recordings were also evident in the 

DC recordings. We neurophysiologically distinguished SO and δ waves using features 

previously described (Methods) (Bernardi et al., 2018; Dang-Vu et al., 2008; Genzel et al., 

2014; Massimini et al., 2004; Ngo et al., 2013; Sela et al., 2016; Steriade et al., 1993a; 

Steriade and Timofeev, 2003). Notably, because SO and δ waveforms both contain 1-4 Hz 

spectral power (Steriade and Amzica, 1998), we distinguished the two based on their distinct 

waveforms (Figures 1B and 1C). Thus, slow waves with large positive and negative waves 

(see Methods) within 500 ms were labeled as SO, whereas slow waves with a significantly 

smaller preceding positive peak were labeled delta-waves/δ. For the analyzed sleep sessions 

(n = 72 sessions from the twelve rats), putative SO and δ waves could be discriminated using 

k-mean clustering; the peaks preceding up-states had a 12.5-fold stronger weight relative to 

the troughs of upstates for a discriminant line that was equidistant between the two k-means 

cluster centroids. Interestingly, consistent with past work, our SO showed more widespread 

synchronization in the region compared to δ waves (Figure 1D) (Bernardi et al., 2018). The 

inter-event intervals of SO and δ waves followed a log-normal distribution and the frequency 

of SO and δ waves was 0.41 and 1.12 Hz, respectively (Figure 1E). The autocorrelograms of 

SO and δ wave event times showed multiple major peaks which appeared to reflect their 

general rhythmicity (Figure 1F). Notably, our classification scheme appeared to detect 

phenomena that are remarkably similar to that identified by Steriade and colleagues using 

intracellular recordings (Steriade et al., 1993a; Steriade et al., 1993b).

Each animal was also injected with a virus to express an inhibitory opsin in M1. More 

specifically, a red-shifted halorhodopsin, Jaws, was injected in order to silence neural 

activity (Chuong et al., 2014; Gulati et al., 2017); typically ~60% neurons (on average, 

38.6% of putative excitatory and 34.8% of inhibitory neurons; Figure S1) responded to 

optical stimulation with a reduction in firing rate (Figure 2E). We then designed a closed-

loop real-time system that could trigger the opsin in response to identified sleep slow waves 

features (Gulati et al., 2017). Closed-loop optogenetic inhibitions were delivered during up-

states of the filtered LFP (in 0.1-4 Hz real-time digital filter; see Methods) to examine the 

role of cortical spiking activity in sleep-dependent memory processing. The online real-time 

filtering had delays of 41.2 ± 2.5 ms relative to offline zero-phase shift filtering in the up-

states (Figure 1A).

We tested the effects of these optogenetic interventions on memory consolidation after 

learning of a neuroprosthetic skill, i.e. Brain-Machine Interface or BMI task (hereafter, BMI 

training block and BMI2 retrieval block; Figures 2A and 2B) (Clancy et al., 2014; Ganguly 

et al., 2011; Gulati et al., 2017; Gulati et al., 2014; Jarosiewicz et al., 2008; Koralek et al., 

2012; Moritz et al., 2008; Taylor et al., 2002). We have previously shown that BMI-based 

learning closely replicates the sleep-dependent reactivations linked to natural learning 

(Ramanathan et al., 2015); however, this system allows us to easily follow ensembles that 

are causally linked to actuator control. As prior, we used spiking activity from M1 to drive 

the angular velocity of a single degree-of-freedom mechanical actuator using a constant 

decoder. Thus, animals were required to explore and learn patterns of neural activity that 
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could reliably control the actuator in order to deliver a liquid reward; over a typical training 

block (i.e. BMI1), animals were able to learn the task. We also monitored the neural activity, 

both local field potential or LFP and spiking activity, during 1-hour periods of spontaneous 

behavior that included sleep (hereafter, pre-training sleep and post-training sleep); in offline 

analysis, sleep was detected using degree of movement based on video analysis (Pack et al., 

2007) and NREM sleep was detected using power spectral density (Figure S2A and 

Methods).

We first assessed the role of SO in driving offline performance gains from BMI1 to BMI2. 

We thus triggered the optogenetic stimulations to perturb spiking activity during up-states of 

SO (hereafter, OPTOSO; n = 13 sessions in 5 rats; Figure 2C). This was compared to a 

condition in which optogenetic inhibitions were delivered during both SO and δ waves 

(hereafter, OPTOSO+δ: n = 13 sessions in 7 rats; Figure 2D); these experiments were 

partially presented in a previous study (Gulati et al., 2017) (also see Table S1 for details of 

sessions and rats). These interventions were delivered during the post-training sleep (Figure 

2A). Amounts of total sleep time and NREM sleep time were not significantly different 

across conditions (Figure S2B). Typically, as in previous studies, we observed a performance 

gain during BMI2 relative to the late trials of BMI1 after natural unperturbed sleep 

(hereafter, OPTOOFF) (Gulati et al., 2017; Gulati et al., 2014). For both the OPTOSO and 

OPTOSO+δ experiments, we observed significantly worse task performance upon awakening 

after the interventions during post-training sleep (Figures 2F and 2G).

Interestingly, the change in the mean task time from BMI1-late to BMI2-early for the 

OPTOSO+δ experiments were not significantly different from perturbations primarily during 

SO, i.e. in the OPTOSO experiments (OPTOSO: 2.5 ± 0.4 sec; OPTOSO+δ: 2.1 ± 0.4 sec; 

OPTOSO vs. OPTOSO+δ mixed-effects model, t24 = −1.39, P = 0.18). Based on their 

respective frequencies of occurrence, the triggered optical pulses during the OPTOSO+δ 
experiments were 2.2 times more frequent than during the OPTOSO experiments. However, 

both experiments showed indistinguishable task performance changes after the perturbed 

sleep; this indicated that the laser light itself was unlikely to contribute to our observed 

effects (Methods; Figure S2C). In addition, we used offline analysis to detect the actual SO 

and δ waves affected by our respective interventions (Table S2); there are expected 

variations between the two because of differences between real-time filter implementation 

versus offline filtering methods. Therefore, based on offline detections, we examined 

whether the changes in performance could be predicted by the extent of δ waves and SO 

perturbations for the group of OPTOSO and OPTOSO+δ experiments (Figure 2H). 

Surprisingly, there was not a significant relationship between the extent of δ waves relative 

to SO perturbations on the change in task time after sleep (OPTOSO and OPTOSO+δ 
experiments, n = 26 sessions, 12 rats; linear regression, R2 = 0.065, P = 0.208). Together, 

these results suggest that perturbations of spiking activity during up-states of SO is sufficient 

to prevent offline consolidation; the effect of SO perturbations appears to largely dominate 

the extent of corresponding perturbation to δ waves. This further suggests that SO are 

essential for memory consolidation.
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Effects of targeting δ wave related activity

What then is the effect on consolidation of targeting δ waves? We examined the effects of 

interventions that were delivered predominantly during δ wave up states (hereafter, OPTOδ; 

n = 14 sessions in 5 rats; Figures 3A and 3B). This was compared to a control condition 

(hereafter, OPTORAND) in which optogenetic inhibitions were delivered to time periods that 

were distinct from SO and δ wave up-states, inhibition was delivered with a random time 

delay following every detected up-state (n = 9 sessions in 3 rats; Figures 3A and 3C). 

Despite the perturbations of spiking activity during the post-training sleep, we observed an 

improvement of task performance in both the OPTOδ and OPTORAND experiments (Figures 

3D and 3E). Strikingly, however, in the OPTOδ experiments the change in the mean task 

time was significantly greater in comparison to the OPTORAND group (OPTOδ: −2.1 ± 0.4 

sec; OPTORAND: −1.0 ± 0.2 sec; OPTOδ vs. OPTORAND, mixed-effects model, t21 = 2.63, P 

= 0.015). Moreover, the changes in the mean task time in the OPTORAND experiments were 

similar to natural sleep, i.e. in the OPTOOFF experiments (OPTOOFF: −1.1 ± 0.3 sec, n = 23 

sessions in 12 rats; OPTORAND vs. OPTOOFF, mixed-effects model, t30 = −0.49, P = 0.63). 

Taken together, these results suggested that perturbations of spiking activity during δ wave 

up-states can boost the effects of sleep-dependent consolidation.

Changes in the nesting of SO and δ waves to spindles

What might be the underlying neurophysiological basis for our observed set of performance 

changes? There is a growing body of literature indicating that the precise temporal coupling 

of spindles to SO, or “nesting” of the two events, is important for memory consolidation in 

both humans (Antony et al., 2018; Bergmann and Born, 2018; Cairney et al., 2018; Helfrich 

et al., 2018; Ngo et al., 2013; Staresina et al., 2015) and rodents (Latchoumane et al., 2017; 

Maingret et al., 2016; Peyrache et al., 2011). We further analyzed the effects of SO and δ 
wave triggered optogenetic inhibitions on the temporal coupling of sleep spindles to both SO 

and δ waves. We thus calculated the degree of nesting between SO and spindles (Figure 4A 

top) and δ waves and spindles (Figure 4A bottom); more specifically, we measured the 

distribution of temporal lags between a SO and its nearest spindle (ΔTSO-Spindle). The 

ΔTδ-Spindle was an analogous measure for δ waves. While a distribution of ΔTSO-Spindle 

values can have large values (Figure S3A), the “SO-Nesting” focused on the distribution of 

events within −0.5 sec prior to 1 sec after the peak of the up-state (Figures 4B, 4C, and 4D). 

