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The conversion of circular genomes to linear chromosomes
during molecular evolution required the invention of telomeres.
This entailed the acquisition of factors necessary to fulfill two
new requirements: the need to fully replicate terminal DNA
sequences and the ability to distinguish chromosome ends from
damaged DNA. Here we consider the multifaceted functions of
factors recruited to perpetuate and stabilize telomeres. We dis-
cuss recent theories for how telomere factors evolved from exist-
ing cellular machineries and examine their engagement in non-
telomeric functions such as DNA repair, replication, and
transcriptional regulation. We highlight the remarkable versa-
tility of protection of telomeres 1 (POT1) proteins that was
fueled by gene duplication and divergence events that occurred
independently across several eukaryotic lineages. Finally, we
consider the relationship between oxidative stress and telom-
eres and the enigmatic role of telomere-associated proteins in
mitochondria. These findings point to an evolving and intimate
connection between telomeres and cellular physiology and the
strong drive to maintain chromosome integrity.

Molecular evolution is opportunistic, enabling novel cellular
mechanisms to arise in response to biological challenges. One
such challenge was conversion of the circular prokaryotic
genome into the multiple linear DNA forms that comprise the
eukaryotic genome (1). This challenge necessitated the inven-
tion of telomeres. Here we discuss the origin and evolution of
telomere-related functions. Although the factors associated
with chromosome ends were initially thought to be specific for
this locale, in-depth analysis has revealed many such factors
having noncanonical, so-called “moonlighting” roles in other
transactions within the nucleus and the cytoplasm. We now
appreciate that some of the moonlighting contributions may
reflect ancestral functions preserved from the dawn of genome
linearization, whereas others may be newly emergent.

There are several theories for how linear chromosomes
evolved from their circular progenitors (2, 3), but one of the
more intriguing proposals is that invasion of circular genomes

by group II introns (1), via reverse splicing and reverse tran-
scription, led to DNA linearization (4, 5) (Fig. 1). Specifically, it
is posited that non-LTR2 retrotransposons targeted to double-
strand breaks (DSBs) served as “proto-telomeres” (6). The nas-
cent chromosome ends presented two immediate challenges:
the “end replication” problem and need for “end protection” (7,
8). The end replication problem occurs because the DNA rep-
lication machinery cannot fully replicate the extreme terminus
of the lagging strand, which would lead to the gradual depletion
of terminal DNA sequences when the genome is duplicated (9,
10). The chromosome ends may also be perceived as a DSB and
must therefore be sequestered to prevent activation of the DNA
damage response. Such end protection is also crucial for the
avoidance of end-to-end fusions of chromosomes, which would
cause improper chromosome segregation during mitosis, cell
cycle arrest, genome instability, senescence, and cell death (8,
11). Most eukaryotes cope with these problems by 1) adding
long arrays of noncoding DNA repeats to serve as a physical
buffer to protect coding regions from attrition and 2) formation
of higher-order DNA architecture that helps distinguish chro-
mosome ends from a DSB (i.e. fold-back structures in yeast (12)
and t-loops in other species (13, 14)).

Emergence of telomerase

To help overcome the telomere end replication problem, a
group II intron likely gained the ability to use the 3� end of
linearized chromosomes as a template for reverse transcription
(5). There is strong evidence that the telomerase catalytic sub-
unit TERT evolved from a non-LTR class 2 retrotransposon
(15–17) (Fig. 1). Fruit flies and silkworms maintain their chro-
mosome ends through a telomerase-independent mechanism
that employs a different class of retrotransposons (18, 19), sup-
porting the idea that retrotransposons played an early and crit-
ical role in establishing and maintaining telomere architecture
(20, 21).

The modern-day enzyme that helps solve the end replication
problem is telomerase, a reverse transcriptase that compen-
sates for incomplete replication by continually replenishing ter-
minal DNA using a long noncoding RNA, TER, as template
(22). It is possible that TER arose from a transcript derived from
the progenitor group II intron (5) (Fig. 1), but TER and TERT
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are now encoded from separate loci in the genome. TERT can
interact with a large array of RNAs in vivo (23). Ultimately, an
RNA emerged with a higher affinity for TERT, a short C-rich
repeat that could serve as a telomere sequence template, and a
stem-loop element abutting the template that could form a
functional template boundary element to allow fidelity of
telomere repeat addition by TERT (24). Unlike TERT, TER is
constrained by structure and not sequence (25, 26). Conse-
quently, TER sequences diverged and expanded to give acces-
sory proteins a foothold in the RNP complex. These new telom-
erase proteins enabled RNP maturation and both positive and
negative regulation of the enzyme (27, 28).

Telomere-associated proteins: Origins and their role in
telomere end protection

In vertebrates and fission yeast, telomere end protection is
mediated by shelterin (29, 30) (Fig. 2 and Table 1). Shelterin
physically caps the telomere ends, preventing the termini from
being recognized as DNA damage and suffering DNA attrition
via nucleolytic processing and DNA damage checkpoint activa-
tion. Shelterin is composed of TRF1/TRF2 (SpTAZ1), which
binds the duplex DNA, and POT1-TPP1/SpPot1-SpTpz1,
which binds the 3� single-strand extension on the extreme ter-
minus (termed the G-overhang). Additional proteins bridge the
two DNA-binding complexes (TIN2(SpPOZ1) and RAP1). In
addition to end protection, shelterin controls telomerase access
and therefore contributes to telomere length regulation (29).

