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Growth of the cholera bacterium Vibrio cholerae in a biofilm
community contributes to both its pathogenicity and survival in
aquatic environmental niches. The major components of V.
cholerae biofilms include Vibrio polysaccharide (VPS) and the
extracellular matrix proteins RbmA, RbmC, and Bap1. To fur-
ther elucidate the previously observed overlapping roles of
Bap1 and RbmC in biofilm architecture and surface attachment,
here we investigated the structural and functional properties of
Bap1. Soluble expression of Bap1 was possible only after the
removal of an internal 57-amino-acid-long hydrophobic inser-
tion sequence. The crystal structure of Bap1 at 1.9 Å resolution
revealed a two-domain assembly made up of an eight-bladed
�-propeller interrupted by a �-prism domain. The structure
also revealed metal-binding sites within canonical calcium
blade motifs, which appear to have structural rather than func-
tional roles. Contrary to results previously observed with RbmC,
the Bap1 �-prism domain did not exhibit affinity for complex
N-glycans, suggesting an altered role of this domain in biofilm-
surface adhesion. Native polyacrylamide gel shift analysis did
suggest that Bap1 exhibits lectin activity with a preference for
anionic or linear polysaccharides. Our results suggest a model
for V. cholerae biofilms in which Bap1 and RbmC play dominant
but differing adhesive roles in biofilms, allowing bacterial
attachment to diverse environmental or host surfaces.

Vibrio cholerae, the bacterium responsible for pandemic
cholera, forms three-dimensional biofilms that aid in V. chol-
erae transmission, pathogenicity, and environmental persis-
tence (1–3). The biofilm structure is composed of a specialized
bacterial community with distinct growth stage properties,

held together by an extracellular matrix of polysaccharides,
proteins, and nucleic acids (3–5). V. cholerae biofilms have
been implicated in mammalian pathogenicity by increasing the
infectious dose and by providing resistance to the acidic envi-
ronment of the stomach (1, 4). In the natural aquatic niche,
biofilms aid in the persistence of V. cholerae by providing pro-
tection from environmental threats such as predation and
nutrient limitation (2, 5–8).

The major components of the V. cholerae biofilm matrix are
Vibrio polysaccharide (VPS),3 nucleic acids, and the matrix
proteins RbmA, RbmC, and Bap1 (3, 8, 9). Vibrio polysaccha-
ride is formed by repeating units of an acetylated tetrasaccha-
ride unique to V. cholerae, whose synthesis and export are car-
ried out by the products of the vps I and vps II gene clusters
(10 –12). RbmA and RbmC are two of six proteins encoded by
the Rugosity and Biofilm Modulators (rbm) gene cluster (13,
14). Bap1 (Biofilm-Associated Protein 1), which shares sub-
stantial sequence identity with a large fragment of RbmC, is
encoded by a single gene downstream of the vps and rbm gene
clusters. Synchronized up-regulation of vps I, vps II, and rbm
gene clusters, as well as bap1, has been shown to occur during
the biofilm production life stage of V. cholerae (15). The high-
resolution structure of RbmA uncovered a composition of tan-
dem fibronectin type III domains and provided substantial
insight into its contribution to the V. cholerae biofilm matrix
(16, 17). Less is understood about the structure and molecular
mechanisms underlying the scaffolding roles played by Bap1
and RbmC (18).

Insights into the function of the biofilm matrix components
have come from knockout mutagenesis studies of the biofilm
matrix proteins (RbmA, RbmC, and Bap1) and microscopy uti-
lizing fluorescently-labeled components of the biofilm. Investi-
gation into V. cholerae biofilm formation and architecture
often utilizes so-called rugose strains, which exhibit increased
biofilm production, wrinkled colony morphologies, and the for-
mation of a floating structure called a pellicle (19). Experiments
utilizing deletion mutants of bap1, rbmC, or both genes in the
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rugose background suggest that Bap1 and RbmC have similar,
additive, and essential roles in biofilm formation (14). Further
analysis of the V. cholerae biofilm architecture using micros-
copy techniques provides additional insight implicating RbmA
in V. cholerae cell– cell adhesion, Bap1 in surface attachment,
and both Bap1 and RbmC in formation of dynamic envelopes
that encase clusters of cells in the mature biofilm (9). Deletion
of either bap1 or rbmC results in similar biofilm development
profiles supporting their partially redundant function, whereas
the double deletion results in cell clusters that are unable to
attach to surfaces (10, 21). In the context of in vitro growth
assays on glass coverslips, the two proteins appear to be func-
tionally redundant, as deletion of either single protein results in
biofilms with apparently normal development and surface
attachment (20). However, Bap1 and RbmC are not totally
redundant as RbmC does not localize to the biofilm surface
upon bap1 deletion (9).

Although the complete three-dimensional structures of
RbmC and Bap1 are unknown, previous studies utilizing
sequence-based prediction methods propose multidomain
architectures for Bap1 and RbmC (14). The prediction for Bap1
includes four Vibrio, Colwellia, Bradyrhizobium, and She-
wanella (VCBS) domains and four FG-GAP domains (both of
which fall under the umbrella of the �-propeller structural
motif), a calcium-binding EF-hand domain, and a �-prism–like
lectin domain. Predictions for the structural organization of
RbmC are similar to that of Bap1, but with one additional C-ter-
minal �-prism domain and two N-terminal repeats resembling
the C-terminal ��-crystallin domain of StcE, a mucinase
expressed by enterohemorrhagic Escherichia coli O157:H7
(EHEC O157:H7) (14, 21, 22). Whereas the core-predicted
�-propeller domains of Bap1 and RbmC share �60% sequence
identity, the �-prism domains are more dissimilar with �36%
sequence identity (excluding gaps). One additional �-prism is
also found in the V. cholerae genome attached to the pore-
forming toxin V. cholerae cytolysin (VCC) with �33% sequence
identity to the Bap1 �-prism domain. The three �-prism
domains from RbmC and VCC all exhibit low-nanomolar affin-
ity for the central core of complex N-glycans found abundantly
on eukaryotic cell surfaces (23). Sequence alignments indicate
that Bap1 has a 57-amino acid insertion within the �-prism
domain, not present in the RbmC or VCC �-prism domains
(23).

Here, we describe the crystal structure of Bap1�57 (missing
the 57-amino acid �-prism domain insertion) at 1.9 Å resolu-
tion. The structure of Bap1�57 reveals a two-domain arrange-
ment consisting of an eight-bladed �-propeller with a �-prism
domain inserted within blade 6 via a flexible linker. In addition,
we show evidence of Bap1�57 binding to anionic polysaccha-
rides in a manner that differs significantly from the lectin-bind-
ing activity displayed by the �-prism domains of RbmC (23).
Our studies support a model of V. cholerae biofilm architecture
that allows for varied roles of biofilm scaffolding and surface
attachment in aquatic versus host environments. Our results
provide a starting point for understanding how Bap1 and RbmC
may participate in structural and adhesive roles in building the
V. cholerae biofilm matrix.