Similar metrics were calculated for δ waves and its closest spindle (ΔTδ-Spindle; Figure S3B) 

and for “δ-Nesting”. Notably, consistent with the greater prevalence of δ waves, δ-Nesting 

was 1.3-fold greater than SO-Nesting under the CONTROL conditions. Interestingly, 

changes in the SO-Nesting index significantly explained the task performance changes 

(linear regression, R2 = 0.085, P = 0.013). In contrast, changes in δ-Nesting index by itself 

did not predict task performance changes (linear regression, R2 = 0.003, P = 0.644).

How then can we reconcile the role of δ waves on changes in performance (Figure 3E)? One 

possibility is that while the absolute level of δ-Nesting is not predictive of performance, its 

abundance relative to SO-Nesting is more important. This might also be consistent with the 

results shown in Figure 2H, where δ wave perturbations did not contribute to the changes in 

performance levels when SO were also perturbed. We thus explored the possibility that the 

relative extent of δ wave and SO nested events is important for both reactivations and 
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changes in performance. We calculated the “SO/δ-Nesting index”, it measures the ratio of 

the number of spindles nested to SO (i.e. within a −0.5-1s window) to the number of 

spindles nested to δ waves. This measure takes into account the relative extent of the 

respective nesting in a given sleep session. A lower SO/δ-Nesting index would indicate that 

there is lower temporal coupling between SO and spindles compared to between δ and 

spindles. Similarly, a higher SO/δ-Nesting index would indicate higher temporal coupling to 

SO in comparison to δ waves.

Interestingly, the OPTOδ experiments were associated with a higher SO/δ-Nesting index 

during the intervention period (Figure 4E), indicating that spindles were more likely to be 

nested to a SO than a δ wave. We next compared the change in SO/δ-Nesting index for 

perturbations of SO. Notably, as outlined above, the OPTOSO and OPTOSO+δ groups were 

in a continuum, i.e. relative SO to δ wave perturbations. Consistent with this, the OPTOSO 

and OPTOSO+δ experiments were not significantly different for changes in SO/δ-Nesting 

index (mixed-effects model, t24 = 1.47, P= 0.16); we thus combined them into an OPTOSO+ 

group for this analysis. Overall, the OPTOSO+ group experienced a relative drop in SO/δ-

Nesting index. We also combined the OPTOOFF and OPTORAND experiments as they were 

not significantly different from each other (hereafter referred to as CONTROL). For OPTOδ, 

n = 14 sessions in 5 rats, the actual SO/δ-Nesting indices were 0.71 ± 0.05 during pre-

training sleep and 0.87 ± 0.08 during post-training sleep (pre- vs. post-training sleep, mixed-

effects model, t26 = 2.15, p < 0.05). For OPTOSO, n = 13 sessions in 5 rats, the SO/δ-

Nesting indices were 0.76 ± 0.10 and 0.53 ± 0.07, respectively (pre- vs. post-training sleep, 

mixed-effects model, t24 = −2.31, p < 0.05); for OPTOSO+δ, n = 13 sessions in 7 rats, the 

values were 0.70 ± 0.06 and 0.44 ± 0.04, respectively (pre- vs. post-training sleep, mixed-

effects model, t24 = −3.93, p < 10−3). Finally, the SO/δ-Nesting indices for CONTROL 

conditions, n = 23 sessions in 12 rats, were 0.77 ± 0.06 and 0.77 ± 0.06, respectively (pre- 

vs. post-training sleep, mixed-effects model, t62 = −0.002, p = 1.00). Together, this indicated 

that while OPTOSO+ was more likely to have a decline in the nesting of spindles to SO, 

OPTOδ appeared to have a higher nesting probability for SO. Similar to the direction of 

changes in the SO/δ-Nesting index values, we also found bidirectional shifts in task 

performance with optogenetic interventions (Figure 4F). In other words, the OPTOSO+ 

interventions led to relative performance drops, while the OPTOδ interventions led to 

relative performance gains.

We also observed that changes in the SO/δ-Nesting index significantly predicted the task 

performance changes when considering all three conditions (Figure 4G). Notably, the 

underlying data across these conditions met criteria that allowed us to perform regression 

analysis across conditions (see Methods; Figures S4A and S4B). In addition, we also 

examined the changes in the isolated SO-Nesting index and δ-Nesting index, i.e. not as a 

ratio but as an independent parameter. As noted above, although changes in the SO-Nesting 

index significantly explained the changes in task performance, the changes in the SO-

Nesting index predicted the task performance changes 4.3-fold better than the isolated SO-

Nesting index (see Methods; mean squared error of the regression; SO/δ-Nesting index: 255 

± 46%; SO-Nesting index: 374 ± 57%; SO/δ-Nesting index vs. SO-Nesting index, paired t 
test, t71 = −3.09, P < 10−2). Moreover, in the analysis above, we used a time window of −0.5 

to 1.0 sec relative to the up-state time of SO or δ waves to detect spindles (Figures 4D and 
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S3). We also examined a broader set of time windows to detect spindles; we found very 

similar results with respect to changes in task performance (Figures S4C and S4D). 

Together, this suggested that the ratio of SO-nested spindles and δ-nested spindles play a 

role in determining sleep-dependent performance changes.

Do other detected changes in SO, δ wave, and spindle properties predict performance 

changes? The same regression analyses using the measured changes in either SO or δ wave 

peak-to-trough amplitudes were not able to explain the changes in task performance (linear 

regression, R2 = 0.025, P = 0.334 for SO; R2 = 0.015, P = 0.445 for δ; Figures S5A and 

S5B). Moreover, peak-amplitudes of spindles were not affected by the various interventions 

(Figure S5C). Together, these results further suggested that the temporal coupling of 

spindles to SO relative to δ waves was the most predictive of performance gains. 

Interestingly, our results also suggested that our suppression of δ up-state spiking activity 

had an effect on the nesting of SO to spindles.

Effects on ensemble reactivations during sleep

Using computational analyses of sleep-dependent “reactivation” of awake ensemble patterns 

(Methods) (Gulati et al., 2017; Gulati et al., 2014; Peyrache et al., 2009; Ramanathan et al., 

2015), we further examined whether changes in neural ensemble reactivations could account 

for and predict the changes in task performances described above. This method uses 

principal components analysis (PCA) to identify the ensembles of neurons that become 

temporally correlated during learning and stable task performance. The output of this 

analysis are principle components (PCs), consisting of an array of weights assigned to each 

neuron in the ensemble, and the eigenvalue, a numerical value that represents the extent of 

total variance that is captured by a given PC. PCs with the largest eigenvalues capture the 

most variance. This approach allowed us to measure the strength of reactivations (Figures 

S6A, S6B, and S6C). Figure 5A shows examples of reactivation strengths during pre- and 

post-training sleep, which represents “template matching” using the first PC (Methods, PC1 

was always significantly different from a random distribution). In other words, high 

reactivation values indicate that the sleep firing patterns are a closer match to awake firing 

patterns during BMI1. Typically, we observed a significant mean increase in the strength of 

reactivation events during the post-training sleep period relative to the pre-training sleep in 

the CONTROL and OPTOδ experiments. However, the mean reactivation strength during 

post-training sleep was significantly weaker for the OPTOSO+ experiments (Figure 5B).

Interestingly, in the post-training sleep, the reactivation strength was found to weaken over 

time in sleep during CONTROL experiments (Figure 5C). Despite this apparent weakening 

of reactivation strength over the sleep period, the reactivation strengths at the end of 

observed period were still stronger than the mean reactivation strength during the pre-

training sleep. In contrast, for the OPTOSO+ experiments we noted a much more rapid 

reduction in reactivation strength at the end of post-training sleep (mean ± s.e.m.; 

CONTROL: 108.5 ± 11.2%, n = 32 sessions, 12 rats; OPTOSO+: 75.7 ± 12.4%, n = 26 

sessions, 12 rats; OPTOδ: 162.9 ± 16.9%, n = 14 sessions, 5 rats; one-way ANOVA, F2,57 = 

8.42, P < 10−3; significant post hoc t tests, corrected for multiple comparison, CONTROL 

vs. OPTOSO+: P = 0.024; CONTROL vs. OPTOδ: P = 0.48; OPTOSO+ vs. OPTOδ: P < 
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10−3). Notably, we found that the OPTOSO and the OPTOSO+δ were not significantly 

different (mixed-effects model, t24 = −0.54, P = 0.59), we therefore again combined them 

into the group OPTOSO+. We confirmed that the changes in reactivation during the post-

training sleep was not explained by a generalized change in firing rates (Figures 5C and 

S6D). We also found that a randomly selected non-significant PC (see Methods) reactivation 

did not change over time, suggesting that the neural ensemble identified by the first PC was 

selectively modified. Importantly, while previous research suggests that post-experience or 

learning-driven increases in reactivation strengths return to baseline values over time in sleep 

(Kudrimoti et al., 1999; Miyamoto et al., 2016; Miyamoto et al., 2017; Ramanathan et al., 

2015; Tononi and Cirelli, 2014), our data suggests that our interventions can modify the 

rates of decline. In other words, while it is likely that any increases in reactivation strength 

will be back to baseline over time, their rates of decline may be important. Thus, we 

compared the mean reactivation strength at the end of the monitored period. The post-

training sleep consisted of total sleep time of 58.9 ± 1.1 min, with a NREM sleep time of 

31.1 ± 0.8 min, n = 72 in 12 rats for all conditions (Figure S2B). Interestingly, the OPTOSO+ 

intervention resulted in significantly weaker reactivation at the end of the period compared 

to the CONTROL condition. Moreover, the OPTOδ experiments had significantly stronger 

reactivation than the CONTROL conditions (Figure 5D). Taken as a group, the reactivation 

strengths at the end of the observed post-training sleep could also predict changes in task 

performance (Figure 5E).