In budding yeast, instead of chromosome end protection by
shelterin, the G-overhang is stably bound by the CST complex,
comprised of Cdc13(CTC1), STN1, and TEN1 proteins (31)
(Fig. 2 and Table 1). Notably, vertebrates also possess CST, but
this complex only transiently associates with telomeres during
S phase to promote telomeric DNA replication. CST is struc-
turally related to the single-strand DNA-binding complex RPA
and had likely evolved from the latter (32, 33). Interestingly,

Drosophila lacks canonical telomere repeat arrays at its chro-
mosome termini and yet encodes one or more proteins related
to CST subunits (34, 35). Flowering plants, including Arabidop-
sis, present yet another twist on the telomere protection appa-
ratus wherein one half of the chromosome ends harbor a
G-overhang bound by CST, whereas the other half are blunt-
ended and bound by Ku, which functions in the nonhomo-
logous DNA end joining (NHEJ) pathway of DSB repair and has
high affinity for DNA ends (36) (Fig. 2). The asymmetry of plant
telomeres may reflect the absence of a 5� exonuclease (e.g.
Apollo) (37) that normally converts blunt-end telomeres cre-
ated from leading-strand synthesis into termini with the typical
3� G-overhang (38).

The shelterin and CST proteins employ one of two DNA
binding motifs: the MYB domain for duplex DNA binding and
the oligonucleotide/oligosaccharide-binding fold (OB-fold) for
interaction with single-strand DNA. The MYB motif is com-
mon in transcription factors and may have been predisposed to
function at telomeres as it is capable of binding tandemly
repeated sequences (39, 40). OB-folds, on the other hand, func-
tion in a vast array of nucleic acid transactions and are found in
proteins ranging from t-RNA synthetases to nucleases and RPA
(41). Thus, the single-strand telomere-binding proteins have
likely diverged from a common OB-fold ancestor with a role in
DNA repair and/or replication (42).

Telomere protection and DNA repair

DNA damage repair pathways and telomere-associated pro-
teins act collaboratively to promote genome integrity. Both
TERT and TER have been linked to the DNA damage response
(Table 1). In the presence of a DSB, human TERT relocalizes to
the nucleolus (43), an outcome that would decrease the proba-

Figure 1. Model for evolution of telomerase and telomere-associated
components from group II retrotransposons and DNA repair proteins.
After chromosome linearization by the insertion of group II retrotransposons,
telomerase and DNA repair proteins evolved roles in telomere maintenance
and end protection. Telomere-associated factors also participate genome-
wide in transcription, replication, and repair. Other factors function in mito-
chondria to modulate the response to oxidative stress. Whether the mito-
chondrial functions of telomere proteins reflect an ancient or newly evolved
function is unknown (see text for details).

Figure 2. Models for chromosome end protection. Human telomeres are
protected by the shelterin complex. CST transiently associates with the telo-
meric G-overhang during S phase to facilitate replication of the C-rich telo-
meric strand. In budding yeast, CST provides a stable, protective cap on the
G-overhang, and RAP1, a shelterin component ortholog, binds the duplex
region of telomeric DNA. Arabidopsis telomeres are asymmetrical. Ku main-
tains a blunt end on one chromosome terminus, whereas the other end har-
bors a conventional G-overhang that is bound by CST. There are two func-
tional POT1 paralogs in A. thaliana. AtPOT1a is a component of the
telomerase RNP, whereas AtPOT1b promotes genome stability and is pro-
posed to reside in the cytoplasm.
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bility of de novo telomere formation at sites of DNA damage. In
addition, human cells lacking TERT fail to mount an effective
DNA damage response to ionizing radiation (44). Intriguingly,
these cells also display altered chromatin structure and frag-
mented chromosomes, suggesting that TERT plays a role in

chromatin reorganization (45). Human TER (hTR) has been
proposed to play a TERT-independent role in the response to
DNA damage. Inhibition of hTR causes rapid arrest of cell
growth, whereas increased hTR, which occurs in response to
DNA damage induced by UV light, inhibits the DNA damage

Table 1
Localization and functions of telomere-related components
Tabulated is a summary of published experimental data and in silico predictions for core constituents of the telomerase RNP, the CST complex, and the Shelterin complex.
Different functions ascribed to POT1 paralogs from vertebrates, worms, plants, and ciliates are highlighted.
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checkpoint kinase ATR (46). In contrast, loss of TR in mice does
not trigger phenotypes distinct from those of mTERT mutants,
suggesting that the core RNA and protein components of
telomerase act in the same pathways (47, 48).

Shelterin proteins also modulate the DNA damage response
(Table 1). TRF2, for instance, prevents ATM-mediated DNA
damage signaling at telomeres (49) and also helps recruit vari-
ous DNA damage response and repair factors, such as ERCC1,
Apollo, the MRE11-RAD50-NBS1 complex, helicases BLM and
WRN, Ku, and PARP1/2 (50) (Table 1). The recruitment of
these factors facilitates telomeric DNA replication, promotes the
formation of a single-strand overhang on the chromosome termi-
nus, and ensures that telomeres are properly sequestered to pre-
vent inappropriate recombination or activation of a DNA damage
response (51, 52). TRF2 can also associate with DSBs within the
body of the chromosome as part of the early response to DNA
damage (53, 54). As such, the ability of TRF2 to engage the machin-
eries concerned with the DNA damage response and DNA repair
likely promotes genome stability on a global scale. Interestingly,
both TRF1 and TRF2 are modified by MMS21, a SUMO ligase
involved in DNA repair and recombination. This modification is
associated with alternative lengthening of telomeres (ALT) (55), a
mechanism germane for telomere maintenance in cancer cells
that lack telomerase (56).