Results

1.9 Å crystal structure of Bap1�57 reveals a two-domain
architecture

Initial attempts to express full-length Bap1 (predicted molec-
ular mass of 72.6 kDa) or the isolated Bap1 �-prism domain in
E. coli resulted in insoluble material. However, we were suc-
cessful in expressing a Bap1 construct in which the �-prism
domain was genetically excised (Bap1�-propeller), suggesting that
this domain contributes to the insolubility of the full-length
Bap1 protein. Given that isolated RbmC and VCC �-prism
domains express in a soluble form (23) and that the distinguish-
ing feature of the Bap1 �-prism domain is the 57-amino acid
insertion, we made Bap1�57 and �-prism�57 domain constructs
with this insertion removed. To aid in expression and screen-
ing, we additionally fused a protease-cleavable GFPUV domain
to the N terminus of the Bap1�57 and �-prism�57 constructs.
This two-pronged approach drastically improved soluble
expression yielding material that exhibited monodisperse
behavior by size-exclusion chromatography. Although the
Bap1�-propeller construct yielded crystals, these exhibited fiber-
like properties and did not suitably diffract X-rays. The Bap1�57
construct also yielded three-dimensional crystals that dif-
fracted to better than 2 Å resolution. X-ray data analysis
indicated that crystals belonged to space group P41212 with
unit cell dimensions of a � b � 71 Å, c � 304 Å, � � � � � � 90°
(Table 1).

The structure of Bap1�57 was solved by single isomorphous
replacement with anomalous scattering (SIRAS) utilizing a
crystal derivative soaked in K2Cl4Pt. Two platinum sites con-
tributed to phasing, yielding maps with a clear molecular out-
line, and subsequent density modification led to interpretable
electron density maps. Refinement against a 1.9 Å native data
set resulted in a final Rwork of 15.8 and Rfree of 17.3. The overall
structure reveals a �-propeller structural core tethered to an
accessory �-prism domain by linkers at both the N- and C-ter-
minal ends of the �-prism (Fig. 1A). These extended linkers
contained higher B-factors in general than the two structural
domains and did not participate in crystal-packing interactions.
This arrangement suggests that the linkers are likely flexible in
solution and that the relative orientation between the two
domains results from the crystal lattice, although this cannot be
confirmed as only one copy of the molecule was present per
asymmetric unit.

Bap1 �-propeller domain adopts a canonical �-propeller fold
with distinct features

Analysis of the topology of the Bap1 fold reveals an eight-
bladed �-propeller core with a �-prism accessory domain inter-
rupting the �-propeller motif at a loop within blade 6 (Fig. 1B).
The fact that the Bap1 �-propeller domain can be expressed as
a soluble protein (by deleting the �-prism domain from the loop
in blade 6) suggests that the �-prism domain is not necessary
for folding or stability of the �-propeller structure. Similarly,
removal of the 57-amino acid insertion within the �-prism does
not appear to affect folding of this domain, which exhibits a fold
similar to �-prism domains from RbmC and VCC, with RMSDs
of 1.0 and 1.1 Å, respectively. We observed no evidence for
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higher-ordered oligomeric structures in solution or in the
crystal packing lattice, suggesting that Bap1�57 exists as a
monomer.

Each of the eight propeller blades consists of a four-stranded
antiparallel �-sheet, with �-strands radiating out from their
N-terminal strands (�-strand A, �A) at the center of the toroid
to their C-terminal strands (�-strand D, �D) forming the outer
edge of the propeller (shown in blade 1 of the �-propeller topol-
ogy diagram in Fig. 1B). As is commonly found in �-propeller
proteins, the Bap1 �-propeller domain contains a Velcro clo-
sure with the most N-terminal residues (Asp-31–Ser-41) acting
as �D of blade 8, zipping the disc together via �-sheet hydrogen
bonding (Fig. 1B). A relatively unstructured C-terminal loop
extends from �-strand C (�C) of blade 8 to the center of the
cation-binding face (described below) and inserts into the core
of the �-propeller, acting as a cone-shaped plug in what exists as
a central cavity in other �-propellers.

A phased anomalous difference density map calculated from
X-ray data collected at a wavelength of 1.25 Å showed two
strong peaks (�5.0 �) in blade 1 of the �-propeller, which were
interpreted as Ca2� ions (Figs. 1A and 2A). The presence of
calcium blade motifs ((D/N)X(D/N)GDGXX(D/E)) (24) be-
tween �A and �B in blades 2–5 and 7 of the Bap1 sequence, as
well as the orientation of these residues in the structural model,
suggested the presence of additional ions; however, no peaks
were observed for these locations in the anomalous difference
maps (Fig. 2B). Analysis of the Bap1�57 model using the Check-

MyMetal server (https://csgid.org/metal_sites),4 which ana-
lyzes the coordination geometry of ions in refined structures
(25), suggested the presence of Na� coordinated by five of the
calcium blade motifs, and thus five Na� ions were modeled into
in the �A–�B loop of blades 2–5 and 7 (one Na� per blade; Fig.
1, A and B). At this wavelength (1.25 Å), we would expect an
observable anomalous signal from the Ca2� K-edge (f� � 0.89 e)
but a much weaker signal for Na� (f� � 0.08 e), supporting our
interpretation. Based on the similarity to other calcium blade
motifs, as well as the observation that exposure of Bap1�57–
GFPUV to EDTA causes precipitation of the protein, it is possi-
ble that the ions present in the Bap1�57 model play a role in
structural stability, rather than a functional or enzymatic role
(24).

Although our structure contains both Ca2� (Fig. 2C) and
Na� (Fig. 2D) ions, it is possible that all sites are typically occu-
pied by calcium (24) and that physiological cations were
replaced by Na� during the protein purification process. Blade
6 (which contains the �-prism insertion) and blade 8 do not
appear to bind ions. Comparing the sequence of the �A–�B
loop in blade 8 with the sequences of the �A–�B loops of the
five Na�-coordinating blades reveals a sequence divergence
from the calcium-blade motif that could plausibly abolish cat-
ion binding (Fig. 2B). All ions in the Bap1�57 model are present

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.