SO-Nested spindles preserve memory reactivation

As described above, we found that the relative nesting of SO to δ waves, i.e. SO/δ-Nesting 

index, could account for both the offline gains and worsening of performance (Figure 4G). 

We thus wondered whether the nesting of spindles to either SO or δ waves was linked to the 

timing of reactivation. We thereby examined reactivation timing to each of these 

phenomena; we found that reactivation events were temporally linked to the up-states of 

both SO and δ waves as well as the peaks of spindles (Figures 6A, 6B, and 6C).

Interestingly, in the CONTROL and OPTOδ experiments, reactivation strengths during SO-

nested spindles were sustained over the post-training sleep period (Figure 6D). In contrast to 

such preservation of the mean reactivation strength over sleep, reactivation strengths 

appeared to reduce over time for δ-nested spindles (comparison of the reactivation strength 

at the end of sleep between SO-Nesting and δ-Nesting; CONTROL: mixed-effects model, 

t62 = −2.64, P = 0.01; OPTOδ: mixed-effects model, t26 = −3.47, P < 10−2). It is important to 

note that the majority of spindles were nested to either SO or δ waves (SO-Nesting: 40.7% 

vs. δ-Nesting: 52.8%). Notably, for the OPTOSO+ experiments, reactivation strengths during 

the SO-nested spindles also weakened over the post-training sleep period (comparison 

between SO-Nesting and δ-Nesting, mixed-effects model, t50 = 0.70, P = 0.49). Thus, the 

mean reactivation strength was significantly greater during the SO-nested spindles relative to 

the δ-nested spindles in the CONTROL experiments. However, for the OPTOSO+ 

experiments, reactivations for the SO-nested spindles were not significantly different from 

that of the δ-nested spindles (Figure 6E). Remarkably, the mean reactivation strength during 

the SO-nested spindles was able to predict task performance changes (linear regression, R2 = 

0.206, P = 6.2 × 10−5; Figure S6E). This effect was similar to our observation that the 
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changes in SO/δ-Nesting index significantly predicted the task performance changes. This 

was not the case for the reactivations linked to the δ-nested spindles (linear regression, R2 = 

0.001, P = 0.96). Taken together, our results suggest that SO-nested spindles have an 

important role in selectively preserving the strength of ensemble reactivations against 

weakening during NREM sleep.

Effects on sleep-dependent credit assignment

The BMI task allows us to readily distinguish neural activity that is causally linked to 

actuator movements (i.e. direct neurons) versus activity that is non-causal (i.e. indirect 

neurons) (Ganguly et al., 2011). Our previous study indicated that while task-related 

modulation of direct neurons was maintained, the task modulation of indirect neurons was 

significantly reduced after a period of sleep (Gulati et al., 2017). This phenomenon suggests 

that sleep may be important for identifying and selectively preserving activity that is 

causally linked to actions, i.e. “credit assignment”. Here, we repeated the same analysis and 

examined rescaling of activity of direct neurons and indirect neurons; we examined five rats 

that were trained for all three experiment types (Rat ID#1-5, Table S1). We specifically 

measured changes in peak-firing rate during a task relative to the baseline rate before the 

task start cue, i.e. modulation-depth/MD (Figure 7). In the CONTROL experiments, the 

direct neurons experienced a modest increase in MD compared to the net decrease in MD of 

indirect neurons (n = 13 sessions, 5 rats, mixed effect model, t101 = −2.38, P = 0.038). This 

was also the case for the OPTOδ experiments; however, in the OPTOSO experiments, we did 

not observe significant rescaling (OPTOSO: n = 13 sessions, 5 rats, mixed-effects model, t106 

= −1.44, P = 0.153; OPTOδ: n = 14 sessions, 5 rats, mixed-effects model, t116 = −4.16, P < 

10−4). The estimated rescaling effect by the regression modeling in the mixed effect model 

(i.e. slope; see Methods) was 1.5-fold stronger in the OPTOδ experiments compared to the 

CONTROL experiments. Interestingly, we also found that the mean peak time of neural 

firing of the direct+ neuron was closer to reward onset in comparison to the directδ neuron 

in the OPTOδ experiment; it was the opposite in the CONTROL (Figure S7). What might 

this reveal about actuator control and performance gains? In general, it is likely that the 

animals learn actuator control by modulating the relative timing of the direct+ and the 

directδ neurons. Such temporal difference in neural firing might drive more precise 

modulation of the actuator. Together, these results suggest that our measured changes in 

sleep-dependent rescaling after learning is important for the observed performance changes.

DISCUSSION

In summary, we found that neural reactivations differentially driven by SO and δ waves 

during NREM sleep determined the extent of sleep-dependent performance gains through 

competitive regulation of memory consolidation versus memory weakening. Our results 

indicate that the precise nesting of SO and spindles is particularly important for memory 

consolidation, likely through its ability to drive and maintain the reactivation of awake 

experiences. We also found that δ wave mediated reactivations typically decay over time in 

sleep; blocking such events appeared to then both enhance reactivations as well as improve 

performance gains. Overall, this suggests a model in which δ wave triggered processes, 
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which promote weakening of memories, can modulate the efficacy of SO triggered 

processes, which promote memory consolidation.

Role of SO and spindles in sleep-dependent memory processing

Past work has highlighted the importance of SO, spindles and their precise temporal nesting 

as important for memory consolidation (Born et al., 2006; Buzsáki, 1989; Carr et al., 2011; 

Sejnowski and Destexhe, 2000; Stickgold, 2005). Spindle modulation by externally induced 

indirect stimuli in humans, e.g. task-related auditory cues (Antony et al., 2018; Cairney et 

al., 2018; Ngo et al., 2013), and internally induced stimuli in rodents (Latchoumane et al., 

2017; Maingret et al., 2016) can influence nesting and performance gains. However, it 

remained unclear whether reactivation of awake experiences during nested SO and spindles 

is directly linked to consolidation. Our data demonstrate that the precise temporal coupling 

of spindles to SO is essential; we specifically found that it appears to be important for 

maintaining the reactivation strength of neural ensembles formed during the process of 

learning and for promoting offline performance gains. Interestingly, while the number of 

events in sleep was not significantly different for the various interventions, what changed 

was the temporal precision of nesting relative to SO and δ waves. Consistent with this notion 

was the finding that any disruption of spiking activity during SO, with a concomitant 

reduction in the precise nesting of spindles to SO, resulted in degradation of ensemble 

reactivation strength and worsening of performance upon awakening.

Interestingly, our optogenetic interventions suggests that cortical spiking activity may be an 

important drive for nesting (Bonjean et al., 2011; Steriade et al., 1993a), i.e. the brief 

silencing of cortical spiking during up-states altered the precise nesting of spindles to SO. 

Even though our optogenetic inhibitions affected both pyramidal and interneurons (Figure 

S1), it is possible that interneurons are particularly important for the precise temporal 

coupling of spindles to SO and for selective memory reactivation. For example, as recently 

shown, it is possible that concurrent peri-somatic inhibition of parvalbumin-positive 

interneurons during SO-nested spindles might be important for SO-spindle coupling 

(Niethard et al., 2017; Niethard et al., 2018). Future work can examine precisely how local 

cortical circuit elements regulate nesting and promote consolidation versus weakening of 

memories.

Role of δ wave activity in forgetting and weakening of memory traces

Our data also support a model in which δ waves triggers processes that weaken SO driven 

consolidation. Our control condition provides a clear contrast regarding how sleep waves 

might differentially contribute to either consolidation or “forgetting.” We found that δ waves 

appeared to drive weakening of ensemble reactivations over time in sleep. Intriguingly, with 

disruption of SO events, there was an apparent unopposed rapid weakening of all 

reactivations. Moreover, optogenetic inhibitions during δ waves (i.e. OPTOδ) significantly 

increased reactivation strength and offline gains. Our analysis further indicated that the 

effects of OPTOδ were best explained by an increase in the nesting of SO and spindles 

relative to the nesting of δ waves and spindles and increases in ensemble reactivation. 

Together, this suggests that δ waves support an activity-dependent process that can weaken 

reactivations of memory traces and promote forgetting.
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What activity-dependent processes might be differentially recruited by δ waves during 

NREM sleep? While our study cannot resolve synaptic level modifications, past work might 

suggest mechanisms that could explain our results. For example, extensive past work on 

synaptic plasticity has shown that long-term depression (LTD) can be induced by low-

frequency stimulation (0.5-3 Hz) (Lee et al., 2000; Malenka and Bear, 2004). Thus, it is 

possible that rhythmic δ waves at a frequency of 1.12 Hz (Figure 1E) might induce LTD and 

local weakening of synapses. Moreover, given the link of ensemble reactivations to δ waves, 

reactivations might drive selective LTD. In this model, SO-nested spindles could then serve 

to selectively strengthen and/or protect synapses that underlie a new experience; in other 

words, reactivation events linked to SO might support activity-dependent processes that 

either prevent LTD or trigger long-term potentiation (LTP). Intriguingly, a recent study in 

slices found that spike time-dependent plasticity during up-states is biased towards LTD. In 

contrast, precise temporal activation of presynaptic and postsynaptic neurons appeared to 

protect against synaptic depression (Gonzalez-Rueda et al., 2018). Moreover, given the 

repetitive interactions between SO and δ waves during NREM sleep, it is quite likely that 

systematic changes in synaptic activities occur over relatively long periods of time. 

Furthermore, it is quite possible that differences in neuromodulators could alter the type of 

plasticity triggered by reactivations during SO versus δ waves (Eschenko et al., 2012; Poe, 

2017). They might also explain how relative weakening of synapses could still allow 

maintenance of ensemble reactivations during SO, i.e. by increasing excitability for SO as 

opposed to δ waves.

