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Human tankyrase-1 (TNKS) is a member of the poly(ADP-
ribose) polymerase (PARP) superfamily of proteins that post-
translationally modify themselves and target proteins with
ADP-ribose (termed PARylation). The TNKS ankyrin repeat
domain mediates interactions with a growing number of struc-
turally and functionally diverse binding partners, linking TNKS
activity to multiple critical cell processes, including Wnt signal-
ing, Golgi trafficking, and telomere maintenance. However,
some binding partners can engage TNKS without being modi-
fied, suggesting that separate parameters influence TNKS inter-
action and PARylation. Here, we present an analysis of the
sequence and structural features governing TNKS interactions
with two model binding partners: the PARylated partner telo-
meric repeat-binding factor 1 (TRF1) and the non-PARylated
partner GDP-mannose 4,6-dehydratase (GMD). Using a combi-
nation of TNKS-binding assays, PARP activity assays, and ana-
lytical ultracentrifugation sedimentation analysis, we found
that both the specific sequence of a given TNKS-binding peptide
motif and the quaternary structure of individual binding part-
ners play important roles in TNKS interactions. We demon-
strate that GMD forms stable 1:1 complexes with the TNKS
ankyrin repeat domain; yet, consistent with results from previ-
ous studies, we were unable to detect GMD modification. We
also report in vitro evidence that TNKS primarily directs PAR
modification to glutamate/aspartate residues. Our results sug-
gest that TNKS-binding partners possess unique sequence and
structural features that control binding and PARylation. Ulti-
mately, our findings highlight the binding partner:ankyrin
repeat domain interface as a viable target for inhibition of TNKS
activity.

Human tankyrase-1 (TNKS)3 is a member of the poly(ADP-
ribose) polymerase (PARP) superfamily of proteins. PARPs
posttranslationally modify themselves and target proteins with
mono- or poly(ADP-ribose) using NAD� as a substrate (termed
MARylation or PARylation, respectively) (1, 2). PARP family
members possess conserved catalytic (CAT) domains, yet their
unique regulatory domains endow individual PARPs with spe-
cific cellular functions (1). The regulatory domains of the
founding family member, PARP-1, facilitate interaction with
damaged DNA, allowing PARP-1 to perform several functions
in DNA damage repair pathways. In contrast, TNKS regulatory
domains facilitate interaction with a growing number of struc-
turally and functionally diverse binding partners, linking TNKS
to several critical cellular processes, including Wnt signaling,
telomere maintenance, Golgi trafficking, and apoptosis (3–7).
Although the regulatory mechanism of PARP-1 has been well-
studied (8, 9), a gap persists in our understanding of how the
TNKS regulatory domains control TNKS activity.

TNKS regulatory domains consist of a histidine-, proline-,
and serine-rich (HPS) domain, a sterile � motif (SAM) domain,
and an ankyrin repeat domain (Fig. 1A). No function has yet
been identified for the HPS, and this domain is not present in
the closely related tankyrase-2 (TNKS2), indicating that the
HPS does not serve a core function in the overlapping roles of
TNKS and TNKS2. TNKS can multimerize through self-assem-
bly of its SAM domain, which can form head-to-tail helical
polymers with roughly seven SAM monomers per turn (10 –
13). Although the mechanisms influencing TNKS self-assembly
and disassembly are not yet understood, disruption of the SAM
polymer interface reduces TNKS Wnt signaling function (12,
13). The ankyrin repeat domain consists of 25 ankyrin repeats
and mediates interactions with TNKS-binding partners. Unlike
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other ankyrin repeat proteins, the TNKS ankyrin repeat
domain is segmented into five ankyrin repeat clusters (ARCs
1–5). Each ARC, with the exception of ARC3, possesses a bind-
ing pocket that engages TNKS-binding motifs (TBMs) within
target proteins, identified in early studies as the consensus
sequence “RXXPDG” (14). More recent structural analysis has
defined the arginine at position 1 (R1) and the glycine at posi-
tion 6 (G6) to be the critical binding determinants of a TBM
(15). The five ARCs are expected to adopt similar folds, yet low
conservation of peptide-interacting residues within the binding
pocket endow each ARC with different peptide-binding capac-
ities. Notably, multiple substitutions within the ARC3-binding
pocket relative to the other ARCs ablate peptide interaction
(15, 16).