Like TRF2, TIN2 and RAP1 associate with chromosome
locales other than the telomeres. TIN2 accumulates at nonte-
lomeric regions (57) associated with HP1 (58), a heterochroma-
tin mark that has been implicated in the DNA damage response
(59). Moreover, in human cells, RAP1 interacts with noncoding
interstitial TTTAGGG repeats present on some chromosomes,
raising the possibility that RAP1 helps prevent fragility and
recombination at these sites (60).

POT1 has also been implicated in the DNA damage response
(Table 1) (Fig. 3). The association of POT1 with the telomeric
G-overhang prevents activation of an ATR-mediated DNA
damage response (61), and recent studies indicate that human
POT1 increases the fidelity of NHEJ at nontelomeric sites (62).
Intriguingly, the C terminus of hPOT1 bears structural similar-
ity to a Holliday junction resolvase domain (63), supporting the
notion that POT1 affects other facets of DNA metabolism
beyond telomere biology.

Ku harbors two subunits (Ku70 and Ku80) and is a core com-
ponent of the NHEJ pathway (64). Within the context of telom-
ere biology, Ku facilitates telomere protection and telomeric
DNA replication (36, 65, 66). Recent studies in budding yeast
provide clues for how the DNA repair and telomere protection
functions of Ku might be parsed at chromosome termini. Ku
harbors two solvent-exposed �-helices on opposite sides of the
heterodimer. The surface facing the telomere end is necessary
for NHEJ, whereas the inward facing helix is required for telo-
meric heterochromatin formation (67). In addition to discrete
structural boundaries, separation of function can be influenced
by cell cycle regulation. For example, the cell cycle regulator
CYREN was recently shown to interact with Ku and block NHEJ
at telomeres during the S and G2 cell cycle phases (68). Ebra-
himi and Cooper (69) have postulated that localization of
telomeres within different regions of the nucleus influences a
broad range of cellular processes, including meiotic recombi-

nation, chromosome segregation, and gene expression. Hence,
in a broader sense, both temporal and spatial regulation of
telomeres impact cellular physiology.

A role for telomere-associated proteins in DNA
replication and transcription

Given that telomere accessory factors have likely evolved
from factors that function in DNA repair, DNA replication, and
transcription, it is not surprising that some of the telomere-
associated factors also function in the aforementioned pro-
cesses. Because of the highly repetitive nature of G-rich telo-
meric DNA and its propensity to form higher-order structures,
such as the G-quartet, auxiliary factors are needed to ensure
timely and proper replication through telomeric tracts. Nota-
bly, both POT1 and TRF2 stimulate the helicase activity of
WRN (70, 71), and POT1 has been found to promote G-quartet
unwinding by the WRN and BLM helicases (72) (Table 1). TRF2
has been proposed to assist in telomeric replication, and it does
so by inducing positive supercoiling in DNA that favors
enhanced access by DNA topoisomerases and the Apollo
nuclease, enzymes critical for replication (73, 74). Furthermore,
TRF2 is also hypothesized to assist in the assembly of the pre-
replication complex during telomere replication (75, 76).

The primary function of the CST heterotrimer appears to be
in telomere replication (Table 1). Originally identified as a DNA
Pol � accessory factor (77), the vertebrate CST complex was
subsequently shown to stimulate synthesis of the telomeric
C-strand after telomerase extends the G-strand (78 –80). CST
plays a crucial role in the restart of stalled replication forks at
nontelomeric sites (81), and CST mutations lead to genome-
wide instability (82, 83). Vertebrate CST only transiently
engages telomeres (84), but in budding yeast and in Arabidopsis

Figure 3. Diverse functions of POT1. Many POT1 orthologs bind single-
stranded G-rich telomeric DNA, serving to control telomere length and to
protect chromosome ends from eliciting the DNA damage response. Other
POT1 proteins are tailored to engage the telomeric C-strand and its replica-
tion machinery. There are also examples of POT1 proteins that do not stably
engage the chromosome terminus, but rather function to stimulate telomer-
ase activity or to facilitate DNA repair. In addition, several POT1 proteins have
been shown to accumulate in the cytoplasm or are predicted to reside here.
Cytoplasmic mouse POT1b (mPOT1b) is proposed to promote an innate
immunity response. Shown are the A. thaliana POT1a (AtPOT1a) and POT1b
(AtPOT1b); C. elegans POT1 proteins CeOB1, CeOB2, and MRT1; human POT1
(hPOT1), mouse POT1a (mPOT1a), and POT1b (mPOT1b); P. patens POT1
(PpPOT1); and T. thermophila POT1 (TtPOT1) and POT2 (TtPOT2).
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thaliana, CST is a constitutive component of telomeres that
facilitates both replication of the C-rich telomere strand by Pol
�/primase and the G-rich strand by stimulating telomerase
activity (82, 84, 85). Hence, some of the POT1-TPP1 functions
within the context of shelterin (86) may be fulfilled by CST.
Indeed, Lue (87) has provided a compelling argument that
POT1-TPP1 evolved from CST. The multifunctional nature of
CST is further evidenced by the involvement of components of
the yeast complex in transcriptional regulation through inter-
actions with RNA polymerase II and the elongation factor Spt5.
The interactions of CST with the transcription machinery are
thought to help mitigate the consequences of RNA polymerase
II collision with replication forks (88). In addition, studies in
Arabidopsis have revealed that the CST component TEN1 pos-
sesses protein chaperone activity that is activated in response to
heat stress (89) (Table 1).