It is also possible that the phenomenon of homeostatic downscaling (Tononi and Cirelli, 

2014) could be related to the reduction of reactivation strength during δ waves in NREM 

sleep. While again, measurement of firing rates and ensembles do not allow us to monitor 

synaptic level changes, the apparent reduction in ensemble reactivation strength over sleep 

could be related. Notably, however, we did not see changes in firing rates and the non-

significant PC reactivation in the time period we monitored. Thus, it is quite possible that 

our identified process is more selective for newly encoded information. It is also possible 

that with addition monitoring over longer sleep, we would observe homogenizing of firing 

rates and reductions in delta power (Tononi and Cirelli, 2014; Watson et al., 2016). It 

remains to be seen whether our δ wave triggered reactivations could also support such 

changes with longer periods of time in NREM sleep.

Interactions between SO and δ waves

Classic studies initially distinguished SO and δ waves as two distinct neurophysiological 

phenomena consisting of low-frequency waves with different spatial and temporal properties 

(Steriade et al., 1993a; Steriade and Timofeev, 2003). Subsequent studies have found 

evidence for the existence of two separate classes of “slow waves” during NREM sleep ; one 

class of slow waves are more global and have larger amplitudes, the other class has smaller 

amplitudes and are more local (Bernardi et al., 2018; Dang-Vu et al., 2008; Genzel et al., 

2014; Molle et al., 2002; Siclari et al., 2014). While there are multiple classification 

schemes, our definition of SO is perhaps consistent with the large global slow waves 

measured using EEG. Similarly, our defined δ waves are perhaps consistent with what is 

seen in EEG, i.e. δ waves as smaller amplitude local slow waves. Future work will have to 
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definitively test for concordance of features across species and between invasive and non-

invasive recording approaches.

One possibility is that cortical-subcortical structures support reciprocal interactions between 

SO and δ waves during NREM sleep; thus, we should not view activity-dependent 

processing during δ waves in isolation. Classic studies have proposed that a cortical SO (also 

called a K complex) may trigger complex waves within one oscillatory cycle; this can 

manifest as “clock-like” delta oscillations and spindles following slow oscillations through 

reciprocal connections between neocortex and thalamus (Hobson and Pace-Schott, 2002; 

Steriade et al., 1993a; Steriade and Timofeev, 2003). Our results suggest that such a 

temporal structure may be present, albeit not as clearly “clock-like”, in the rat motor cortex 

(Figure 1F). Moreover, while our identified SO was more global, i.e. perhaps supporting 

interactions between areas, δ wave was more local, i.e. more restricted to local circuits. Our 

results indicate that the interactions between the two are important for regulating the balance 

between consolidation and weakening. It is possible that global SO support “protection” of 

activity patterns across areas to support system consolidation (Genzel et al., 2014; 

Robertson, 2009). In contrast, δ waves are only able to drive local activity-dependent 

processes that appear to result in net weakening. In the absence of “protective” nested SO 

and spindles, local suppressive processes dominate. With a relative drop of local suppressive 

processes, global interactions are more likely to occur and promote consolidation. It is also 

possible that such repetitive exploration and competition between global versus local 

processes may be a key reason for the need for sleep, i.e. this may not be possible during 

awake states. Although we suggest an active role of δ waves in weakening of memory, there 

is also a possibility that δ waves exert their effects solely by diminishing SO-related 

consolidation processes and nesting of spindles. A past study found that artificially induced 

SO trigger a state of refractoriness in spindle generating networks; it is possible that δ waves 

may exert its effects by simply weakening the consolidation effects via its effects on SO and 

spindle generating networks (Ngo et al., 2015).

Past work in humans has also found that induction of new large slow waves using external 

stimulus (e.g. auditory pulses) can change the amplitude of the subsequent slow wave 

activity (Ngo et al., 2013; Papalambros et al., 2017). In this study, although the perturbations 

of SO activity did not change the following δ wave and even SO itself, the perturbations of δ 
waves decreased δ amplitude and increased the following SO peak amplitudes (i.e. down-

states) (Figures S5A and S5B). This might be understood in terms of global versus local 

synchronization; i.e. local activity during δ waves might be more easily influenced by our 

local optogenetic perturbations. Moreover, a past study found that large slow waves tended 

to be smaller when preceded by another slow wave (Bernardi et al., 2018); this may explain 

why SO down-states were larger in the setting of smaller δ waves in our OPTOδ 
experiments. Together, this suggests that natural interactions between SO and δ waves may 

trigger competing processes during sleep-dependent memory processing.

Our result may also have implications for phenomena seen with aging. For example, it is 

frequently noted that slow-wave activity is of lower amplitude in the elderly (McKillop et 

al., 2018). The elderly are less likely to have sleep-dependent consolidation benefits, perhaps 

because of a reduction in the nesting probability between SO and spindles (Helfrich et al., 
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2018). If our results also apply to the aging brain, it is possible that age related changes in 

the natural balance between SO and δ waves can determine whether offline gains can occur. 

This may also apply to the post-injured brain and the recovery process; there are known 

increases in δ waves after cortical injury (Carmichael and Chesselet, 2002; Gulati et al., 

2015).

Conclusion

Our results show that NREM sleep appears to consist of processes that compete to promote 

consolidation versus weakening during sleep-dependent memory processing; they further 

suggest that SO and δ waves have dissociable and competing roles, respectively, in memory 

consolidation versus memory weakening.

STAR★METHODS

Lead contact and materials availability

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Karunesh Ganguly (karunesh.ganguly@ucsf.edu).

Experimental model and subject details

Mice—Experiments were approved by the Institutional Animal Care and Use Committee at 

the San Francisco VA Medical Center. We used a total of thirteen adult naïve healthy Long-

Evans male rats that were approximately 3 months old (Charles River Labs); n=12 rats were 

used for optogenetic experiments and one rat was used for simultaneous AC- and DC-

coupled recordings (Figure 1A). The animals were largely pair housed; however, after 

surgical procedures, animals were single housed during the recovery period. No statistical 

methods were used to pre-determine sample sizes, but our sample sizes are similar to those 

reported in previous publications (Gulati et al., 2017; Gulati et al., 2014; Ramanathan et al., 

2015). Animals were kept under controlled temperature and humidity with a 12-h light/dark 

cycle; lights on at 06:00 a.m.

Method details

Surgery—For optogenetic experiments (n = 12 rats), viral injections were made at least 3 

weeks before chronic microelectrode array implant surgeries. A red-shifted halorhodopsin, 

Jaws (AAV8-hSyn-Jaws-KGC-GFP-ER2, UNC Viral Core) was injected in each rat for 

neural silencing (Chuong et al., 2014; Gulati et al., 2017). Surgeries were performed under 

isofluorane (1-3%) anesthesia and body temperature was maintained at 37 °C with a heating 

pad. Atropine sulfate was also administered before anesthesia (0.02 mg/kg of body weight). 

Burr hole craniotomies were performed over injection sites, and the virus was injected using 

a Hamilton Syringe with 34G needle. 500 nl were injected (100 nl per min) into deep 

cortical layers (1.4 mm from surface of brain) at two sites in M1 (coordinates relative to 

bregma: posterior, 0.5 mm and lateral, 3.5 mm; and anterior, 1.5 mm and lateral, 3.5 mm). 

After the injections, the skin was sutured. The post-operative recovery regimen included 

administration of buprenorphine at 0.02 mg/kg and meloxicam at 0.2 mg/kg. 

Dexamethasone at 0.5 mg/kg and Trimethoprim sulfadiazine at 15 mg/kg were also 
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administered post-operatively for 5 d. After at least 3 weeks recovery, probes with an 

attached cannula for optic fiber were implanted. Rats were anesthetized, and body 

temperature was maintained at 37 °C as described above. We used 32-channel microwire 

arrays; arrays were lowered down to 1,400–1,800 μm in the layer 5 of the primary motor 

cortex (M1) in the upper limb area (1-3 mm anterior to bregma and 2-4 mm lateral from 

midline). The reference wire was wrapped around a screw inserted in the midline over the 

cerebellum. Final localization of depth was based on quality of recordings across the array at 

the time of implantation. All animals were allowed to recover for 1-week with the same 

regimen as described above before start of experiments. Data collection and analysis were 

not performed blind to the conditions of the experiments. Viral expression was confirmed 

with fluorescence imaging. Optogenetic inhibition significantly reduced firing in Ml 

neurons, with a reduction in 50-70% of recorded cells (Figure 2E). Probes with an attached 

cannula for optic fiber were implanted after at least 2.5 weeks recovery. We also used one 

adult rat in Figure 1A and the same surgery procedure was done except electrode 

implantation. For this rat, we used Ag/AgCl electrodes; working and reference electrode 

were located on the surface of M1 and into the midline over the cerebellum, respectively. In 

the same rat, we also placed a twisted Platinum-Iridium wire (six-strand) into M1 and 

wrapped the reference wire around a screw inserted in the midline over the cerebellum.

Electrophysiology—We conducted AC-coupled and DC-coupled recordings at the same 

time for the case of Figure 1A, using Platinum-Iridium wire (A-M Systems) and Ag/AgCl 

electrode disks (World Precision Instruments; 4.0 mm diameter x 1 mm for working and 2.0 

mm diameter x 4 mm for reference electrode) for AC- and DC-coupled recordings, 

respectively. Except for that single animal, we conducted AC-coupled recordings and 

recorded extracellular neural activity using 32-channel microwire electrode arrays (MEAs; 

33-μm-length, 250-μm-spacing, 4-rows, standard polyimide-coated tungsten microwire 

arrays from Tucker-Davis Technologies (TDT) for two rats; and 25-μm-length, 200-μm-

spacing, 6-rows, tungsten microwire arrays from Innovative Neurophysiology Inc. for ten 

rats). We recorded spike and LFP activity using a 128-channel RZ2 bioamp processor (TDT) 

and 128-channel neurodigitizer (digital PZ4 for AC-coupled and analog PZ5 for 

simultaneous AC- and DC-coupled recording).