Table 1
X-ray data and refinement statistics

Bap1�57 native Bap1�57 K2PtCl4

Data collection
Space group P41212 P41212
Cell dimensions a, b, c (Å) 71.0, 71.0, 304.0 71.1, 71.1, 302.3
Cell angles �, �, � (0) 90.0, 90.0, 90.0 90.0, 90.0, 90.0
Wavelength (Å) 1.25414 0.91738
Resolution limits (Å) 47.6–1.9 (1.94–1.90)a 49.6–2.0 (2.05–2.00)
Total reflections 693,582 (14,468) 1,383,672 (102,802)
Unique reflections 62,568 (3,772) 53,632 (3,880)
Mosaicity (°) 0.08 0.08
Rsym 0.11 (0.64) 0.17 (2.24)
Rpim 0.03 (0.36) 0.03 (0.44)
I/�I 13.8 (2.0) 17.6 (2.7)
Completeness (%) 99.7 (96.2) 99.8 (99.5)
Anomalous completeness (%) 99.9 (99.6)
Multiplicity 11.1 (3.8) 25.8 (26.5)
Anomalous multiplicity 13.9 (13.9)
CC1⁄2 0.998 (0.665) 0.999 (0.797)
Wilson B-factor (Å2) 17.8 29.3
Average phase FOM (after RESOLVE) 0.8

Refinement (4,522 protein atoms, 32 ligand atoms,
532 water molecules)

Resolution (Å) 47.6–1.9
No. of reflections (Rfree) 62,421
Final Rwork/Rfree (%) 15.8/17.3
Average B-factor (Å2) 27.1

RMSD
Bond lengths (Å) 0.004
Bond angles (°) 0.7

Ramachandran statistics
Favored 96.3%
Allowed 3.5%
Outliers 0.2%

MolProbity Scores
Overall score 1.0 (100%)
All-atom clashscore 0.7 (100%)

a Numbers in parentheses denote the highest-resolution shell.
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on the same face of the �-propeller, which we therefore refer to
as the cation-binding face, situated on the side of the propeller
where the �-prism domain is attached (Fig. 1A). The face oppo-
site the cation-binding face of the �-propeller contains a central
pocket surrounded by several aromatic residues, with �800 Å2

of exposed solvent-accessible surface area (Fig. 3, A and B, area
including yellow and marine surfaces). A surface electrostatic
potential map does not indicate any overwhelming charge den-
sity near this pocket, whereas the cation-binding face is acidic
in nature (Fig. 3C).

A DALI search of the Bap1�57 structure identified �-propel-
ler homologs of Bap1, with the lowest RMSD at 2.4 Å (26) (top
10 are shown in Fig. S1A). Proteins identified by the DALI algo-
rithm can be organized into three major functional categories,
including scaffolding proteins, enzymes, and chaperones. In
addition, two homologs identified by the DALI search are lec-
tins. The protein homologs identified by the DALI search
appear to represent mainly structural similarity, rather than
functional homology due to a lack of conservation in residues
critical to activity. For example, YesW and YesX are bacterial
lyases identified by the DALI search with RMSDs of 3.7 and 3.8
Å, respectively (Fig. S1B). These enzymes are the only bacterial
proteins identified in our search that share the calcium blade
motif with Bap1 and also contain eight blades. However, it is not

likely that these bacterial lyases are functional homologs of
Bap1 because the lyase activity of YesW and YesX relies on a
deep pocket and a calcium ion located in the central channel of
the �-propeller (27), neither of which are present in the Bap1�57
crystal structure. In addition, several seven-bladed integrin
family proteins were identified via the DALI search (RMSD 4.0
Å or higher), likely due to their coordination of calcium ions via
calcium blade motifs (24).

�-propeller domains are common in prokaryotes with
diverse functions, including enzymatic activities. Several
families of glycoside hydrolases (GH) exist with �-propeller
folds, although mostly in five-bladed (GH families 43 and 62)
and six-bladed (GH families 33, 34, 83, and 93) forms. These
families typically contain active sites near the central axis of
the �-propeller and utilize Tyr/Glu or Asp/Glu pairs/triads
to catalyze hydrolysis (28, 29) (although some exceptions
exist, including a seven-bladed rhamnosidase that utilizes a
single histidine in the active site (30)). Inspection of the cen-
tral cavity of Bap1�57 did not reveal Tyr/Glu or Asp/Glu
pairs consistent with hydrolase or sialidase activities, and a
structure-based sequence alignment (Fig. 3D) of the eight
Bap1�57 blades did not indicate the presence of Asp-box
motifs found in some glycoside hydrolase �-propeller fami-
lies (31). Although the absence of these motifs does not pre-

Figure 1. Crystal structure of Bap1�57 reveals a two-domain architec-
ture. A, Bap1�57 consists of two structural domains: an eight-bladed
�-propeller with a �-prism domain inserted within a loop of blade 6. The
protein structure is shown in cartoon representation with the �-propeller
colored in marine and the �-prism colored in yellow. Two modeled Ca2�

ions and five Na� ions are shown as green and blue spheres, respectively.
The C-terminal region that forms a plug within the central �-propeller
cavity is colored red. A key aspartic acid residue (Asp348) that forms essen-
tial contacts with bound carbohydrates in homologous �-prism lectin
domains from Vibrio cholerae (in RbmC and VCC) is shown in stick repre-
sentation. B, schematic diagram illustrating Bap1�57 topology. The so-
called “Velcro closure” of the �-propeller domain is represented by a zig-
zag line, and the location of the 57-amino acid insert that has been
removed genetically is represented by an arrow in A and a dashed magenta
line in B. All structural representations generated using the PyMOL Molec-
ular Graphics System, Version 2.2.0 Schrödinger, LLC.

Figure 2. Metal-binding sites. A, phased anomalous difference map cal-
culated at 5.0 � shows electron density peaks for two putative calcium
sites in the �A–�B loop of blade 1. No anomalous density was observed for
additional five coordination sites, which were modeled as sodium atoms.
Bap1 is displayed in C� ribbon representation with �-propeller domain in
marine and �-prism domain in yellow. B, amino acid sequences for individ-
ual coordination loops in the �-propeller domain. Blade 1 coordinates two
Ca2� ions via two intertwined calcium blade motifs, and the Na� ions are
coordinated by individual calcium blade motifs in propeller blades 2–5
and 7. The loop 6 site is interrupted by the �-prism domain, and blade 8
exhibits no density for a bound ion. C, close-up of putative Ca2� coordi-
nation sites shows side chains that coordinate ions. Ca2� ions are depicted
as green spheres and water molecules as red spheres. D, superposition of
remaining ion-coordination sites colored as depicted in B. The unoccu-
pied loop in blade 8 is shown for comparison showing the flipped-out
orientation of Asn-610 in magenta.
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clude Bap1 exhibiting glycoside hydrolase activity, it sug-
gests that if this were the case a noncanonical mechanism
might be at play or that the active site may be located some-
where outside of the central cavity.

�-Propeller lectins, also called PropLecs, are another com-
mon utilization of the �-propeller fold that typically contain
carbohydrate-binding sites at the interfaces between blades.
An algorithm for detecting PropLec proteins was recently
described resulting in a database of predicted sequences
based on conserved families of PropLec domains (32).

Although the method did predict a number of Vibrio Pro-
pLec proteins, Bap1 was not identified by the screen. The
Bap1 structural alignment (Fig. 3D) indicates that the
sequence identity between blades is quite low (5–35%), and
we do not observe any conserved sequences (aside from the
calcium/sodium-binding sites) or pockets between the inter-
faces of multiple blades. Although Bap1 may not fit into the
profile for a typical PropLec �-propeller protein, this does
not preclude that additional carbohydrate-binding sites may
be present.