Besides CST, other telomere-associated proteins also influ-
ence transcriptional regulation (Table 1). Yeast RAP1 was orig-
inally described as a transcriptional regulator at many promot-
ers (90, 91). Human RAP1 modulates NF-�B expression (92),
whereas interaction of TRF2 with the promoter of the cyclin-
dependent kinase CDKN1a affects its expression (93). TERT
has also been reported to enhance the expression of genes such
as cyclin D1 (94) and NF-�B (95).

Gene duplication: Refining the landscape of telomere
protein function

Gene duplication has fueled protein evolution, including
telomere proteins. The duplication event giving rise to verte-
brate TRF1 and TRF2 dates back 540 million years ago (96), at
the beginning of the Chordate lineage (97). The conserved
C-terminal MYB domain of TRF1/2 facilitates telomeric DNA
engagement, whereas divergent N-terminal domains (98) are
important for telomeric DNA length regulation (primarily
accomplished by TRF1) (99) or chromosome end protection
(TRF2) (100) (Table 1). The Candida clade possesses two cop-
ies of the gene that encodes the Cdc13 component of CST (101).
The two paralogous proteins, Cdc13A and Cdc13B, are signif-
icantly smaller than their counterparts in budding yeast and
have overlapping but nonredundant functions in telomere
length regulation.

One of the most fascinating outcomes of gene duplication is
seen with POT1 (Fig. 3) (Table 1). Here, independent gene
duplication events occurred repeatedly throughout evolution.
Although humans have a single POT1 protein, mice possess
two POT1 paralogs, mPOT1a and mPOT1b, that share 72%
sequence similarity (102). Recent studies suggest that both
mPOT1a and mPOT1b attenuate ATR signaling at chromo-
some ends (103). However, mPOT1b uniquely contributes to
the regulation of 5� end resection to form the 3� G-overhang
(103) and may also play a cytosolic role in the innate immunity
response (104).

The POT1 isoforms in worms and ciliated protozoa exhibit
more profound functional divergence. Caenorhabditis elegans
encodes four single OB-fold proteins with structural similarity
to the OB-folds of mammalian POT1 (105). CeOB1 binds the
telomeric G-rich strand, whereas CeOB2 engages the comple-
mentary C-rich strand. Mutation in either of these CeOB genes

leads to telomere elongation, providing evidence that their
encoded proteins serve as a negative regulator of telomerase
(106, 107). The function for CeOB3 is unknown; however,
CeOB4 (MRT1) was originally identified in a screen for genes
required for germ line mortality as a result of telomere short-
ening (108). CeOB4 is required for telomerase activity in vivo.
Intriguingly, CeOB4 also bears a SNM1 family nuclease domain
and has been implicated in both DNA cross-link and nucleotide
excision repair (108).

In the ciliates Euplotes crassus and Tetrahymena thermo-
phila, there are two POT1 paralogs (109, 110). The Tetrahy-
mena TtPOT1-encoded protein is essential for telomere length
maintenance and prevents checkpoint activation much like the
vertebrate POT1 proteins (110). However, TtPOT2 protein
does not associate with chromosome ends, but instead localizes
to internal sites in macronuclear chromosomes that are des-
tined for developmentally programmed cleavage and de novo
telomere formation (111). In E. crassus, the telomere end-
binding protein caps chromosome ends (109). Replication
telomere protein, the other POT1-like protein, is not asso-
ciated with telomeres, but rather co-localizes with the repli-
cation apparatus as it moves through the macronuclear
genome (112). This remarkable observation underscores the
strong connection between telomere proteins and the DNA
replication machinery.

The plant kingdom is replete with large gene families, arising
from both localized gene duplication and whole-genome dupli-
cation. It is therefore noteworthy that most POT1 genes in
plants are not duplicated. The POT1 gene in the early diverging
land plant Physcomitrella patens retains the ancestral functions
of binding single-stranded G-rich telomeric DNA and protect-
ing chromosome ends from fusion (113). However, at least two
independent POT1 duplications occurred in higher plants, one
in the grasses and the other in the Brassicaceae family to which
A. thaliana belongs (114). There are three POT1 paralogs
in A. thaliana, AtPOT1a, AtPOT1b, and AtPOT1c (114, 115).
AtPOT1a and AtPOT1b exhibit only 52% sequence similarity.
AtPOT1a resembles the mammalian shelterin component
TPP1 (86, 116) in that it physically associates with the telomer-
ase RNP and stimulates its repeat addition processivity (84,
117). However, unlike TPP1 (118), AtPOT1a accumulates at
telomeres only in S phase (117), indicating that it is not a stable
component of the end protection complex. Initially, AtPOT1a
was not thought to bind telomeric DNA (119), but a recent
study showed that the first OB-fold of AtPOT1a has single-
strand telomeric DNA-binding activity (120). Strikingly, the
AtPOT1a lineage, but not AtPOT1b, has been subjected to pos-
itive selection from an ancestral POT1 protein, leading to
enhanced interaction with CST (114). Hence, AtPOT1a
appears to have been evolved to be specialized for telomere
maintenance through CST interaction. A role for AtPOT1b in
telomere biology is not clear. It cannot complement the pot1a
mutant (114) and cannot bind telomeric DNA in vitro (120).
However, overexpression of the AtPOT1b C-terminal domain
leads to massive chromosome fusion (121). Whereas this find-
ing implicates AtPOT1b in chromosome end protection,
AtPOT1b probably does so in a manner distinct from the sin-
gle-copy POT1 proteins from vertebrates and fission yeast. The
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third POT1 gene in A. thaliana, AtPOT1c, arose only 5 million
years ago as a partial duplication of the AtPOT1a locus. The
insertion of a transposon into the promoter of AtPOT1c ren-
dered this gene silent almost immediately after its genesis (122).
This finding, coupled with the remarkable functional diver-
gence associated with POT1 paralogs across eukarya, argues
that POT1 dosage affects the fitness of organisms, and one or
more of the duplicated copies must diverge quickly or be
silenced.