Spike data was sampled at 24,414 Hz and LFP data at 1,018 Hz. ZIF-clip-based headstages 

with a unity gain and high impedance (~1 G) was used. Only clearly identifiable units with 

good waveforms and high signal-to-noise ratio were used. The remaining neural data (e.g. 

filtered LFP) was recorded for offline analysis at 1,018 Hz. Behavior related timestamps 

(that is, trial onset and trial completion) were sent to the RZ2 analog input channel using a 

digital board and synchronized to neural data. We initially used an online sorting program 

(SpikePac, TDT) for neuroprosthetic control. We then conducted offline sorting using 

Tucker-Davies Technologies’ OpenSorter for five rats and using MountainSort for seven rats 

(Chung et al., 2017). Briefly, MountainSort is spike-sorting software that uses an automatic 

algorithm, which compares clusters of data and identifies single units using one-dimensional 

projections. After the automatic sorting using MountainSort, a minimal manual merging and 

rejection of clusters were made.
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Behavior—After recovery, animals were typically handled for several days before the start 

of experimental sessions. Animals were acclimated to a custom plexiglass behavioral box 

(Figure 2A) during this period. The box was equipped with a door at one end. Initially, water 

delivery from the actuator was not introduced and they were just acclimatized to the box for 

3-4 days. Toward the end of the acclimation period, the rats typically fell asleep while in the 

box. Animals were then given water, such that water (from the feeding tube illustrated in 

Figure 2A) was available in a randomized fashion while in the behavioral box. We 

monitored body weights on a daily basis to ensure that the weight did not drop below 95% 

of the initial weight. Behavioral blocks were conducted in the morning, with second blocks 

conducted in the afternoon. We recorded neural data from the rats for a 1 to 2-h before start 

of BMI training (pre-training sleep). The rats were then allowed to perform the task training 

over a ~2-h block (BMI1). Recorded neural data was entered in real-time from the TDT 

workstation to custom routines in Matlab. These then served as control signals for the 

angular velocity of the feeding tube. The rats typically performed ~180-200 trials per block. 

These blocks typically lasted from 90-120 min based on the rate of trial completion. 

Following this, we recorded neural data from animals for a 1-h period (post-training sleep). 

The animals then continued with another 90-120-min task retrieval block (BMI2). Sorted 

units at the beginning of the recording before pre-training sleep were checked for 

maintenance throughout the next task and sleep blocks.

Neural control of the feeding tube—During the BMI training and retrieval blocks, we 

typically randomly selected two well-isolated units as “direct” and allowed their neural 

activity to control the angular velocity of the feeding tube. In two of the twelve rats, there 

was only one unit selected as the direct unit. The remaining neurons in all the experiments 

(that is, indirect) were recorded but not causally linked to the actuator movement. These 

direct and indirect units maintained their stability throughout the recording as evidenced by 

stability of waveform shape, inter spike interval histograms, and mean firing rate. We binned 

the spiking activity of each unit into 50 ms bins. We then established a mean firing rate (i.e. 

baseline) for each unit over a 3-5 min baseline period. During this period the animals were 

typically transitioning between walking, exploring and periods of rest. The mean firing rate 

was then subtracted from its current firing rate at all time bins. The specific transform that 

we used was

θv = C * [G1 * r1(i) + G2 * r2(i)]

where θv was the angular velocity of the feeding tube, r1(i) and r2(i) were firing rates of the 

direct neurons; G1 and G2 were +1 and −1 for direct+ and direct− neurons, respectively, and 

were held constant after initialization. C was a fixed constant that scaled the firing rates to 

arrive at a value of angular velocity. The animals were then allowed to control the feeding 

tube via modulation of neural activity of direct neurons. The tube started at the same start 

position every trial (P1 in Figure 2A). The calculated angular velocity was added to the 

previous angular position at each time step (50 ms). During each trial, the angular position 

could range from −45 to +180 degrees. If the tube stayed in the “target zone” (P2 in Figure 

2A; spanned 10° area) for a period of 300 ms, a water reward was delivered. In the BMI 

block, the reward was delivered with a fixed delay of ~200 ms relative to task completion. In 
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the beginning of a block, most rats were unsuccessful at bringing the feeding tube to the 

position P2. Most rats steadily improved control and reduced the time to completion of the 

task during the first training block (BMI1). We obtained multiple learning blocks from each 

animal (Table S1). In the same animal, completely different units were selected for the direct 

neurons to ensure the independency in task performance across experiment sessions. These 

sessions were typically several days to 1 week apart to ensure that new units were recorded. 

Consistent with past studies, we also found that incorporation of new units into the control 

scheme required new learning (Ganguly et al., 2011; Gulati et al., 2017; Gulati et al., 2014).

Closed-loop optogenetics during post-training sleep—Five types of experiments 

were conducted using the twelve Jaws-injected animals, namely OPTOSO (n = 13 sessions, 5 

rats), OPTOδ (n = 14 sessions, 5 rats), OPTOSO+δ (n = 13 sessions, 7 rats), OPTORAND (n = 

9 sessions, 3 rats) and OPTOOFF (n = 23 sessions, 12 rats). These experiments were largely 

randomly interspersed for each animal. In general, we identified the phases of the LFP 

associated with “up” and “down” states based on the relationship of the neural spiking to the 

LFP. For example, as shown in Figure 1A, the negativity in our LFP signals was associated 

with neural spiking and thus consistent with an up-state, which are natural states of 

increased activity during slow waves. The positivity in our LFP signals was associated with 

silence of neural spiking and consistent with a down-state. The closed-loop stimulations 

were conducted by triggering the laser light based on real-time or online detection of cortical 

states. We used a custom script in the RPvdsEx program (TDT) to identify SO and δ in real-

time during sleep. The raw data was filtered using a digital filter implemented in the 

RPvdsEx program. For the lowpass filter <4 Hz, we used the digital “biquad” filter with the 

2nd order Butterworth filter coefficient. For the highpass filter >0.1 Hz, an exponential 

smoothing paradigm (i.e. MCSmooth component) was used. The laser light (625 nm, 100 

ms; RLM638TA-200FC, Shanghai Laser & Optics Century) was delivered with 200 or 400 

μm diameter optic fibers (Doric Lenses). In the OPTOSO+ and OPTOδ experiments, 

“filtering based” triggering was used to deliver the laser light during cortical up-states of SO 

and δ. Two manual thresholds (positive and negative) were placed on the filtered LFP trace 

(0.1-4 Hz) to detect up-states and down-states; down-states were detected when the filtered 

LFP trace crossed the positive threshold upward and up-states were detected when the 

filtered LFP trace crossed the negative threshold downward. The two manual thresholds 

were selected visually to approximate the respective phase of SO and δ waves based on the 

knowledge from other previous offline detections. As offline detection (see below), up-states 

were detected with the same criterion for both SO and δ. Then, an upstate preceded by 

down-state within 500 ms triggered a laser light pulse for SO, while an up-state which was 

not preceded by down-state within 500 ms triggered a light pulse for δ.

In the OPTORAND experiments, the above “filtering based” triggering was also used. In this 

control condition, light pulses were delivered during a state between up-states of SO and δ; a 

light pulse was triggered with time delay which was randomly generated from 0.3 to 1.3 sec 

after every up-state detection. However, this queued light pulse was not delivered, in the case 

that next up-state was detected before the onset time of the queued light. Moreover, to 

ensure that the light pulse with random delay did not disrupt subsequent up-states, the light 

was turned off as soon as up-states were detected during light on. In the OPTOSO+δ 
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experiments, two types of triggering were used (n = 3 power based; n = 10 filtering based). 

A light pulse was delivered during all SO and δ waves up-states in the same way stated 

above for the “filtering based” triggering. For the “power based” triggering, we used the 

following approach. The algorithm/workstation calculated the LFP power in the 0.1-4-Hz 

range and compared it to the threshold. Once the threshold was exceeded for >100 ms, LED 

illumination was triggered. The triggered light pulses during the OPTOδ experiments had 

1.7 times more incidences compared to the OPTOSO experiments, but the task performance 

was improved with more inhibitions in OPTOδ compared to OPTOSO experiments. This 

indicated that the laser light itself was unlikely to contribute to our observed effects. Finally, 

a group of control experiments called OPTOOFF (that is, where no stimulation was triggered) 

was also conducted in the Jaws-injected rats. Durations of total pre- and post-training sleep 

were similar in all experiment types (Figure S2B).

To examine the effect of optogenetic stimulations on putative excitatory (pE) versus putative 

inhibitory (pI) neurons, we conducted cell type classification as in the past studies (Figure 

S1) (Sirota et al., 2008; Stark et al., 2013). Units were sorted and only clearly identifiable 

units with good waveforms and high signal-to-noise ratio were used as stated above. A total 

of 894 units in 12 rats were used. For each unit, spike waveshape parameters were 

calculated; trough-to-peak amplitude and spike width. Spike width was calculated as inverse 

peak frequency of the spike spectrum, estimated by 1024-point FFT of the mean-padded 

waveforms. These two parameters created two separable clusters (pE: n = 759, 84.9% vs. pI: 

n =135, 15.1%). This analysis fulfilled the objective of the cell type classification; our 

optogenetic stimulations influenced on both pE and pI units with similar portion, 38.6% and 

34.8 %, respectively.