Figure 3. Bap1�57 �-propeller domain. A, side-cutaway view of the Bap1�57 �-propeller domain. The C-terminal �45-amino acid tail folds up and fills the
central pocket of the �-propeller. The surface representation was generated without the plug region. Four �-strands from a single �-propeller blade are
highlighted and labeled. B, top surface representation view of the �-propeller domain shows broad cavity with side and floor residues colored marine and
yellow, respectively. Aromatic residues lining the cavity are shown in stick representation. C, electrostatic potential surface generated by the APBS method (58)
as implemented in PyMOL. The putative carbohydrate-binding pocket of the �-prism domain is basic as compared with the rest of the protein and is highlighted
by an arrow. D, structure-based sequence alignment of the Bap1�57 blades generated using Swiss-PdbViewer (59). The gray-shaded area denotes the calcium/
sodium-binding motifs. The secondary structure is shown above with the location of the �-prism domain noted in blade 6. Sequence alignment figure
generated by ESPript 3 (60) using the % Multalin coloring scheme and a 0.5 similarity score.
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Bap1�57 �-prism domain

The Bap1�57 �-prism domain falls into the jacalin-related
lectin (JRL) protein family, which consists of a pseudo-3-fold
arrangement of Greek key motifs. Most JRLs bind carbohy-
drates in only one sugar site, located at the top of Greek
key I, but three previously characterized �-prism I domains
expressed by V. cholerae (two from RbmC and one from VCC)
bind their carbohydrate ligands at a single site at the top of
Greek key II (23, 33).

The �-prism domain of Bap1�57 is located sequentially
between �A and �B (�22 and �35* in context of the full struc-
ture) of blade 6 within the �-propeller domain. The Bap1�57
�-prism domain adopts a canonical �-prism I architecture,
made up of 12 �-strands arranged into three antiparallel
�-sheets with Greek key folds. The surface of the Bap1�57
�-prism domain opposite its attachment to the �-propeller
makes up the region that constitutes a carbohydrate-binding
site in the other three �-prisms expressed by V. cholerae:
RbmC�-prism 1, RbmC�-prism 2, and VCC�-prism (23, 33). In the
Bap1�57 structure, this end of the �-prism features a positively-
charged, lysine-rich surface with a central cavity not found in
the other V. cholerae �-prism I lectin domains (Fig. 4A). A
bound citrate molecule is situated on one side of this lysine-rich
groove (Fig. 4A). Because citrate was required to obtain the
optimal crystal form and because this molecule is located in
an area with extensive crystal contacts, it is possible that its
interaction with the Bap1�57 �-prism is an artifact of crys-
tallization. However, it is curious that the citrate molecule is
found occupying the same site as the primary mannose in the
RbmC�-prisms 1, 2 and VCC�-prism structures (Fig. 4, B and C)
(23, 33). The citrate molecule is coordinated by hydrogen bond-
ing through backbone amines of Gly-344, Ala-345, and Val-346,
and the terminal amine of the Lys-501 side chain, and by van
der Waals interactions with Asp-348 and His-500 (Fig. 4D). The
citrate coordination pattern is of interest because all of these
residues, except His-500 (which is not present in the other
�-prisms, as described below), are structurally homologous to
those identified in carbohydrate binding by the crystal struc-
tures of RbmC�-prism 2 and VCC�-prism (Fig. S2) (23, 33).

A conserved aspartic acid residue (Asp-348 in Bap1�-prism,
Asp-539 in RbmC�-prism 1, Asp-853 in RbmC�-prism 2, and Asp-
617 in VCC�-prism) plays a crucial role in the sugar-binding
activity of RbmC�-prism 1, RbmC�-prism 2, and VCC�-prism (23,
33) through hydrogen-bonding interactions. Mutation of this
aspartate residue position to alanine results in a �50-fold loss
of hemolytic activity in VCC and a loss of measurable binding
affinity for mannotriose and asialofetuin (which contains target
N-glycans) in RbmC�-prism 2 (23). The citrate forms putative
hydrogen-bonding interactions with Asp-348, the key residue
involved in carbohydrate binding by other Vibrio �-prism
domains.

The citrate molecule present in the Bap1�57 structure binds
in the carbohydrate-binding site found in the other V. cholerae
�-prism domains, and further comparison of the four V. chol-
erae �-prism domains presents a perplexing conundrum as it
appears that the Bap1�57 �-prism should be capable of binding
carbohydrates in a manner similar to its homologs, yet experi-

mental evidence suggests it does not. The most significant
structural divergence of Bap1�-prism from the other V. cholerae
�-prism lectins lies in the �11–�12 loop, which contains a sev-
en-amino acid loop insertion between �11 and �12 (�33* and
�34* in context of Bap1�57) (Fig. 4, B and E). Whereas sequence
alignments suggest that Trp-629/948/706 (RbmC�-prism 1/
RbmC�-prism 2/VCC�-prism) and Leu-630/949/707 are substi-
tuted in Bap1 by Lys-495 and Gln-503 (respectively) with the
seven-amino acid loop between them (Fig. 4E), structural align-

Figure 4. Structural details of the Bap1�57 �-prism domain. A, side and top
close-up view of the putative carbohydrate-binding pocket of the Bap1�57
�-prism domain. Aromatic and lysine residues are shown in gray and blue stick
representation, respectively. A citrate molecule from the crystallization buffer
was found in close proximity to Asp-348 with putative hydrogen bonding
interactions highlighted by dotted lines. A short seven-residue loop unique to
Bap1 is shown in green, and the location of the 57-amino acid insertion is
shown in magenta. An extended linear cavity is outlined in gray space-surface
representation (determined using the cavities and pockets feature of PyMOL
with a 7-Å cavity detection radius and a three-solvent radius cavity detection
cutoff). B, superposition of the Bap1�57 (yellow) �-prism domain and RbmC2
(wheat) �-prism domain with bound mannotriose (green stick representa-
tion). Key residues involved in RbmC2/mannotriose interactions are shown as
dotted lines (23). Short insertion loops unique to RbmC2 (red) and Bap1 (green)
occupy similar locations. Key Bap1 residues are indicated by arrows with
RbmC2 residue numbers in parentheses. C, a citrate molecule is located in a
region with several crystal contacts (�-propeller domain is colored marine;
�-prism domain is colored yellow; and residues involved in citrate coordina-
tion are colored dark green). D, schematic shows polar and nonpolar interac-
tions between citrate molecule and the Bap1 �-prism domain. At the crystal-
lization pH (5.5), the citrate molecule is expected to be at least partially
protonated, allowing Asp-348 to make additional hydrogen-bonding inter-
actions with a citrate carboxylate group. Putative hydrogen-bonding inter-
actions are shown as green dotted lines and van der Waals interactions as
red arcs. Data were generated using LigPlot� version 2.1 (61). E, sequence
alignment shows a key region of the Bap1, RbmC�-prism 1, RbmC�-prism 2, and
VCC�-prism domains. The Bap1 7-amino acid insertion is highlighted in green.
Sequence alignment was generated using the MUSCLE algorithm imple-
mented in MEGA version 7.0 (62) and ESPript 3 (60).
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ment shows that Lys-501 and Gln-503 of Bap1 are present in
the spatial location of the WL motif and should, in theory, be
able to accommodate binding to mannose or the N-glycan pen-
tasaccharide core, especially considering that Lys-501 forms a
hydrogen bond with the citrate molecule in the Bap1�57 struc-
ture (Fig. 4D). An additional major difference between the
Bap1�57 �-prism and the other V. cholerae �-prism domains is
with regard to surface electrostatics. The surface of the Bap1�57
�-prism near the homologous carbohydrate-binding site has a
lysine-rich and positively charged groove (Figs. 3C and 4A).
Although this region could reasonably facilitate binding of
Bap1 to anionic polysaccharides or surfaces, it cannot explain
why Bap1�57 does not bind carbohydrates in a fashion similar to
its homologs or why it does not colocalize with VPS at the
surface of the biofilm (20).