Telomere proteins and their role in the genome-wide
response to oxidative stress

The majority of DNA lesions in mammalian and plant cells
can be attributed to oxidative damage (123, 124), and recent
data indicate that several shelterin components safeguard the
genome against this assault (Fig. 4). Reactive oxygen species
(ROS) modifies DNA bases, most commonly resulting in 8-oxo-
guanine (8-oxoG) and thymine glycol (Tg) (125). If not
repaired, 8-oxoG induces GC-TA transversion mutations as
well as single-strand or double-strand breaks, leading to
genomic instability (126). Tg is the most prevalent oxidative
product of thymine, responsible for 10 –20% of ionizing radia-
tion-induced genomic damage (127). Due to their high G-T
content, telomeres are a hot spot for oxidative damage
(128 –130).

Base excision repair (BER) is the most important pathway for
removing 8-oxoG and Tg lesions (131). Mice lacking the glyco-
sylase NTH1, which removes Tg via BER, exhibit increased
telomere fragility (132). Intriguingly, TRF1, TRF2, and POT1
stimulate BER after oxidative damage (133). Interestingly,
8-OxoG and Tg modifications inhibit telomeric DNA binding
by TRF1, TRF2, and POT1 in vitro (134). These observations
suggest a feedback loop wherein oxidative damage at telomeres

leads to the expulsion of the aforementioned telomere proteins,
which then become available to assist in the BER-mediated
repair of damaged telomeric bases, so as to enable the re-en-
gagement of shelterin at the chromosome terminus (133) (Fig.
4). Because TRF1 and TRF2 can associate with other genomic
locales, they may exert a broader impact in the response to
oxidative stress.

Recent data reveal an intriguing response of RAP1 to oxida-
tive stress and other types of DNA damage (135). RAP1 levels
decrease in the nucleus and the cytoplasm in response to ROS.
Diminished levels of cytoplasmic RAP1 appear to promote apo-
ptosis in aging cells (92) (Fig. 4). Notably, in yeast, shortening of
telomeres due to senescence releases RAP1, which then
becomes associated with extratelomeric sites. Release of RAP1
from telomeres correlates with the down-regulation of genes
encoding core histones and the translational apparatus and up-
regulation of genes responsive to senescence (136) (Table 1).

Genome protection from a distance: The role of telomere
proteins outside the nucleus

The role of telomere proteins in the response to oxidative
stress correlates with cytoplasmic activities, but the molecular
mechanisms that govern telomere protein function outside the
nucleus are largely unexplored. In addition to RAP1, several
other telomere-related proteins accumulate in the cytoplasm
(Table 1). POT1, TPP1, and trace amounts of TIN2 shuttle in
and out of the nucleus and can be detected as subcomplexes in
the cytoplasm (137). TTP1 bears a nuclear export signal that is
crucial for modulating the levels of the TTP1-POT1 complex
within the nucleus. Abrogation of TPP1 nuclear export causes
overelongation of telomeres and activates the DNA damage
response (137).

TIN2 possesses a mitochondrial targeting sequence (MTS)
that enables its transport into the mitochondria, where it is
post-translationally modified (138) (Fig. 4). Interestingly, in
cells lacking TIN2, glycolysis is inhibited, and ROS production
is elevated along with ATP and oxygen consumption. Strik-
ingly, these phenotypes do not correlate with telomeric abnor-
malities (138), indicating that TIN2’s mitochondria-related
functions are distinct from its role at telomeres.

TERT proteins from vertebrates and plants also harbor a
MTS (Table 1). Extracts prepared from mitochondria are
enriched in telomerase activity (139). In addition, TERT is asso-
ciated with the outer mitochondrial membrane translocators
TOM20 and TOM40 (140, 141) as well as tFAM, HSP60, tim23,
and a variety of mitochondrial RNAs (23, 142). Notably, oxida-
tive stress triggers hTERT export from the nucleus to mito-
chondria, and elevated levels of hTERT in this compartment
correlate with stabilization of mitochondrial DNA, reduced
ROS, increased mitochondrial membrane potential, and
enhanced mitochondrial function (143–145) (Fig. 4). There are
also reports that mitochondrial TERT not only associates with
non-TER RNAs but also possesses noncanonical enzyme activ-
ities. These include an RNA-dependent RNA polymerase activ-
ity that is implicated in the production of siRNA (23) and
reverse transcriptase activity using mitochondrial tRNA as a
template (142). The biological relevance of this latter activity is
unknown.