BMI tasks and changes in performance—Analysis was performed in Matlab 

(Mathworks). A total of seventy-two BMI1 training blocks recorded from the twelve rats 

were used for our analysis. All of these blocks demonstrated “robust learning” (that is, >3 

s.d. drop in time to completion in the last 1/3 of trials or “late” trials (BMI1-Late) in 

comparison to the first 1/3 of trials or ‘early’ trials; BMI1-Early). These blocks were followed 

by a task retrieval block (i.e. BMI2). In Figures 2A and 3A, we compared changes in mean 

task time across experimental sessions. Specifically, we compared the change in mean task 

time between BMI1-Late and BMI2-Early (the first 1/3 trials during BMI2). For the 

comparison in task performance change in Figure 4F, we calculated performance by dividing 

the change in mean task time from the BMI1-Late to the BMI2-Early by the mean task time 

during the BMI1-Late and then multiplying negative sign and number of 100 so that a 

positivity in performance represents a reduction in task time from the BMI1-Late to the 

BMI2-Early.

Task-related activity—The distinction between direct and indirect neurons was based on 

whether units were used for the direct neural control of the feeding tube. The modulation 

depth (MD) was calculated by comparing the peak activity around the task (in the 10 sec 

window before the task end/reward) over the baseline firing activity (averaged activity of 5 

sec before task start) on the peri-event time histograms (PETH, bin length 50 ms). In other 

words, the MD is a measure of the modulation of firing rate relative to the pre-task start 
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baseline rate. This was compared for direct and indirect neurons from BMI1-Late to 

BMI2-Early (change in MD from BMI1-Late to BMI2-Early; ΔMD; Figure 7). In a BMI block 

with approximately 200 trials, ΔMD were averaged across ~65 trials.

Identification of NREM sleep waves—The LFP activity was recorded using 32-channel 

microwire electrode arrays. The LFP was analyzed after removing obvious artifacts and 

excluding bad channels. Identification of NREM epochs was performed by classification 

based on power spectral density of LFP. LFP trace was segmented into non-overlapping 6 

sec epochs. In each epoch the power spectral density was computed and averaged over the 

SO/δ (0.1-4 Hz) and gamma (30-60 Hz) frequency bands. Then a k-means classifier was 

used to classify epochs into two clusters, NREM sleep and REM/awake. Sleep epochs less 

than 30 sec were excluded from NREM sleep epochs. The identified NREM sleep epochs 

were verified by visual assessment of the LFP activity. This power-based sleep detections 

showed a close match to the video-based detections (Figure S2A) (Pack et al., 2007); the 

number of pixels which change intensity frame to frame in each pair of consecutive frames 

was computed from a recorded video during sleep block and then integrated those number of 

pixels during an epoch of 30 sec. If that integrated value was higher than threshold, that 

epoch was identified as sleep; the threshold was chosen by comparing detection results and 

visual assessment of the recorded video.

In offline analysis, SO, δ waves and spindles were detected using the algorithm used by Sela 

and colleagues (Sela et al., 2016). The LFP average across all recording channels excluding 

bad channels was filtered in the SO/δ band (0.1-4 Hz) through two independent filtering; the 

high pass Butterworth filter (2nd order, zero phase shifted, with a cutoff at 0.1 Hz) was 

applied and then followed by the low pass Butterworth filter (5th order, zero phase shifted, 

with a cutoff at 4 Hz). Next, all positive-to-negative zero crossings during NREM sleep were 

identified, along with the previous peaks, the following troughs, and the surround negative-

to-positive zero crossings. Then the positive threshold (the top 15 percentile of the peaks) 

and the negative threshold (the bottom 40 percentile of the troughs) were respectively 

defined for the down-states and up-states. Each identified wave was considered a SO if the 

trough was lower than the negative threshold (i.e. up-state), the peak preceding that up-state 

was higher than the positive threshold (i.e. down-state), and the duration between the peak 

and the trough was between 150 ms and 500 ms (Figures 1B and 1C). On the other hand, a 

slow wave was considered a δ wave if the trough was lower than the negative threshold (i.e. 

up-states) and that the up-state was preceded by maximum voltage that was lower than the 

positive threshold within 500 ms. For spindle detection, the LFP was first z-scored in each 

channel and averaged across all good channels. The LFP average was filtered in spindle 

band (10-14 Hz) through two independent filtering; the high pass Butterworth filter (6th 

order, zero phase shifted, with a cutoff at 10 Hz) was applied and then followed by the low 

pass Butterworth filter (8th order, zero phase shifted, with a cutoff at 14Hz). We computed a 

smoothed envelope of this signal, the magnitude of the Hilbert transforms with convolving 

by a Gaussian window (200 ms). Next, we determined two thresholds for spindle detection 

based on the mean (μ) and standard deviation (σ) of the spindle band envelope during 

NREM sleep; the upper and lower thresholds were set μ + 2.5 χ σ and μ +1.5 χ σ, 

respectively. Epochs in which the spindle power exceeded the upper threshold for at least 
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one sample and the spindle power exceeded the lower threshold for at least 500 ms were 

considered spindles. Each epoch where the spindle power exceeded the lower threshold was 

considered the start and stop of the spindle; the duration of each spindle was based on these 

values as well. For the reactivation analyses spindles was detected in 13-16 Hz based on the 

previous finding that fast spindles (13-16 Hz) play a key role for sleep-dependent memory 

reactivation (Molle et al., 2011; Ramanathan et al., 2015).

Spindle nesting analyses—We also analyzed the temporal coupling of spindles relative 

to SO and δ waves. For the nesting of spindles to SO (SO-Nesting; Figure 4A top), each 

spindle was linked to the closest SO. The time difference between the peak of spindle and 

the up-state of the linked SO was measured for each detected spindle (ΔTSO-Spindle). If 

ΔTSO-Spindle was between −0.5 sec and 1.0 sec (i.e. nesting time window), that spindle event 

was considered a SO-nested spindle. The nesting of spindles to δ (δ-Nesting; Figure 4B 

bottom) was identified in a manner analogous to the “SO-Nesting” value, i.e. time 

differences between the spindle peak time and the time of the δ up-state (ΔTSO-Spindle). To 

quantitatively assess the changes in temporal coupling of spindles to SO, we specifically 

measured “nesting index” of spindles to SO (SO-Nesting index). Time lag of spindle from 

the closest SO (ΔTSO-Spindle) was measured for each spindle event and the rate of spindles of 

which ΔTSO-Spindle was within the nesting time window was measured; i.e. SO-Nesting 

index (Figures 4D and S2A). We also measured “nesting index” of spindles to δ (δ-Nesting 

index) the same way as the “SO-Nesting index” but using time lags between the peaks of 

spindles and the up-states of the linked δ (ΔTSO-Spindle) (Figure S3B). Then SO/δ-Nesting 

index was calculated by the ratio of SO-Nesting index over δ-Nesting index (Figure 4E). 

SO-Nesting, δ-Nesting, and SO/δ-Nesting index were measured in a pair of pre-training and 

post-training sleep in a single session, then the change from the pre-training to the post-

training sleep was computed (ΔSO-Nesting, Δδ-Nesting, and ΔSO/δ-Nesting index, 

respectively).

Ensemble reactivation analyses—To characterize ensemble reactivations following 

sleep, we performed an analysis that compared neural activity patterns during pre-training 

sleep and post-training sleep using a template that was created based on neural activity 

during task performance in BMI1 (Gulati et al., 2017; Gulati et al., 2014; Peyrache et al., 

2009; Ramanathan et al., 2015). We used principal component analysis (PCA) to convert a 

set of observations of neural activity during the task into a set of values of linearly 

uncorrelated variables called principal components (PC or “template”); the first PC accounts 

for the largest variance in the neural activity during task training in BMI1. In detail, we first 

computed a pairwise unit activity correlation matrix during BMI1 by concatenating binned 

spike trains (tbin = 50 ms) for each neuron across trials (between −2.0 sec and 0.5 sec from 

the task end). This concatenated spike train was z-transformed to account for neurons with 

high firing rates. Then the z-transformed spike trains were placed into a 2-D matrix 

organized by neurons (x) and time (y for the number of time bins). From this spike count 

matrix, we calculated the correlation matrix (Ctask), and then calculated the eigenvectors. 

This first eigenvector, or the first PC, was used as the template of ensemble activity during 

task training in BMI1; this was projected back on to the neural activity during pre-training 

sleep and post-training sleep. This projection was a linear combination of z-scored binned 
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neural activity from each pre- and post-training sleep, with the template (i.e. the 

eigenvector/PC) calculated from the Ctask during the BMI1. This linear combination has 

been termed as the “activation strength” in the awake task and “reactivation strength” during 

sleep of that particular neural ensemble. In this analysis we focused on the first eigenvector, 

as the first PC explained most task-related variance (Figure S6A). The first 1-2 PCs were 

found to be significant, that is their eigenvalues were greater than a threshold for random 

distributions defined using the Marcenko-Pastur distribution as in the previous studies 

(Gulati et al., 2014; Peyrache et al., 2009). Our reactivation analysis focused on the first 

significant PC. Moreover, we randomly selected one PC (which is non-significant, as 

defined above) as a means of measuring non-selective changes in firing rate.

The reactivation events that were chosen for the comparison with the task performance 

changes were those with a reactivation strength that was significantly greater in the post-

training sleep than in the pre-training sleep; thus, in this study, top 10 percentile reactivation 

strengths was used to compare pre- and post-training sleep (Figure 5). However, typically 

the top 10-20 percentile reactivation strengths from the post-training sleep fulfilled this 

criterion (Figures S6B and S6C for the significant PC). We focused on the top 10 percentile 

peaks of reactivation strengths from the post-training sleep in order to examine the timing of 

reactivation relative to the NREM sleep waves (Figures 6A, 6B, and 6C). The average time 

courses of the reactivation strengths were smoothed using moving window of 5 and 20 

percentage sleep period for Figure 5C and Figure 6D, respectively. We also focused on the 

reactivation events during the spindle epochs identified by the power-based lower threshold 

as described above (Figures 6D, 6E, and S7B) and the top 90 percentile reactivation 

strengths during the spindle epochs were used. We also confirmed that the change in 

reactivation strength in the post-training sleep was not explained by changes in the firing 

rates (Figure S7A).