57-Amino acid insertion in the Bap1 �-prism domain

Bap1 has been shown to contribute to the hydrophobicity of
V. cholerae biofilms, specifically within pellicles formed at the
air–water interface (34). In the absence of Bap1, V. cholerae
biofilm pellicles have decreased elasticity and are more hydro-
philic than WT rugose biofilms (34). Whereas Bap1 and RbmC
have been shown to play somewhat redundant roles in the
V. cholerae biofilm matrix (9, 20, 35), the hydrophobic nature of
WT V. cholerae pellicles represents an instance where RbmC
cannot rescue the absence of Bap1. The failure of RbmC to
rescue the hydrophobic nature of the pellicle formed by a bap1
deletion mutant suggests that some component of Bap1 that is
absent in RbmC contributes significantly to the hydrophobicity
of the V. cholerae biofilm pellicle. The 57-amino acid insertion
is the lone region of Bap1 absent in RbmC and exhibits traits
that could aid in maintaining the hydrophobicity of the pellicle
(Fig. S3A). Secondary structure prediction using the JPred
server suggests the 57-amino acid insertion adopts mainly
�-sheet structure, and multiple amyloid prediction algorithms
suggest that it may also exhibit amyloidogenic propensities
(Fig. 5A) (36 –42). The 57-amino acid insertion occurs at the
N-terminal end of the 10th �-strand in the �-prism domain
(�32* in context of the full structure, Fig. 1B). Residues of this
�-strand as well as the loop connecting the 9th and 10th
�-strands are not involved in carbohydrate binding in any
known �-prism I homologs. Therefore, the removal of this
insertion from Bap1 is not expected to alter any potential lectin
activity of the Bap1�57 �-prism domain. This is not to say, how-
ever, that removal of the insertion does not impede other func-
tional roles played by Bap1 in the V. cholerae biofilm matrix.

Bap1, including the 57-aa insertion, can be expressed in an
E. coli system as a GFPUV-fusion; however, all the recombinant
protein product is found in the insoluble cell lysate pellet. Con-
versely, removal of the insertion in the Bap1 �-prism domain in
Bap1�57 alleviates this solubility issue and yields abundant pro-
tein in the cell lysate supernatant fraction. In an attempt to
produce the 57-aa insertion peptide for further analysis, we
created a cleavable GFPUV fusion (Insertion57–GFPUV) and
expressed this construct in E. coli. As we observed with the
full-length Bap1 construct, this new construct was completely
insoluble, with only truncated GFPUV material missing the
fusion insertion present in the cell supernatant (Fig. 5B). The

insoluble inclusion body pellet could be solubilized in 8 M urea
and purified by nickel-nitrilotriacetic acid chromatography,
but attempts at refolding the fusion on the column (by slowly
reducing the urea concentration), by dilution, or by dialysis
failed to produce soluble material. This suggests two possibili-
ties: the insertion renders the full-length protein (whether Bap1
or Insertion57–GFPUV) insoluble, or an interaction between the
insertion and some component of Bap1 or GFPUV results in
cross-linked aggregation or misfolding of the protein. Of
course, Bap1 is secreted functionally from V. cholerae where
the protein is presumably directed through a secretory path-
way, which might also involve chaperones to assist with folding
or solubility. Evaluation using Kyte-Doolittle hydropathy val-
ues indicates that 63.7% of the residues in the insertion display
a hydrophobic nature (Fig. S3B) (43), which may support the
former hypothesis. However, the possibility of this insertion
having amyloidogenic propensities could support the latter

Figure 5. Bap1 �-prism domain exhibits properties from RbmC and VCC
�-prism domains. A, 57-amino acid insertion within the Bap1 �-prism is pre-
dicted to exhibit amyloid-like properties. The single-letter amino acid
sequence is shown with the secondary structure prediction using Jpred4 (42)
below (arrows denote �-strands). Amyloid prediction was performed on the
Bap1 57-amino acid insertion sequence using a number of individual amy-
loid-prediction algorithms. Results are shown from Aggrescan (37), FoldAmy-
loid (38), PASTA (41), TANGO (36), and Waltz (39). The five out of 10 method
consensus sequence generated by AMYLPRED2 (40) (http://aias.biol.uoa.gr/
AMYLPRED2/)4 is shown in green. B, expression of GFPUV fused to the 57-aa
insertion results in insoluble material. (Lanes are as follows: 1, protein stan-
dards; 2, Ni-purified GFPUV alone; 3, Ni-purified Insertion57–GFPUV fusion from
cleared cell supernatant; 4, Ni-purified cell pellets solubilized and purified in 8
M urea.) The Ni-purified soluble fraction resulted in a truncated protein spe-
cies presumably missing the 57-aa insertion. C, gel-shift assay suggests
Bap1�57 interacts with anionic polysaccharides. Native PAGE gel-shift assay
provides evidence that Bap1�57 �-propeller domain, but not �-prism domain,
interacts with alginic acid (Lanes are as follows: 1, Bap1�57; 2, Bap1�-propeller; 3,
BSA; 4, concanavalin A; 5, GFPUV.) Arrow illustrates the band shift of Bap1�57.
D, figure shows modeled alginic acid and VPS polysaccharides manually
docked into the �-prism cavity. The glycine adducts on the VPS guluronic acid
residues were not included in the all-atom model but are represented by the
letter G.
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hypothesis (Fig. 5A). It is plausible that the insertion acts to help
attach the V. cholerae biofilm matrix to hydrophobic surfaces
(19), such as the lipid membrane of a cell, or that amyloid for-
mation within the insertion might aid in biofilm formation as
seen in biofilms formed by other bacteria (44). A strongly
hydrophobic or amyloidogenic subdomain present in Bap1
could explain its localization to the attachment surface ob-
served in fluorescence microscopy studies on V. cholerae bio-
film architecture (9, 20, 35).