One of the most perplexing aspects of TNKS regulation is
that, although binding the ankyrin repeat domain is required
for PARylation, some binding partners are able to interact with
TNKS without being modified (5, 17). TNKS thus appears capa-
ble of promiscuous binding while simultaneously deciding
which binding partners are PARylated. The underlying mecha-
nisms driving TNKS regulation have, however, remained elu-
sive due to the complexity of TNKS:binding partner interac-
tions. This knowledge gap is due largely to the adaptability of
TNKS, which tolerates significant sequence and structural var-
iation among its binding partners.

Binding partner variation is evident even at the core TBM:
ARC interface. The consensus TBM is only loosely conserved
across binding partners, and as many as 8 amino acids can con-
tribute to stabilizing canonical motifs (15). Structural studies
have also identified noncanonical TBMs spanning as many as
13 amino acid residues (18, 19), suggesting that the ARCs can
engage even longer sequences with large insertions between the
critical R1 and G6 contact points. Thus, although some
sequence rules have been established, the ARCs appear to
accommodate significant variation in TBM sequence and
length. Furthermore, binding partners engage TNKS using
multiple TBMs, either by possessing multiple consecutive
TBMs or by forming homomultimeric structures that thus
present multiple copies of the same TBM in a configuration
determined by their quaternary structures. We have previously
shown that the five ARCs of TNKS dynamically sample multi-
ple conformations to facilitate binding, suggesting that the
ARCs can accommodate variation in binding partner structure
as well as variations in the TBM sequence (16). The plasticity of
the ankyrin repeat domain is undoubtedly indispensable for a
master scaffolding protein with multiple binding partners, such
as TNKS. However, TNKS-binding partners demonstrate such
remarkable diversity that a pattern has yet to emerge that can
fully explain the relative importance of structural and sequence
contributions to binding affinity and to PARylation. Further-
more, our understanding of TNKS regulation is also limited by
the lack of PARylation site mapping. As a result, it is not known
whether potential sequence preferences exist for the CAT
domain to engage and modify substrates that are bound to the
ankyrin repeats of TNKS, which could represent another layer
of regulation.

The quantitative study of binding partner interactions has
primarily been limited to the ARC:peptide interface, with only

limited studies performed with full-length binding partners. To
determine sequence and structural features that are important
for TNKS-binding partner interaction and PARylation, we ana-
lyzed TNKS interaction with two example full-length binding
partners: the PARylated binding partner telomeric repeat-
binding factor 1 (TRF1) and the non-PARylated binding part-
ner GDP-mannose 4,6-dehydratase (GMD). TRF1 regulates
telomere length (6, 20), and TNKS-mediated PARylation of
TRF1 causes it to dissociate from telomeric DNA and to be
degraded through the ubiquitin–proteasome pathway (21). It is
therefore likely that TNKS and TRF1 interact for only a defined
period of time. In contrast, GMD, which functions in de novo
fucose synthesis (17, 22), is bound to TNKS throughout inter-
phase, only dissociating during mitosis (17). GMD binding has
been shown to decrease TNKS catalysis of poly(ADP-ribose)
(17). The formation of a stable TNKS:GMD complex may
therefore represent a strategy for sequestering TNKS into an
inactive complex during interphase, with release at a later time
enabling its multiple mitotic functions. Thus, although TRF1
and GMD both engage the TNKS ankyrin repeat domain, some
aspect of their interactions with TNKS yields different out-
comes. A better understanding of how TRF1 and GMD interact
with TNKS will not only aid in elucidating the factors that influ-
ence binding but may also provide insight into how TNKS
activity is regulated.

In this study, we examine the sequence and structural param-
eters that affect TNKS interaction with binding partners GMD
and TRF1. Using TNKS-binding analysis, PARylation activity
assays, and mutants of GMD and TRF1, we found that both the
specific sequence of the TBM and the quaternary structure of
the binding partner play important roles in the interaction with
TNKS. Using analytical ultracentrifugation, we demonstrated
that GMD forms stable 1:1 complexes with the TNKS ankyrin
repeats. Together with a compact globular fold, we propose that
these features underly GMD resistance to PARylation. We also
report in vitro evidence that TNKS primarily directs PAR
modification to glutamate/aspartate residues and not serine
residues.