Quantification and statistical analysis

Figures show mean ± s.e.m.; if this was not case, we specifically indicated it. Parametric 

statistics were generally used in this study (linear mixed-effect model, ANOVA, t-tests, 

linear regression, unless otherwise stated); they were implemented within MATLAB. The 

linear mixed-effects model (using MATLAB “fitlme”) was used to compare the differences 

in task performance, temporal coupling of spindles to SO, and reactivation strength. This 

model accounts for the fact that units, channels, events, or trials from the same animal are 

more correlated than those from different animals and is more stringent than computing 

statistical significance over all units, channels, events, and trials (Aarts et al., 2014). We 

fitted random intercepts for each rat and reported the P values for the regression coefficients 

associated with pre-training sleep or post-training sleep, BMI1-late or BMI2-early, SO-nested 

or δ-nested spindles, or stimulation types. The used random effects and fixed effects 

parameters are following; Figure 1D, random: rat, fixed: slow-wave type; Figures 2G and 

3E, random: rat, fixed: experiment type; Figure 5B, random: rat and experiment session, 

fixed: sleep block; Figure 6E, random: rat and experiment session, fixed: spindle type; 

Figure 7, random: rat, fixed: neuron type. In Figures 5B and 6E, every reactivation event was 

used as the response parameter. In Figures 1D, 2G, 3E, and 7 mean in each experiment 

session was used as the response parameter, and in Figures 5B and 6E every value of 
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reactivation events was used as the response paramenter. Regression modeling for fixed-

effects provide intercept and slope in mixed-effects model comparison. In Figure 7, the 

estimated rescaling effect was compared using the slope coefficient of the fixed-effects 

between the CONTROL and OPTOδ experiments.

Three optogenetic conditions were compared in Figures 4 and 5 after grouping OPTORAND 

with OPTOOFF experiments and OPTOSO+δ with OPSTOSO experiments as stated main text 

(CONTROL: n = 32 sessions, 12 rats; OPTOSO+: n = 26 sessions, 12 rats; OPTOδ: n = 14 

sessions, 5 rats). In order to compare across the three conditions, we performed one-way 

ANOVA (test of homogeneity of variances was done) and next performed two-tailed, two-

sample t-tests for every possible pair of experiment type, which were followed by 

Bonferroni-Holm correction for family-wise error. Bonferroni-Holm correction was used for 

every multiple comparison. We used linear regression or correlation to evaluate the 

relationship between the changes in SO-Nesting index and the changes in task performance; 

between the changes in δ-Nesting index and the changes in task performance; between the 

changes in SO/δ-Nesting index and the changes in task performance; between the changes in 

top 10 percentile reactivation strength and the changes in task performance; between the 

changes in spindles peak amplitude and the changes in task performance; between the 

reactivation strength during SO-nested spindles or δ-nested spindles and changes in task 

performance (Figures 4G, 5E, and S7B). In these regression analyses using three conditions, 

four fundamental assumptions were tested (Osborne and Waters); normality of used 

parameters (Kolmogorov-Smirnov/KS test; Figures S4A and S4B); linearity between X and 

Y (visual assessment); homoscedasticity (Goldfeld-Quandt/GQ test); independence across 

observations (completely new units were used to modulate feeding tube across experiments). 

We also used linear regression to evaluate trends over sleep in the respective conditions 

(Figures 5C, 6D, and S7A).

We also compared the evidence for the linear regression model of ΔSO/δ-Nesting index to 

the model of ΔSO-Nesting index explaining the changes in task performance. The ‘odds’ are 

defined as the ratio of the probability of the data given one model to the probability of the 

data given the other model, which corresponds to the evidence favoring one model over 

another (Jaynes, 2003). We assumed that errors were normally distributed, and that the 

parameter σ was equivalent to the root mean squared error calculated from the model and 

sample data. Since it follows that the errors were conditionally independent, the probability 

of the 72 data points was the product of the 72 probabilities; here, that is equivalent to the 

R2. The probability of the data was 4.3 times greater (i.e. odds) given the predictions of the 

linear regression model of ΔSO/δ-Nesting index relative the prediction based on the linear 

regression model of ΔSO-Nesting index, and thus the evidence for the linear regression 

model of ΔSO/δ-Nesting index was 4.3 times greater.

Data and code availability

The data and custom code that support the findings from this study are available from the 

corresponding author upon reasonable request.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Reactivations during slow oscillations causally linked to memory 

consolidation.

• Delta-waves mediate weakening of memory reactivations and promote 

forgetting.

• Slow oscillations and delta-waves have competing roles in memory 

processing.
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Figure 1. Dissociation of SO and δ.
(A) Examples of raw and filtered traces with DC- and AC-coupled recordings. Traces were 

filtered using online (gray) and offline (black) digital filters (Methods). SO and δ waves 

marked by cyan and magenta hereafter.

(B) SO versus δ waves from all post-training sleep (n = 72 sessions, 12 rats). Distribution of 

peaks preceding upstates, troughs of up-states, and differences between SO power (in 0.1-1 

Hz) and δ power (in 1.5-4 Hz) are shown.
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(C) SO versus δ waves separated by red dashed line (determined by k-means clustering). 

Projections to axis orthogonal to separation line shown.

(D) Left, Examples of traces from 32 channels of a array. Mean traces above and single 

channel trace below. Right, comparison of detected SO versus δ waves in the array (mean ± 

s.e.m.; n = 72 sessions, mixed-effects model, t142 = 5.13, ***P < 10−6).

(E) Distributions of inter-event intervals for SO and δ waves; dashed lines is geometric mean 

(n = 72 sessions; SO: 2.71 sec; δ: 0.96 sec).

(F) Autocorrelogram examples computed with bins of 100 ms (left) and 20 ms (right) from 

both SO and δ wave upstates for 1-hour sleep. Right histogram is an expansion of left 

histogram. Central peaks and lower values are truncated.
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Figure 2. Optogenetic inhibitions during SO up-states.
(A) Flow charts for OPTOSO and OPTOSO+δ experiments.

(B) Rats learned direct neural control of a feeding tube (θ = angular position in ‘A’). 

Successful trials required movement from P1 to P2 within 15 sec.

(C and D) Examples of filtered traces (0.1-4 Hz) and stimulation periods (100 ms pulses) 

during up-states of SO and SO+δ for OPTOSO (C) and OPTOSO+δ experiments (D).

(E) Examples of 30 raw LFP traces and spike rasters (left: SO up-states; right: δ wave up-

states). Scale bars indicates 100 ms on x-axis and 2 s.d. on y-axis of raw LFP.

(F) Example learning curves for OPTOSO, OPTOSO+δ and OPTOOFF.

(G) Mean task time changes from BMI1-Late to BMI2-Early (mean in solid line ± s.e.m. in 

box; OPTOSO: n = 13 sessions, 5 rats, mixed-effects model, t24 = 6.99, ***P < 10−6; 

OPTOSO+δ: n = 13 sessions, 7 rats, mixed-effects model, t24 = 5.52, ***P < 10−4; OPTOSO 

vs. OPTOSO+δ: mixed-effects model, t24 = −1.39, P = 0.18).

(H) Relationship of mean task time change in ‘G’ to the ratio of SO to δ-triggering (n = 26 

sessions, 12 rats; linear regression, R2 = 0.065, P = 0.208).

See also Figures S1 and S2.
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Figure 3. Optogenetic inhibitions during up-states of δ.
(A) Flow charts for OPTOδ and OPTORAND experiments.

(B and C) Examples of filtered traces and stimulation periods during up-states of δ waves 

(magenta bars) and during period interleaving up-states (control; orange bars) for an OPTOδ 
and OPTORAND.

(D) Learning curves for OPTOδ,. OPTORAND and OPTOOFF.

(E) Mean task time changes from BM1-Late to BMI2-Early (mean in solid line ± s.e.m. in box; 

OPTOδ: n = 14 sessions, 5 rats, mixed-effects model, t26 = −5.64, ***P < 10−5; OPTORAND: 

n = 9 sessions, 3 rats, mixed-effects model, t16 = −4.19, ***P < 10−3; OPTOδ vs. 

OPTORAND: mixed-effects model, t21 = 2.63, *P = 0.015).
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See also Figures S1 and S2.
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Figure 4. Spindle to SO nesting and changes in task performance.
(A) Cartoon of nesting of spindle to SO (SO-Nesting; top) and δ (δ-Nesting; bottom). Gray 

boxes indicate the time window for ‘nesting’, −0.5 to 1.0 sec from up-state (same as ‘D’).

(B) Example of mean SO-up-state-triggered LFP (top, mean ± s.e.m., 0.1~4 Hz) for 

CONTROL, OPTOSO+, and OPTOδ.

(C) Single trial examples of detected spindles near SOs.

(D) Examples of probability distribution of spindle-peaks time from nearest SO up-state 

(ΔSO-Spindles). Examples of probability distribution for ΔTδ-Spindles are shown in Figure S3B.

(E) SO/δ-Nesting index changes from pre- to post-training sleep (mean ± s.e.m.; 

CONTROL: n = 32 sessions, 12 rats; OPTOSO+: n = 26 sessions, 12 rats; OPTOδ: n = 14 

sessions, 5 rats; one-way ANOVA, F2,69 = 25.36, P < 10−8; significant post hoc t tests, 

corrected for multiple comparison, **P < 0.01, ***P < 10−3).