Functional analysis of Bap1�57 suggests putative lectin
activity

Based on super-resolution microscopy of developing bio-
films, Bap1 plays a role in cell-surface adhesion and formation
of dynamic cell-encasing envelopes with VPS and RbmC (9). In
our investigation of the putative sugar-binding activity of Bap1,
we determined that unlike the �-prism domains present on
RbmC and VCC (23), fluorescently-labeled Bap1�57 did not
appear to bind complex mammalian sugars present on the
Mammalian Glycan Screen version 5.3 (Fig. S4). Furthermore,
analysis using isothermal titration calorimetry (ITC) did not
reveal binding activity of Bap1�57 constructs to the complex
glycosylated protein asialofetuin or monosaccharides (L-gulu-
ronic acid, D-galactose, or D-glucose) present in VPS (Fig. S5A).

To test the possibility of Bap1�57 binding to linear polysac-
charides like VPS, we employed a native gel-shift experiment
using substrates similar to approaches used with extracellular
polysaccharide-interacting proteins from Pseudomonas aerugi-
nosa (45). For polysaccharides, we used alginic acid, bacterial
alginate, dextran, 2-hydroxyethylcellulose, and xanthan gum.
As controls, we included several proteins with compatible elec-
trophoretic mobilities and varying molecular masses, including
BSA, concanavalin A, and GFPUV. Our prior experience dem-
onstrates that the RbmC �-prism domain demonstrates some
affinity for dextran and dextran-containing purification resins,
which contain �1,3- and �1,6-branches like those found in core
N-glycans (23).

Native polyacrylamide gel–shift assays reveal association of
Bap1�57 but not Bap1�-propeller to alginic acid (Fig. 5C). Polysac-
charide binding by Bap1�-prism could not be analyzed by native
polyacrylamide gel shift as its pI is above that of the gel buffer-
ing system. In addition, Bap1�57 displayed a gel shift with xan-
than gum in the native polyacrylamide gel shift assay, but not
with dextran (Fig. S5B). Taken together, these data suggest that
unlike RbmC, Bap1�57 does not bind complex mammalian
N-glycans, but rather displays an affinity for anionic polysac-
charides or polysaccharides with a linear backbone, as both
alginic acid and xanthan gum are negatively charged. This is
particularly interesting as VPS present in V. cholerae biofilms is
an acetylated linear polysaccharide with a glycine adduct (with
a free carboxyl group) linked to guluronic acid (11, 12, 46).

To test whether a linear polysaccharide could occupy the
Bap1�57 �-prism cavity, models for alginic acid and VPS were
prepared using CarbBuilder version 2.1.30 (47) and manually
docked into the cavity density calculated by PyMOL. Although
the exact register and orientation of the ligands may vary, the
width of the polysaccharides is comparable with the size of the
cavity (Fig. 5D). In RbmC, we observe flexibility in this region in

the presence and absence of ligands (23), and in Bap1 this
region is near a crystal contact that may influence its unligan-
ded conformation. These considerations might provide addi-
tional flexibility in the size of the cavity, particularly when side-
chain rearrangements are allowed. An attractive feature of this
model is that acetyl groups on polysaccharides would be in
close proximity to lysine groups surrounding the �-prism cavity
potentially forming polar interactions. The VPS glycine car-
boxyl on the guluronic acid moiety could additionally form a
salt bridge with nearby lysine residues, further strengthening
this interaction.

RbmC model based on Bap1�57 structure

To gain better insight into the comparative structural fea-
tures of RbmC and Bap1, we constructed a model for RbmC
based on available structural and sequence-based information
(the comparative domain organization is shown in Fig. 6A). The
�-propeller domains of Bap1 and RbmC are 67.5% identical in
sequence, suggesting a high degree of structural similarity. For our
model, we attached the previously determined RbmC�-prism 2 lec-
tin domain (23) to the C terminus and tandem ��-crystallin
domains from E. coli StcE (22) to the N terminus of our Bap1�57
model (Fig. 6B). The linker lengths between domains were
modeled using the database sequence for RbmC and are
assumed to be flexible similar to the linkers connecting
the �-prism and �-propeller domains in Bap1�57. Based on the
linker distance constraints, it is likely that both StcE domains
and both �-prism domains protrude from the same cation-
binding face of the �-propeller domain in RbmC. Further-
more, the carbohydrate-binding pockets of RbmC�-prism 1 and
RbmC�-prism 2 are likely oriented in the same outward position

Figure 6. Structural model of RbmC. A, RbmC shares a core �-propeller and
�-prism domain with Bap1 and additionally contains a second C-terminal
�-prism domain and two N-terminal domains with a predicted ��-crystallin
fold. The 57-amino acid insertion within the Bap1 �-prism domain (magenta)
is absent in RbmC. B, proposed structural model for RbmC made by attaching
two ��-crystallin domains from the StcE protein (PDB 3UJZ) to the N termi-
nus, and the C-terminal �-prism domain from RbmC to the C terminus (PDB
5V6F). The model suggests general locations of the accessory RbmC domains
in relation to �-propeller, rather than absolute orientation. The sequence-
predicted linker lengths between domains were maintained to illustrate that
all four accessory domains in RbmC likely occupy the bottom face of the
�-propeller domain. Our model also suggests that the two N-glycan– binding
pockets of RbmC are also likely on the same face of the molecule (shown as
red ovals).
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on the bottom face of the RbmC molecule (Fig. 6B). Because
both �-prism domains in RbmC bind similar N-glycan core
structures (23) commonly found on cell-surface proteins with
low nanomolar affinity, the possibility exists for strong avidity
effects from polyvalent binding to cell-surface ligands. The
integration of two N-glycan– binding sites, two putative StcE
domain– binding targets (22), and a possible �-propeller ligand
suggests that RbmC could serve to bridge multiple biofilm
matrix components to target cell surfaces. Bap1, however,
might form an overlapping but more limited scaffold for a dif-
ferent subset of matrix and surface ligands.

Discussion

We report the 1.9 Å crystal structure of the V. cholerae bio-
film matrix protein Bap1�57 and demonstrate that the Bap1�57
�-prism domain displays a sugar-binding profile that differs
from other V. cholerae �-prism domains (RbmC and VCC),
with putative specificity for anionic polysaccharides and/or
polysaccharides with a linear backbone. Additionally, we sug-
gest that a 57-amino acid insertion that was deleted for E. coli
expression might modulate the solubility of Bap1 leading to
the surface deposition (9) and hydrophobic properties of
biofilms observed in functional studies (34). This might help
to explain the observation that surface-attached Bap1
appears to grow radially outward from founder cells (9) as
presumably newly secreted Bap1 molecules deposit onto the
surface or grow outward through interactions mediated by
the 57-aa insertion. Consistent with published microscopy
studies, the �-prism domains of Bap1 and RbmC would be
primarily involved in adhesive interactions between the bio-
film matrix and environmental surfaces, whereas the �-pro-
peller domains might form interactions with protein or
other substrates within the biofilm matrix, including other
matrix proteins and VPS. The Bap1 �-prism domain may
also interact with VPS, or other charged polysaccharides
found in the marine environment (like alginates). Whereas
RbmC and Bap1 are both sufficient on their own to support
biofilm attachment in vitro (20), specific and potentially
strong adhesive interactions mediated by �-prism domains
might play a more important role on diverse surfaces
encountered within the V. cholerae lifecycle.