Figure 4. Impact of oxidative stress on telomeres and telomere-associ-
ated proteins in mammals. Telomeres are a hot spot for oxidative damage
causing base modifications including thymine to thymine glycol and guanine
to 8-oxoG. These lesions interfere with DNA binding by TRF1, TRF2, and POT1.
These same proteins stimulate BER at telomeres and perhaps elsewhere in
the genome, enabling the removal of damaged bases from the DNA. Oxida-
tive DNA damage decreases the abundance of both cytoplasmic and nuclear
RAP1, which in turn triggers apoptosis. Conversely, oxidative stress leads to
the accumulation in mitochondria of TERT and TIN2, which promote mito-
chondrial functions that protect against apoptosis.
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TERT in the mitochondria has been proposed to stimulate
mitochondrial DNA replication and repair (142). Compared
with WT mice, the RNA expression profiles of tert mutants
monitored for four consecutive generations (G1–G4) reveal
statistically significant changes in the expression of both mito-
chondrial and nuclear encoded genes required for oxidative
phosphorylation, mitochondrial function, and antioxidant
defense (146). Similar results were obtained A. thaliana tert
mutants of generations G2 and G7 (147). Interestingly, yeast
and ciliate TERT proteins lack an MTS (139), raising the possi-
bility that the mitochondrial function of TERT is not conserved
in these species or that these TERT proteins are transported
into mitochondria via a different mechanism.

Conclusions and future directions

With the advent of linear chromosomes, factors involved in
different facets of DNA metabolism were coopted to solve the
telomere end protection and end replication problems. Some of
these factors retain their functions in DNA replication, DNA
repair, and transcriptional regulation. Telomeric DNA is a
magnet for oxidative damage, and hence in the drive to main-
tain genome integrity, telomere proteins may have gained the
capacity to protect chromosome ends from this assault by pro-
moting BER proximally, or at a distance by affecting mitochon-
drial function. Alternatively, some noncanonical functions of
telomere proteins may have an older origin. Mitochondria,
which possess group II introns (148) and proteins structurally
similar to the ancestral OB-folds of RPA (149), emerged 1.45
billion years ago (150). Thus, the building blocks for some of the
modern-day telomere proteins and their functions in the oxi-
dative stress response may reflect a mitochondrial ancestry.
Finally, the ancient and emerging functions of telomere pro-
teins have been linked to gene duplication events. In particular,
POT1 gene duplications that occurred across evolution have
given rise to multifaceted roles of telomere proteins in chromo-
some biology and their integration into the broader context of
cellular physiology.
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A. M., Schoeftner, S., Dominguez, O., Pisano, D. G., Tarsounas, M., and
Blasco, M. A. (2010) Mammalian Rap1 controls telomere function and
gene expression through binding to telomeric and extratelomeric sites.
Nat. Cell Biol. 12, 768 –780 CrossRef Medline

61. Denchi, E. L., and de Lange, T. (2007) Protection of telomeres through
independent control of ATM and ATR by TRF2 and POT1. Nature 448,
1068 –1071 CrossRef Medline

62. Yu, Y., Tan, R., Ren, Q., Gao, B., Sheng, Z., Zhang, J., Zheng, X., Jiang, Y.,
Lan, L., and Mao, Z. (2017) POT1 inhibits the efficiency but promotes the
fidelity of nonhomologous end joining at non-telomeric DNA regions.
Aging 9, 2529 –2543 CrossRef Medline

63. Rice, C., Shastrula, P. K., Kossenkov, A. V., Hills, R., Baird, D. M., Showe,
L. C., Doukov, T., Janicki, S., and Skordalakes, E. (2017) Structural and
functional analysis of the human POT1-TPP1 telomeric complex. Nat.
Commun. 8, 14928 CrossRef Medline

64. Bertuch, A. A., and Lundblad, V. (2003) Which end: dissecting Ku’s func-
tion at telomeres and double-strand breaks. Genes Dev. 17, 2347–2350
CrossRef Medline

65. Baumann, P., and Cech, T. R. (2000) Protection of telomeres by the Ku
protein in fission yeast. Mol. Biol. Cell. 11, 3265–3275 CrossRef Medline

66. Gravel, S., and Wellinger, R. J. (2002) Maintenance of double-stranded
telomeric repeats as the critical determinant for cell viability in yeast cells
lacking Ku. Mol. Cell. Biol. 22, 2182–2193 CrossRef Medline

67. Ribes-Zamora, A., Mihalek, I., Lichtarge, O., and Bertuch, A. A. (2007)
Distinct faces of the Ku heterodimer mediate DNA repair and telomeric
functions. Nat. Struct. Mol. Biol. 14, 301–307 CrossRef Medline

68. Arnoult, N., Correia, A., Ma, J., Merlo, A., Garcia-Gomez, S., Maric, M.,
Tognetti, M., Benner, C. W., Boulton, S. J., Saghatelian, A., and Karlseder,
J. (2017) Regulation of DNA repair pathway choice in S and G2 phases by
the NHEJ inhibitor CYREN. Nature 549, 548 –552 CrossRef Medline