Results

TRF1 and GMD as example TNKS-binding partners

TRF1 and GMD are both soluble constitutive homomultim-
ers with TBMs at their extreme N termini (Fig. 1B). Within the
8-amino acid– binding footprint, the TBMs of TRF1 and GMD
differ at four positions: 3, 4, 7, and 8 (Fig. 1B, middle). We first
demonstrated interactions between TNKS and the example
binding partners using pulldown assays. A histidine-tagged ver-
sion of the ankyrin repeat region (TNKS-12345, residues 174 –
961), the minimal domain that is necessary and sufficient for
binding partner interactions, was mixed with untagged full-
length constructs of TRF1 and GMD. As expected, both bind-
ing partners exhibited a robust interaction with TNKS-12345
(Fig. 1C). Substituting Ala for Arg at position 1 of the TBM
(R13A in TRF1; R12A in GMD) effectively disrupted the pull-
down interactions, consistent with studies illustrating the
importance of R1 (15, 18). Similarly, we have demonstrated that
binding can be disrupted by introducing mutations into the
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ARCs that prevent binding to G6 (16). Introducing these muta-
tions into all four functional ARCs 1, 2, 4, and 5 (construct
TNKS-xx3xx where “x” designates a mutated ARC) (16) ablated
interaction with TRF1 and GMD. Thus, TRF1 and GMD inter-
action with TNKS requires functional TBMs and functional
ARCs.

Upon binding TNKS, TRF1 is strongly PARylated (6, 23), yet
GMD has been shown to bind TNKS without being modified
(17). To examine these previous observations in our reconsti-
tuted system, we produced a recombinant version of human
TNKS containing residues 174 –1327 with an N-terminal
NusA-SMT tag to aid with the production and solubility of the

enzyme (see “Experimental procedures”; referred to as
NS-TNKS). This construct lacks the unstructured N-terminal
HPS domain, for which no function has been identified, to
improve production and purification properties. TNKS and
TNKS2 share overlapping binding partners and functions
despite the absence of an HPS in TNKS2 (24 –26), suggesting
that the HPS is not essential for TNKS function. An ADP-ribo-
sylation assay using NS-TNKS demonstrated that TRF1 is
indeed PARylated (Fig. 1D), and the PAR signal significantly
decreases in the presence of PARP inhibitor PJ34. However,
GMD was not PARylated under the same conditions. Thus,
both binding partners engage the same ankyrin repeat domain

Figure 1. TRF1 and GMD as example TNKS-binding partners. A, schematic of TNKS domain architecture and regulatory domains. B, cartoon depictions of
TRF1 and GMD quaternary structures illustrating TBMs, functional domains, and active sites. The TBM sequences (Res.) and residue numbering (Res. #) of TRF1
and GMD are compared (center). Strictly required residues are noted (R1 and G6), and the standard TBM position numbering (Pos. #) is shown (gray). C, pulldown
assay utilizing histidine-tagged ARC1–5 constructs and untagged full-length TRF1 or GMD. TNKS constructs consisted of WT TNKS-12345 and quadruple ARC
mutant construct TNKS-xx3xx. Binding partner constructs consisted of WT or TBM mutants R13A and R12A for TRF1 and GMD, respectively. Input proteins
(Load) and elution fractions (Elute) were analyzed by SDS-PAGE. D, PARP activity assay utilizing NS-TNKS and full-length TRF1 and GMD. The designated
reactions mixtures were analyzed by SDS-PAGE (Load) and by Western blot analysis of PARylation (�PAR). A His-tagged protein (Stnd) was included in each
reaction to assess transfer efficiency of the blot; the protein was detected with an anti-His antibody (�His). NS-TNKS was loaded at loaded at 0.5 �M, TRF1 and
GMD were loaded at 1 �M, and PARP inhibitor PJ34 was used at 100 �M.
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but yield different outcomes in terms of modification with
ADP-ribose.

TRF1 and GMD interaction with TNKS-12345

TBMs exhibit a fairly broad range of affinities for TNKS-
12345, with typical values in the low micromolar range (e.g.
�0.1 to �10 �M) and with the differences in affinities likely
resulting from sequence variations within the TBMs (15, 16).
We thus assessed the relative binding affinities of the TBMs of
TRF1 and GMD in a fluorescence polarization binding assay
utilizing fluorescently labeled peptides (5FAM-TRF1, residues
9 –24; 5FAM-GMD, residues 8 –23). 5FAM-TRF1 bound to
TNKS-12345 with an apparent KD of 0.87 � 0.07 �M (Fig. 2A),
whereas 5FAM-GMD bound with an apparent KD of 1.42 �
0.01 �M (Fig. 2B), both within the anticipated range of binding
affinities. As a control, neither peptide bound to an ARC1–5

construct in which all TBM-binding sites had been inactivated
(Fig. 2, A and B, TNKS-xx3xx).