In the aquatic niche, the ability of Bap1 to bind anionic poly-
saccharides or abiotic surfaces (via the �-prism insertion)
would provide a survival advantage by promoting attachment
to a multitude of substrates, including extracellular polysaccha-
rides found on phyto- and zooplankton or macroflora such as
macroalgae. In addition, the increased elasticity provided to the
biofilm matrix by Bap1 may confer increased tensile strength
that aids in survival in environments where dynamic movement
(such as ocean currents) is abundant (34). Furthermore, the
putative hydrophobic and/or amyloidogenic nature of the 57-
amino acid insertion in the Bap1 �-prism may play a role in
attachment to hydrophobic or other abiotic surfaces. The puta-
tive lectin activity of Bap1�57 presented here and the contribu-
tion of Bap1 to the hydrophobic nature of V. cholerae biofilms
(34) support our hypothesis of a dual role played by Bap1 in
attaching V. cholerae biofilms to both biotic and abiotic sur-
faces in the aquatic niche.

In the host gut environment, we propose that RbmC plays a
dominant role by binding complex N-glycans (23). Thus, in
effect, ingested biofilm fragments decorated with RbmC could
be “captured” by ligands on epithelial cell surfaces. This role
may be aided by the N-terminal ��-crystallin repeat domain, as
the homologous domain in EHEC O157:H7 mucinase, StcE, has
been shown to play a role in binding to cell surfaces (22). In
support of this hypothesis, a study performed by Liu et al. (48)
provides experimental evidence of interaction between mucin
and V. cholerae biofilms.

Additional investigation of the unique specificity of lectin
activity displayed by Bap1 and RbmC is needed. Because of the
lack of hits in the mammalian glycan screen and apparent pref-
erence for linear and/or anionic polysaccharides, it is not likely
that Bap1 plays a role in penetration of the mucosal layer of the
mammalian gut. However, it is crucial to further investigate the
polysaccharide specificity of Bap1 in the context of its interac-
tions with other matrix components. These studies in conjunc-
tion with structures of Bap1 complexed with carbohydrate
ligands will provide a framework for understanding the net-
work of complex molecular interactions that underlie biofilm
assembly and adhesion in V. cholerae.

Experimental procedures

Cloning, expression, and protein purification

Bap1 (VC_1888, NP_231522.1) constructs were generated by
amplification of fragments from V. cholerae (strain N16961)
genomic DNA via PCR stitching and insertion into pNGFP-BC
(49) using NcoI and XhoI restriction sites to yield N-terminal,
His-tagged GFPUV fusions, cleavable by thrombin or trypsin.
The Bap1�57 construct (residues 25– 414 and 473– 691) results
from removal of the predicted secretion signal (residues 1–24)
and deletion of the 57-amino acid insertion in its �-prism
domain. Bap1�-propeller–GFPUV contains the �-propeller
domain alone (residues 25–316 and 515– 691). Bap1�-prism–
GFPUV contains the version of the �-prism domain also present
in the Bap1�57–GFPUV construct (residues 316 – 414 and 473–
514). Insertion57–GFPUV contains the 57-aa insertion (residues
415– 472) cloned to the C terminus of GFPUV, separated by a
poly-asparagine linker and thrombin site. Because of cloning
artifacts, the sequence preceding Tyr-415 is SAMAFT (follow-
ing the LVPRG thrombin site).

GFPUV fusion constructs were transformed into T7Express
E. coli (New England Biolabs) or BL21-CodonPlus (DE3)-RIL
(Agilent) E. coli (for Insertion57–GFPUV), and overnight cul-
tures were diluted 20-fold into fresh LB-Miller media supple-
mented with 50 �g/ml carbenicillin. Expression cultures were
subsequently grown with shaking (210 rpm) at 37 °C until
reaching an A600 of 0.5 to 0.7, at which point the cells were
induced with 1 mM isopropyl �-D-1-thiogalactopyranoside
(IPTG). Following induction with IPTG, Bap1�57–GFPUV and
Bap1�-propeller–GFPUV were grown for an additional 18 h at
18 °C, while Bap1�-prism–GFPUV was grown for an additional
4 h at 30 °C. Following expression, cells were pelleted by cen-
trifugation in a Sorvall LYNX 6000 centrifuge using an F9-6 	
1000 rotor (Thermo Fisher Scientific) at 3,900 	 g for 12 min at
4 °C. Cell pellets were resuspended in 1	 TBS (20 mM Tris, pH
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7.5, 150 mM NaCl) to a final volume of �10 ml per pellet from 1
liter of expression growth. Samples were stored at 
80 °C until
the time of purification. Thawed cell cultures were supple-
mented with protease inhibitor mixture (Roche Applied Sci-
ence) and 10 mM imidazole. Cell lysis was performed via pas-
sage three times through an EmulsiFlex-C5 high pressure
homogenizer (Avestin, Inc.) at �18,000 p.s.i. The cell lysate was
cleared via centrifugation in a Sorvall LYNX 6000, at 40,000 	 g
for 25 min using an F20-12	50 rotor (Thermo Fisher
Scientific).

Recombinant Bap1�57–GFPUV was purified from the cleared
supernatant by a combination of nickel-affinity (5-ml HisTrap
HF, GE Healthcare) and desalting (50-ml Bio-Scale Mini Bio-
Gel, Bio-Rad) chromatography columns on a Profinia Protein
Purification System (Bio-Rad). After sample loading, the nickel
column was washed with 2 column volumes (CV) of 1	 TBS
and 5 CV of 1	 TBS plus 40 mM imidazole. Bap1�57-GFPUV was
eluted from the nickel column using 1	 TBS supplemented
with 250 mM imidazole and desalted into 30 ml of ion-exchange
Buffer A (IEX Buffer A: 20 mM Tris, pH 7.5, 50 mM NaCl).
GFPUV was cleaved from the fusion protein by incubating with
a 1:1000 w/w ratio of human �-thrombin (Hematologic Tech-
nologies, Inc.) at room temperature for 1.5 h. The cleavage reac-
tion was stopped using 1 mM 4-(2-aminoethyl)benzenesulfonyl
fluoride hydrochloride. Cleaved Bap1�57 was separated from its
His-tagged GFPUV fusion partner via anionic exchange on a
5-ml Q-column HF (GE Healthcare) equilibrated in IEX Buffer
A. GFPUV was eluted from the Q-column in 20 mM Tris, pH 7.5,
200 mM NaCl, and Bap1�57 eluted in 60 ml of 20 mM Tris, pH
7.5, 250 mM NaCl. Eluted Bap1�57 was concentrated in a
30-kDa cutoff Vivaspin20 centrifugal filter (GE Healthcare) and
buffer exchanged by passage over a Superdex 200 Increase
10/300 GL (s200i, GE Healthcare) gel-filtration column in 1	
TBS.