ASBMB AWARD ARTICLE: Function of telomere-related factors

14810 J. Biol. Chem. (2019) 294(40) 14803–14813

http://dx.doi.org/10.1101/gad.1346005
http://www.ncbi.nlm.nih.gov/pubmed/16166375
http://dx.doi.org/10.1139/O09-037
http://www.ncbi.nlm.nih.gov/pubmed/19898524
http://dx.doi.org/10.4161/cc.9.15.12521
http://www.ncbi.nlm.nih.gov/pubmed/20697207
http://dx.doi.org/10.1101/gad.1851909
http://www.ncbi.nlm.nih.gov/pubmed/20008938
http://dx.doi.org/10.1371/journal.pone.0066756
http://www.ncbi.nlm.nih.gov/pubmed/23826127
http://dx.doi.org/10.1101/gad.574810
http://www.ncbi.nlm.nih.gov/pubmed/20679394
http://dx.doi.org/10.1007/s004120050225
http://www.ncbi.nlm.nih.gov/pubmed/9215555
http://dx.doi.org/10.1101/gad.194944.112
http://www.ncbi.nlm.nih.gov/pubmed/22810623
http://dx.doi.org/10.1016/j.molcel.2010.06.031
http://www.ncbi.nlm.nih.gov/pubmed/20619712
http://dx.doi.org/10.1101/gad.199059.112
http://www.ncbi.nlm.nih.gov/pubmed/22855827
http://dx.doi.org/10.1093/dnares/dst021
http://www.ncbi.nlm.nih.gov/pubmed/23690543
http://www.ncbi.nlm.nih.gov/books/NBK5998/
http://dx.doi.org/10.1146/annurev.biophys.32.110601.142506
http://www.ncbi.nlm.nih.gov/pubmed/12598368
http://dx.doi.org/10.1093/emboj/cdg272
http://www.ncbi.nlm.nih.gov/pubmed/12773373
http://dx.doi.org/10.1038/ncb846
http://www.ncbi.nlm.nih.gov/pubmed/12198499
http://dx.doi.org/10.1073/pnas.0503095102
http://www.ncbi.nlm.nih.gov/pubmed/15928077
http://dx.doi.org/10.1038/nature08137
http://www.ncbi.nlm.nih.gov/pubmed/19571879
http://dx.doi.org/10.1074/jbc.M607676200
http://www.ncbi.nlm.nih.gov/pubmed/17098743
http://dx.doi.org/10.1016/S0092-8674(01)80006-4
http://www.ncbi.nlm.nih.gov/pubmed/9335332
http://dx.doi.org/10.1128/MCB.05312-11
http://www.ncbi.nlm.nih.gov/pubmed/21464209
http://dx.doi.org/10.1371/journal.pbio.0020240
http://www.ncbi.nlm.nih.gov/pubmed/15314656
http://dx.doi.org/10.1186/gb-2008-9-9-232
http://www.ncbi.nlm.nih.gov/pubmed/18828880
http://dx.doi.org/10.1038/nsmb.3092
http://www.ncbi.nlm.nih.gov/pubmed/26581520
http://dx.doi.org/10.1371/journal.pgen.1000380
http://www.ncbi.nlm.nih.gov/pubmed/19214203
http://dx.doi.org/10.1038/ng1506
http://www.ncbi.nlm.nih.gov/pubmed/15665826
http://dx.doi.org/10.1038/ng0607-696
http://www.ncbi.nlm.nih.gov/pubmed/17534357
http://dx.doi.org/10.1038/nsmb1259
http://www.ncbi.nlm.nih.gov/pubmed/17589526
http://dx.doi.org/10.1002/j.1460-2075.1995.tb00098.x
http://www.ncbi.nlm.nih.gov/pubmed/7556065
http://dx.doi.org/10.1242/jcs.01709
http://www.ncbi.nlm.nih.gov/pubmed/15741234
http://dx.doi.org/10.1007/s00709-017-1090-3
http://www.ncbi.nlm.nih.gov/pubmed/28236007
http://dx.doi.org/10.1128/MCB.01048-09
http://www.ncbi.nlm.nih.gov/pubmed/19805510
http://dx.doi.org/10.1038/ncb2081
http://www.ncbi.nlm.nih.gov/pubmed/20622869
http://dx.doi.org/10.1038/nature06065
http://www.ncbi.nlm.nih.gov/pubmed/17687332
http://dx.doi.org/10.18632/aging.101339
http://www.ncbi.nlm.nih.gov/pubmed/29227966
http://dx.doi.org/10.1038/ncomms14928
http://www.ncbi.nlm.nih.gov/pubmed/28393830
http://dx.doi.org/10.1101/gad.1146603
http://www.ncbi.nlm.nih.gov/pubmed/14522942
http://dx.doi.org/10.1091/mbc.11.10.3265
http://www.ncbi.nlm.nih.gov/pubmed/11029034
http://dx.doi.org/10.1128/MCB.22.7.2182-2193.2002
http://www.ncbi.nlm.nih.gov/pubmed/11884605
http://dx.doi.org/10.1038/nsmb1214
http://www.ncbi.nlm.nih.gov/pubmed/17351632
http://dx.doi.org/10.1038/nature24023
http://www.ncbi.nlm.nih.gov/pubmed/28959974


69. Ebrahimi, H., and Cooper, J. P. (2016) Finding a place in the SUN: telom-
ere maintenance in a diverse nuclear landscape. Curr. Opin. Cell Biol. 40,
145–152 CrossRef Medline