We next used a competition binding assay to assess TNKS-
12345 interaction with full-length TRF1 and GMD (Fig. 2, C
and D). The TRF1 homodimer structure presents two TBMs,
and the GMD tetramer structure presents four TBMs (Fig. 1B)
(20, 27). Multimeric full-length TRF1 and GMD may therefore
potentially interact with multiple ARCs simultaneously and
exhibit higher affinity than the single-peptide interactions
alone. In the competition experiment, TNKS-12345 was mixed
with full-length TRF1 or GMD and a fluorescently labeled pep-
tide representing the bipartite TNKS-binding domain of Axin1
(FITC-Axin, residues 18 – 80). FITC-Axin interacts with multi-
ple ARCs and is capable of binding multiple ARC pairs simul-
taneously, including ARCs 1/2, 4/5, and 2/5 (16). TNKS-12345
binding to FITC-Axin was maintained at near-saturation levels

Figure 2. TNKS binding to TRF1 and GMD. A and B, FP binding analysis of 5FAM-TRF1 (A) and 5FAM-GMD (B) peptide interaction with TNKS-12345 (ankyrin
repeat region) and TNKS-xx3xx (ankyrin repeat region with no functional ARCs). Binding was considered NQ if the binding curve did not allow for robust KD
determination. Reactions that exhibited NQ binding were analyzed in at least two separate experiments, and all other KD values were determined from a
minimum of three different experiments. Data represent the mean, error bars represent S.E. C and D, competition fluorescence polarization binding analysis of
full-length TRF1 (C) and full-length GMD (D). A fluorescently labeled Axin peptide and TNKS-12345 were maintained at saturating concentrations (27 nM and
1.5�M, respectively) as increasing amounts of competing binding partners were added. TRF1 and GMD constructs consisted of full-length WT and TBM mutants
R13A and R12A for TRF1 and GMD, respectively. For comparison, unlabeled peptides representing their TBMs were evaluated (GMD peptide and TRF1 peptide).
Competitor concentrations represent the total TBM concentration. Thus, TRF1 and GMD are reported at their monomer concentrations to directly compare the
relative efficiency of full-length proteins versus peptides. Data represent the mean, error bars represent S.D. mP, milli-polarization units.
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to yield a high starting level of fluorescence polarization (FP)
signal, which was set to 100% (Fig. 2, C and D). TRF1 and GMD
were then added at increasing concentrations, and FP measure-
ments were taken at equilibrium. The decrease in signal was
interpreted as TRF1 or GMD effectively outcompeting FITC-
Axin peptide for binding to TNKS-12345. For comparison with
the full-length proteins, unlabeled TBM peptides of TRF1 and
GMD were also assessed in the competition experiment (Fig. 2,
C and D, peptides alone are in blue). In Fig. 2, C and D, compet-
itor concentrations are plotted as monomers of TRF1 and
GMD, thus representing the total number of TBMs and reflect-
ing the competitiveness per TBM. When plotted as concentra-
tions of dimer TRF1 and tetramer GMD (Fig. S1A), both pro-
teins effectively competed for TNKS-12345 binding over a
similar concentration range. As expected, mutations to the
TBMs of both TRF1 (TRF1(R13A)) and GMD (GMD(R12A))
abrogated their ability to compete with FITC-Axin for binding
to TNKS-12345 (Fig. 2, C and D). Both TRF1 and GMD exhib-
ited more efficient competition than their corresponding TBM
peptides alone, suggesting that their quaternary structures
present TBMs in orientations that allow them to simultane-
ously engage ARCs in ways that a single peptide cannot. Based
on these results, we surmised that the competitive efficiency of
TRF1 and GMD is a composite of the individual TBM affinities,
and the total number and relative accessibility of TBMs are
determined by quaternary structure.