Bap1�-propeller–GFPUV was purified from cleared cell lysate
in a similar fashion as Bap1�57–GFPUV, desalted into 1	 TBS,
and cleaved using a 1:1000 w/w ratio of trypsin (Sigma) at room
temperature for 1.5 h. Cleaved Bap1�-propeller was separated
from the His-tagged GFPUV by tandem nickel-affinity and gel-
filtration chromatography, with a 1-ml HisTrap HF column
(GE Healthcare) attached to the top of the s200i gel-filtration
column, and eluted in a buffer appropriate for downstream
applications. Bap1�-prism–GFPUV was purified from the cleared
cell lysate by nickel-affinity chromatography using Toyopearl
650 M AF-chelate resin (Tosoh Biosciences) charged with
nickel sulfate, using the procedure described above for the His-
Trap HF column. Bap1�-prism–GFPUV eluted from the Toyope-
arl chelate resin was cleaved from the fusion protein by a 1:500
w/w trypsin digest carried out at room temperature for 1.5 h.
Bap1�-prism was separated from GFPUV by passage over an s200i
gel-filtration column. Purity of all constructs was determined
by SDS-PAGE.

Crystallization of Bap1 constructs

Bap1�57 was purified and separated from its GFPUV fusion
partner as described above and concentrated to 7.5 mg/ml for
crystallization studies. Crystallization screening and optimiza-
tion were performed using commercial sparse matrix and grid

screening by the hanging-drop method in 24-well VDX plates
(Hampton Research). Native crystals were grown by pipetting a
1:1 v/v ratio of protein sample and precipitant solution (0.1 M

sodium citrate and 10% PEG 3,350) onto siliconized coverslips
and suspending them over 0.5 ml of reservoir solution. Crystals
were harvested after approximately 2 weeks. Native crystals
were cryoprotected in mother liquor containing 20% glycerol,
and flash-cooled in liquid nitrogen. Heavy atom derivatization
was achieved by soaking native crystals in a drop of mother
liquor with 10 mM K2Cl4Pt for 3 min, followed by back soaking
in mother liquor plus 20% glycerol, without the heavy atom for
�30 s, and flash-cooling in liquid nitrogen.

Bap1�-propeller domain crystals were grown via hanging-
drop vapor diffusion with a 1:1 v/v ratio of 8.75 mg/ml pro-
tein and precipitant solution (0.2 M BisTris, pH 7.0, 15% PEG
8,000, and 20% glycerol) at either 17 or 25 °C. Crystals were
harvested and flash-cooled in liquid nitrogen, with no addi-
tional cryoprotectant as the precipitant solution contained
20% glycerol.

X-ray structure determination of Bap1�57

X-ray data were collected at the NSLS-II 17-ID-1 (AMX)
beamline at Brookhaven National Laboratory equipped with a
Dectris Eiger X 9 M pixel-array detector. The structure of
Bap1�57 was solved via single isomorphous replacement with
anomalous signal with native crystals soaked in K2Cl4Pt. Data
were indexed using XDS (50) and scaled with Aimless (51). The
structure was phased by SIRAS using native and K2Cl4Pt deriv-
ative data using the AutoSol module of Phenix (52). Density
modification (�60% solvent) and automatic model building by
Phenix using data to 1.9 Å led to the placement of 538 residues
(of 608 expected residues in the construct) with a map-model
correlation coefficient of 0.84 and Rwork and Rfree values of 0.25
and 0.27, respectively. Automatic model rebuilding was carried
out using ARP/wARP version 7.6 (53) resulting in a new model
with 600 residues and Rwork and Rfree values of 0.193 and 0.239,
respectively. The final model was refined using phenix.refine
(54) utilizing automatic water-picking and target weight opti-
mization algorithms as implemented in Phenix (54). Refine-
ment progress was monitored by tracking the Rwork/Rfree ratio
(with Rfree representing 5% of total reflections). Iterative model
rebuilding (into 2Fo-Fc and Fo-Fc maps) and comprehensive
validation was carried out with Coot (55) and the Phenix imple-
mentation of MolProbity (56) to final Rwork and Rfree values of
0.158 and 0.173, respectively.

Mammalian glycan array

Bap1�57-GFPUV was purified as described above and eluted
from the s200i column in 0.1 M sodium bicarbonate, pH 8.3.
Purified protein was concentrated in a 30-kDa cutoff Vivaspin6
(GE Healthcare) to 2.1 mg/ml and fluorescently labeled using a
Molecular Probes AlexaFluor488 labeling kit (Life Technolo-
gies, Inc.). The labeled protein sample was sent to the Consor-
tium for Functional Glycomics (www.functionalglycomics.
org)4 for analysis, as described previously (23), at concentrations
of 5 and 50 �g/ml.
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Polysaccharide interaction by native acrylamide gel
electrophoresis

Bap1�57 and Bap1�-propeller were purified as described, with
final elution from gel filtration in 50 mM imidazole, pH 7.0, 50
mM NaCl. Lyophilized BSA and concanavalin A (Thermo
Fisher Scientific) were prepared as controls by dissolving in 50
mM imidazole, pH 7.0, 50 mM NaCl. GFPUV was expressed in T7
SHuffleExpress (New England Biolabs) and purified by Ni-af-
finity and gel-filtration chromatography using conventional
methods, with a final elution in 1	 TBS. 6 �g per lane of the
appropriate protein sample was used in gel-shift analysis. Gels
were prepared with final concentrations of 7.5% bisacrylamide
(Bio-Rad), 25 mM Tris, pH 8.3 (Thermo Fisher Scientific), 250 mM

glycine (Research Products International), 0.05% ammonium per-
sulfate (Thermo Fisher Scientific), and 0.025% TEMED (Bio-Rad).
Running buffer consisted of 25 mM Tris, pH 8.5, and 192 mM gly-
cine. Gel electrophoresis was carried out at 200 V for 120 min at
room temperature. After electrophoresis, gels were fixed in 50%
methanol, 10% acetic acid for 15 min, stained in 10% acetic acid,
0.02% Coomassie Brilliant Blue G-250 for 1 h or overnight, and
then destained in 10% acetic acid.

Isothermal titration calorimetry

ITC data were collected using a Nano ITC calorimeter (TA
Instruments) at 25 °C. Bap1�57 protein in 1	 TBS buffer was
loaded into the chamber (170 �l) at a concentration of �0.1 mM.
Fifteen injections of 3 �l each were made for ligands dissolved in
1	 TBS buffer (0.1 mM alginic acid sodium salt, 0.03 mM asialofe-
tuin, 10 mM L-guluronic acid, 20 mM D-galactose, 5 mM D-glucose).
Raw thermograms were baseline corrected by NITPIC version
1.2.7 (57) and displayed using GUSSI version 1.4.2 (downloaded
from http://biophysics.swmed.edu/MBR/software.html).
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