(F) Task performance changes from BMI1-Late to BMI2-Early (positivity represents 

performance improvement) (CONTROL: n = 32 sessions, 12 rats; OPTOSO+: n = 26 

sessions, 12 rats; OPTOδ: n = 14 sessions, 5 rats; one-way ANOVA, F2,69 = 76.08, P < 

10−17; significant post hoc t tests, corrected for multiple comparison, *P < 0.05, ***P < 

10−3).
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(G) Relationship between SO/δ-Nesting index changes and task performance changes (total 

n = 72 sessions, 12 rats; significant linear regression, R2 = 0.354, P = 3.5 × 10−8; satisfies 

criteria for linear regression, see Methods).

See also Figures S3, S4, and S5.
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Figure 5. Strengthening and weakening of memory reactivation by optogenetic inhibitions.
(A) Examples of top 10 percentile reactivation events during a pre- and a post-training sleep 

in each respective condition (CONTROL, OPTOSO+, and OPTOδ). Normalized to the mean 

reactivation strength during pre-training sleep. First 40% of sleep shown.

(B) Changes from pre- to post-training sleep in the mean reactivation strength for a 

significant PC (z-scored in each pre- and post-training sleep pair using the mean and the 

standard deviation during both pre- and post-training sleep; mean in solid line ± s.e.m. in 

box; CONTROL: n = 32 sessions, 12 rats, mixed-effects model, t598126 = 16.31, ***P < 

10−59; OPTOSO+: n = 26 sessions, 12 rats, mixed-effects model, t343469 = −6.12, ***P < 
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10−8; OPTOδ: n = 14 sessions, 5 rats, mixed-effects model, t344961 = 11.30, ***P < 10−28; 

corrected for multiple comparison). Same analyses with a non-significant PC (mixed-effects 

model, P > 0.05, corrected for multiple comparison).

(C) Average time course of top 10 percentile reactivation events during post-training sleep 

(mean ± s.e.m.; averaged with moving window of 5% sleep time). Normalized to the mean 

reactivation strengths during pre-training sleep (that is 100% on y-axis). Dashed line 

represents linear fitting with the significant PC (CONTROL: n = 32 sessions, 12 rats, R2 = 

0.206, P = 2.1 × 10−6; OPTOSO+: n = 26 sessions, 12 rats, R2 = 0.626, P = 1.2 × 10−22; 

OPTOδ: n = 14 sessions, 5 rats, R2 = 0.009, P = 0.36) and with the non-significant PC 

(CONTROL: n = 32 sessions, 12 rats, R2 = 0.132, P = 2.0 × 10−4; OPTOSO+: n = 26 

sessions, 12 rats, R2 = 0.353, P = 6.9 × 10−11; OPTOδ: n = 14 sessions, 5 rats, R2 = 0.206, P 

= 2.1 × 10−6). Across “A-C,” top, middle, and bottom represent the CONTROL, OPTOSO+, 

and OPTOδ experiments, respectively.

(D) Mean reactivation strength at the end of post-training sleep (i.e. last 15% of sleep; 

CONTROL: 108.5 ± 11.2%, n = 32 sessions, 12 rats; OPTOSO+: 75.7 ± 12.4%, n = 26 

sessions, 12 rats; OPTOδ: 162.9 ± 16.9%, n = 14 sessions, 5 rats; one-way ANOVA, F2,57 = 

8.42, P < 10−3; significant post hoc t tests, corrected for multiple comparison, *P < 0.05, **P 

< 0.01).

See also Figure S6.

(E) Relationship between the final mean reactivation strength of post-training sleep and task 

performance changes (total n = 72 sessions, 12 rats; significant linear regression, R2 = 0.180, 

P = 2.1 × 10−4).
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Figure 6. SO-nested spindles preserve and δ-nested spindles weaken memory reactivation.
(A) Mean reactivation-peak-triggered LFPs in 0.1~4 H (top) and spindle band (13~16 Hz, 

bottom) in post-training sleep for CONTROL, OPTOSO+, and OPTOδ. Each trace was 

normalized to the maximum value.

(B and C) Probability distributions of reactivation peak time from the up-states of SO and δ 
waves (B) and the peaks of spindles (C). The top 10 percentile of reactivation peaks during 

post-training sleep was used in “A-C.”
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(D) Average time courses of the reactivation strengths during SO-nested (red) and δ-nested 

spindles (blue) of post-training sleep in the CONTROL, and OPTOSO+ experiments (mean ± 

s.e.m.; averaged with moving window of the 15% sleep time). Solid line represents the linear 

fitting (CONTROL: n = 32 sessions, 12 rats, R2 = 0.042, P = 0.042 for the SO-nested 

spindles, R2 = 0.536, P = 5.0 × 10−18 for the δ-nested spindles; OPTOSO+: n = 26 sessions, 

12 rats, R2 = 0.407, P = 9.3 × 10−13 for the SO-nested spindles, R2 = 0.491, P = 5.1 × 10−16 

for the δ-nested spindles).

(E) Differences in mean reactivation strength during post-training sleep between SO-nested 

and δ-nested spindles (z-scored in each pair of pre- and post-training sleep pair using the 

mean and the standard deviation during pre-training sleep; mean in solid line ± s.e.m. in 

box; CONTROL: n = 32 sessions, 12 rats, mixed-effects model, t131370 = −6.55, ***P < 

10−10; OPTOSO+: n = 26 sessions, 12 rats, mixed-effects model, t111535 = −1.03, P = 0.31).

See also Figure S6.
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Figure 7. Rescaling of task activations.
Rescaling of direct and indirect neurons measured through modulation depth changes 

(ΔMD) from BMI1 to BMI2 during CONTROL, OPTOSO, and OPTOδ (mean in solid line ± 

s.e.m. in box; CONTROL: n = 13 sessions, 5 rats, mixed-effects model, t101 = −2.38, *P = 

0.038; OPTOSO: n = 13 sessions, 5 rats, mixed-effects model, t106 = −1.44, P = 0.153; 

OPTOδ: n = 14 sessions, 5 rats, mixed-effects model, t116 = −4.16, ***P < 10−4; corrected 

for multiple comparison). Data from Rat ID 1-5 in Table S1 analyzed here.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV8-hSyn-Jaws-KGC-GFP-ER2 UNC Vector Core N/A

Chemicals, Peptides, and Recombinant Proteins

Isoflurane Baxter NDC 10019-360-40

Atropine sulfate American Regent Inc NDC 0517-1010-25

Buprenorphine Reckitt Benckiser Pharmaceuticals Inc NDC 12496-0757-5

Meloxicam Patterson Veterinary NDC 14043-950-05

Dexamethasone Mylan Institutional Llc NDC 67457-423-12

Trimethoprim sulfadiazine Teva Pharmaceuticals Ind NDC 0703-9526-01

Experimental Models: Organisms/Strains

Long Evans Rat Charles River Labs Strain Code 006

Software and Algorithms

MountainSort Chung et al., 2017 https://github.com/flatironinstitute/
mountainsort_examples

SpikePac Tucker-Davis Technologies (TDT) https://www.tdt.com/support/downloads/

OpenSorter Tucker-Davis Technologies (TDT) https://www.tdt.com/support/downloads/

RPvdsEx Tucker-Davis Technologies (TDT) https://www.tdt.com/support/downloads/

MATLAB Mathworks https://www.mathworks.com/products/matlab.html

Sleep waves detection algorithm Sela et al., 2016 N/A

Other

Bioamp processor (RZ2) and neurodigitizer 
(digital PZ4 and analog PZ5)

Tucker-Davis Technologies (TDT) https://www.tdt.com

32-channel microwire electrode arrays Tucker-Davis Technologies (TDT) https://www.tdt.com/component/zif-clip-array-
electrodes/

32-channel microwire electrode arrays Innovative Neurophysiology Inc http://www.inphysiology.com/optogenetic-
applications/

Cell. Author manuscript; available in PMC 2020 October 03.

https://github.com/flatironinstitute/mountainsort_examples
https://github.com/flatironinstitute/mountainsort_examples
https://www.tdt.com/support/downloads/
https://www.tdt.com/support/downloads/
https://www.tdt.com/support/downloads/
https://www.mathworks.com/products/matlab.html
https://www.tdt.com
https://www.tdt.com/component/zif-clip-array-electrodes/
https://www.tdt.com/component/zif-clip-array-electrodes/
http://www.inphysiology.com/optogenetic-applications/
http://www.inphysiology.com/optogenetic-applications/

	SUMMARY
	Graphical Abstract
	In brief
	INTRODUCTION
	RESULTS
	SO are essential for sleep-dependent consolidation of a skill
	Effects of targeting δ wave related activity
	Changes in the nesting of SO and δ waves to spindles
	Effects on ensemble reactivations during sleep
	SO-Nested spindles preserve memory reactivation
	Effects on sleep-dependent credit assignment

	DISCUSSION
	Role of SO and spindles in sleep-dependent memory processing
	Role of δ wave activity in forgetting and weakening of memory traces
	Interactions between SO and δ waves

	Conclusion
	STAR★METHODS
	Lead contact and materials availability
	Experimental model and subject details
	Mice

	Method details
	Surgery
	Electrophysiology
	Behavior
	Neural control of the feeding tube
	Closed-loop optogenetics during post-training sleep
	BMI tasks and changes in performance
	Task-related activity
	Identification of NREM sleep waves
	Spindle nesting analyses
	Ensemble reactivation analyses

	Quantification and statistical analysis
	Data and code availability
	Additional Resources

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