The effects of quaternary structure alteration

We further tested the contribution of TRF1 and GMD qua-
ternary structure to TNKS interaction using site-directed
mutagenesis to perturb their multimeric states. Mutations
A74D/A75P and W77P within the TRF1 dimerization domain
disrupt DNA binding, presumably through disruption of the
dimer interface (28) (Fig. S2A); however, the effect of these
mutations on the multimeric state of TRF1 has not been
directly assessed. Using size-exclusion chromatography and
sedimentation analysis, we demonstrated that TRF1 constructs
A74D/A75P and W77P are monomers in solution (Fig. S2,
B–G). In contrast to TRF1, there are no published mutations
that disrupt the dimer-of-dimers quaternary structure of GMD.
The GMD dimer consists of two antiparallel monomers with a
domain swap region that aids in forming the active sites where
cofactors bind (Fig. S3A). Two GMD dimers form a tetramer,
stabilized by two patches of hydrophobic residues. We intro-
duced two sets of mutations designed to disrupt the tetramer-
ization interface: A125D/G129A and A181W/Y185D (Fig. S3A,
center). Size-exclusion chromatography demonstrated that
both constructs elute at later volumes than WT GMD, indicat-
ing that they are tetramerization-deficient (Fig. S3B).

Dimerization-deficient TRF1 constructs showed a signifi-
cant decrease in binding relative to WT TRF1 in a pulldown
assay with TNKS-12345 (Fig. 3A), consistent with dimerization
contributing to the overall affinity of the interaction. Tetramer-
ization-deficient GMD constructs also showed an approximate
50% decrease in binding (Fig. 3B). The dimer-deficient TRF1
mutants and the tetramer-deficient GMD mutants were
slightly worse competitors than their WT counterparts in com-
petition binding experiments (Fig. S1, B and C). PARP activity

assays demonstrated that dimer-deficient TRF1 constructs are
PARylated significantly less than dimeric WT TRF1 (Fig. 3C),
consistent with a weakened interaction. Similar to WT GMD,
tetramer-deficient GMD constructs were not PARylated (Fig.
3D), despite maintaining a notable level of interaction with
TNKS (Fig. 3B). This result indicated that disruption of the
GMD quaternary structure does not reveal or expose potential
sites of modification. Based on the deficiencies in binding (for
GMD and TRF1) and PAR modification (for TRF1) resulting
from mutations targeting quaternary structure, we conclude
that avidity plays an important role in TNKS interaction with
GMD and TRF1, allowing these proteins to engage multiple
ARCs.

ARC bias and binding distribution of TRF1 and GMD

Given that TRF1 and GMD both appear to engage multiple
ARCs yet yield different outcomes in PARylation assays, we
sought to determine whether they exhibited different binding
distributions across the ARCs or whether their binding was
biased toward specific and potentially different ARCs. To
determine whether the sequence variations within the TBMs of
GMD and TRF1 impose an ARC bias, we used the FP binding
assay to measure the affinity of 5FAM-TRF1 and 5FAM-GMD
for a panel of TNKS-12345 constructs bearing only a single
functional ARC (1, 2, 4, or 5) (Fig. 4, A and B). Both TBMs
demonstrated similar binding preferences, with the highest
affinities toward ARC2 and ARC4 and lower relative affinities
for ARC5 and ARC1 (Fig. 4, A and B). Axin1 and insulin-regu-
lated aminopeptidase peptides demonstrated similar ARC
binding preferences (16), suggesting that the ARCs of TNKS
have a defined hierarchy of binding capacities for TBMs.

To determine whether the ARC bias is preserved in the con-
text of full-length proteins, we used pulldown analysis to eval-
uate the ability of GMD and TRF1 to interact with TNKS-12345
constructs with ARC mutations (Fig. 4, C–F). Neither GMD
nor TRF1 demonstrated robust interaction with TNKS-12345
constructs with single functional ARCs compared with fully
functional TNKS-12345, suggesting that neither binding part-
ner prefers any single ARC (Fig. 4, C and D). Pulldown analysis
using a panel of TNKS-12345 constructs in which each ARC
had individually been disrupted showed a similar profile for
GMD and TRF1 (Fig. 4E and F), with a slight difference
observed when ARC4 was mutated, where TRF1 binding
decreased but GMD binding remained unchanged (Fig. 4F, see
TNKS-123x5). Overall, the pulldown analysis suggested a sim-
ilar dependence on any given ARC. Interestingly, a previous
study found that ARC5 is required for TNKS interaction with
TRF1 (23), and we observed that loss of ARC5 significantly
decreased binding of both TRF1 and GMD (Fig. 4, E and F, see
TNKS-1234x). Although ARC5 alone does not exhibit robust
interaction with the TBM of TRF1 or GMD, it clearly has a role
in the observed interaction with full-length proteins, highlight-
ing that the full-length proteins engage multiple ARCs. More-
over, the analysis indicates that no single ARC bears the major-
ity of the binding affinity, and correspondingly, the knockout of
any individual ARC does not abrogate the interaction. Based on
the FP and pulldown binding analyses, the interaction modes of
TRF1 and GMD appear to utilize similar ARC footprints
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despite possessing different TBM sequences and quaternary
structures.