70. Opresko, P. L., von Kobbe, C., Laine, J.-P., Harrigan, J., Hickson, I. D., and
Bohr, V. A. (2002) Telomere-binding protein TRF2 binds to and stimu-
lates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277,
41110 – 41119 CrossRef Medline

71. Machwe, A., Xiao, L., and Orren, D. K. (2004) TRF2 recruits the Werner
syndrome (WRN) exonuclease for processing of telomeric DNA. Onco-
gene 23, 149 –156 CrossRef Medline

72. Opresko, P. L., Mason, P. A., Podell, E. R., Lei, M., Hickson, I. D., Cech,
T. R., and Bohr, V. A. (2005) POT1 stimulates RecQ helicases WRN and
BLM to unwind telomeric DNA substrates. J. Biol. Chem. 280,
32069 –32080 CrossRef Medline

73. Amiard, S., Doudeau, M., Pinte, S., Poulet, A., Lenain, C., Faivre-
Moskalenko, C., Angelov, D., Hug, N., Vindigni, A., Bouvet, P., Paoletti, J.,
Gilson, E., and Giraud-Panis, M.-J. (2007) A topological mechanism for
TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154
CrossRef Medline

74. Ye, J., Lenain, C., Bauwens, S., Rizzo, A., Saint-Léger, A., Poulet, A., Be-
narroch, D., Magdinier, F., Morere, J., Amiard, S., Verhoeyen, E., Britton,
S., Calsou, P., Salles, B., Bizard, A., et al. (2010) TRF2 and Apollo coop-
erate with topoisomerase 2� to protect human telomeres from replica-
tive damage. Cell 142, 230 –242 CrossRef Medline

75. Deng, Z., Dheekollu, J., Broccoli, D., Dutta, A., and Lieberman, P. M.
(2007) The origin recognition complex localizes to telomere repeats and
prevents telomere-circle formation. Curr. Biol. 17, 1989 –1995 CrossRef
Medline

76. Tatsumi, Y., Ezura, K., Yoshida, K., Yugawa, T., Narisawa-Saito, M., Ki-
yono, T., Ohta, S., Obuse, C., and Fujita, M. (2008) Involvement of hu-
man ORC and TRF2 in pre-replication complex assembly at telomeres.
Genes Cells 13, 1045–1059 CrossRef Medline

77. Casteel, D. E., Zhuang, S., Zeng, Y., Perrino, F. W., Boss, G. R., Goulian,
M., and Pilz, R. B. (2009) A DNA polymerase � primase cofactor with
homology to replication protein A-32 regulates DNA replication in
mammalian cells. J. Biol. Chem. 284, 5807–5818 CrossRef Medline

78. Chen, L.-Y., Redon, S., and Lingner, J. (2012) The human CST complex is a
terminator of telomerase activity. Nature 488, 540–544 CrossRef Medline

79. Nakaoka, H., Nishiyama, A., Saito, M., and Ishikawa, F. (2012) Xenopus
laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming
DNA synthesis on single-stranded DNA template in Xenopus egg ex-
tract. J. Biol. Chem. 287, 619 – 627 CrossRef Medline

80. Feng, X., Hsu, S.-J., Bhattacharjee, A., Wang, Y., Diao, J., and Price, C. M.
(2018) CTC1-STN1 terminates telomerase while STN1-TEN1 enables
C-strand synthesis during telomere replication in colon cancer cells. Nat.
Commun. 9, 2827 CrossRef Medline

81. Stewart, J. A., Wang, F., Chaiken, M. F., Kasbek, C., Chastain, P. D., 2nd,
Wright, W. E., and Price, C. M. (2012) Human CST promotes telomere
duplex replication and general replication restart after fork stalling.
EMBO J. 31, 3537–3549 CrossRef Medline

82. Surovtseva, Y. V., Churikov, D., Boltz, K. A., Song, X., Lamb, J. C., War-
rington, R., Leehy, K., Heacock, M., Price, C. M., and Shippen, D. E.
(2009) Conserved telomere maintenance component 1 interacts with
STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell.
36, 207–218 CrossRef Medline

83. Miyake, Y., Nakamura, M., Nabetani, A., Shimamura, S., Tamura, M.,
Yonehara, S., Saito, M., and Ishikawa, F. (2009) RPA-like mammalian
Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects
telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206
CrossRef Medline

84. Renfrew, K. B., Song, X., Lee, J. R., Arora, A., and Shippen, D. E. (2014)
POT1a and components of CST engage telomerase and regulate its ac-
tivity in Arabidopsis. PLoS Genet. 10, e1004738 CrossRef Medline

85. Grandin, N., Damon, C., and Charbonneau, M. (2001) Ten1 functions in
telomere end protection and length regulation in association with Stn1
and Cdc13. EMBO J. 20, 1173–1183 CrossRef Medline

86. Nandakumar, J., Bell, C. F., Weidenfeld, I., Zaug, A. J., Leinwand, L. A.,
and Cech, T. R. (2012) The TEL patch of telomere protein TPP1 mediates

telomerase recruitment and processivity. Nature 492, 285–289 CrossRef
Medline

87. Lue, N. F. (2018) Evolving linear chromosomes and telomeres: a
C-strand-centric view. Trends Biochem. Sci. 43, 314 –326 CrossRef
Medline

88. Calvo, O., Grandin, N., Jordán-Pla, A., Miñambres, E., González-Polo, N.,
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