The effect of exchanging the TBMs of GMD and TRF1

The analysis in the previous section suggested that the TBMs
of TRF1 and GMD engage a similar distribution of ARCs. How-
ever, these observations do not necessarily exclude the possibil-

ity that the different TBMs direct interactions with TNKS in
distinct ways that might differentially influence the capacity to
be PARylated. We therefore exchanged the TBMs of GMD and
TRF1 to assess whether this swapping of sequences might alter
aspects of the TNKS interaction and/or PARylation potential of
either protein. Over the 8-amino-acid TBM-binding footprint,
GMD and TRF1 differ at positions 3, 4, 7, and 8 (Fig. 5A).

Figure 3. The effects of quaternary structure alteration on TNKS binding to and PARylation of TRF1 and GMD. A and B, results and quantification of
pulldown assays analyzing the binding of TNKS-12345 to multimerization-deficient TRF1 (A) and GMD (B) constructs. Histidine-tagged TNKS-12345 or TNKS-
xx3xx (binding-deficient control) were used to pull down untagged TRF1 and GMD constructs with multimerization-disrupting mutations. For quantification,
binding partner density was normalized to the density of TNKS-12345 in each respective reaction. C and D, TNKS PARP activity assays analyzing the PARylation
of multimerization-deficient TRF1 (C) and GMD (D) constructs. The quantification of PARylation of TRF1 constructs is shown in the bottom plot of C. The
designated reaction mixtures were analyzed by SDS-PAGE (Load) and by Western blot analysis of PARylation (�PAR). A His-tagged protein (Stnd) was added to
each reaction after quenching to assess transfer efficiency of the blot; the protein was detected with an anti-His antibody (�His). NS-TNKS, TRF1, and GMD were
each loaded at 0.5�M for the TNKS activity assays. Data represent the mean, error bars represent S.D. The black divider lines in the center of each gel and Western
blot designate where the image has been sliced for presentation. For C and D, see Fig. S3, C and D, for complete lanes for Western blots.
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Mutagenesis was performed such that positions 3 and 4 were
exchanged to yield constructs TRF1(Pos. 3/4) and GMD(Pos.
3/4), positions 7 and 8 were exchanged to yield TRF1(Pos. 7/8)
and GMD(Pos. 7/8), and all differing positions were exchanged
to yield a complete swapping of the two TBM sequences, con-
structs TRF1[G] and GMD[T] (Fig. 5A).

Pulldown analysis of the TRF1 TBM mutant constructs dem-
onstrated that all sequence alterations reduced binding (Fig.
5B). Binding of both TRF1(Pos. 7/8) and TRF1[G] was near

background levels, suggesting significant inhibition of binding.
Exchanging the TBM of TRF1 with the lower-affinity TBM of
GMD therefore decreases interaction with TNKS, and consis-
tent with the TBM footprint spanning over 8 residues (15),
residues at positions 3/4 and 7/8 both make contributions to
overall binding. In agreement with the pulldown interactions,
PARylation assays utilizing NS-TNKS showed decreased PAR
signal for each of the TBM exchange mutants relative to WT
TRF1 (Fig. 5C). The simplest interpretation of these results is

Figure 4. TNKS binding footprint of TRF1 and GMD. A and B, FP binding analysis of TRF1 (A) and GMD (B) peptide interaction with TNKS-12345 and
TNKS-12345 constructs bearing a single functional ARC. Binding was deemed NQ if the binding curve did not allow for robust KD determination. TNKS variants
that exhibited NQ binding were analyzed in at least two separate experiments, and all other KD values were determined from a minimum of three different
experiments. Data represent the mean, error bars represent S.E. C and D, results and quantification of pulldown experiments analyzing the binding of untagged
TRF1 and GMD to TNKS-12345 constructs with single functional ARCs. Input proteins (Load) and elution fractions (Elute) were analyzed by SDS-PAGE. E and F,
results and quantification of pulldown experiment analyzing the binding of untagged TRF1 and GMD to TNKS constructs where each individual ARC has been
rendered nonfunctional. Input proteins (Load) and elution fractions (Elute) were analyzed by SDS-PAGE. Binding data for WT construct TNKS-12345 and
TNKS-xx3xx are used as a reference in D and F and are the collective result of multiple experiments. Binding partner density was normalized to the density of
TNKS in each reaction. Data represent the mean, error bars represent S.D. mP, milli-polarization units.
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that the TBM swap has largely influenced the affinity of TRF1
interaction with TNKS, rather than imposing a new TBM bind-
ing distribution that negatively influences PARylation capacity.

The TBM exchange mutants of GMD had no major impact
on TNKS-12345 binding relative to that of WT GMD, although
there was a general tendency toward increased interaction that
correlates with the introduction of the higher-affinity TBM
of TRF1 (Fig. 5D). Furthermore, whereas the TRF1 TBM
exchange mutant had only a small effect in the competition
binding assay (Fig. S1D), the GMD TBM exchange mutants
showed an enhanced ability to compete with FITC-Axin bind-
ing (Fig. S1E). However, the apparent increase in GMD binding
did not lead to a change in the PARylation of GMD in that WT
GMD and each of the TBM exchange mutants showed no indi-
cations of being PARylated (Fig. 5E). We thus concluded that
the TBM alone does not dictate the capacity for a TNKS-bind-
ing partner to be modified and that the modification capacity is
more likely determined through inherent structural properties
of the binding partner.

GMD forms stable 1:1 complexes with TNKS-12345

To examine whether there were underlying structural
aspects that might explain the lack of GMD PARylation
despite its interaction with TNKS, we assessed the complex
formed between GMD and TNKS-12345. Indeed, we were
able to isolate a stable complex through coexpression of His-
tagged TNKS-12345 and untagged GMD followed by copu-
rification using Ni2�-affinity and size-exclusion chromatog-
raphy. Size-exclusion chromatography yielded a single peak
containing both proteins at an apparent ratio of 1:1 based on
Coomassie staining (Fig. S5, A and B). We used sedimenta-
tion velocity analytical ultracentrifugation (SV-AUC) to fur-
ther evaluate the complex relative to the individually puri-
fied components (Fig. 6, A–E). The c(S) distributions
demonstrate that TNKS-12345 and GMD sediment primar-
ily as single species at 2.5S and 4.8S, respectively (Fig. 6, A, B,
and D). The approximated molecular masses depict TNKS-
12345 as a monomer (79.0 versus 88.2 kDa theoretical), as we
have shown previously (16), and GMD as a tetramer (144
versus 169.6 kDa theoretical) (Fig. 6E), as expected based on
the crystal structure of GMD (Protein Data Bank (PDB) code
5IN5). The coexpressed complex of TNKS-12345 and GMD
sediments as two species, a primary species at 8.4S and a
secondary, albeit minor, species at 10.4S (Fig. 6D). These
data suggest that TNKS-12345 and GMD sediment primarily
as one stable species, yet higher-order complexes also form
to some degree. Unfortunately, the higher-order species pre-
cluded analysis with structural techniques such as small-an-

gle X-ray scattering, and we have not been able to obtain
crystals of the complex for X-ray structure analysis.

The approximated molecular mass of the primary TNKS-
12345:GMD peak corresponds to a complex of one TNKS-
12345 molecule and a tetramer of GMD (273.0 versus 257.8 kDa
theoretical), thus suggesting a 1:1 complex. Indeed, mixing
individuallypurifiedTNKS-12345andGMData1:1ratio(mono-
mer:tetramer) yielded a c(S) distribution very similar to the
coexpressed complex (Figs. 6F and S5, D and I). Shifting the
mixing ratio to 1:0.5, thereby decreasing the amount of GMD
relative to TNKS-12345, resulted in a new peak in the c(S) dis-
tribution that corresponds to unbound TNKS-12345 (Fig. S5, C
and I). Similarly, shifting the ratio to 1:2, thereby increasing the
amount of GMD relative to TNKS-12345, resulted in a new
peak that corresponds to unbound GMD (Fig. S5, E and I). A 1:1
mixture of TNKS-12345 with the TBM mutant GMD(R12A)
that disrupts the interaction yielded a c(S) distribution that cor-
responded to unbound GMD and TNKS-12345 (Fig. S5, F, H,
and I), demonstrating that complex formation requires a func-
tional TBM. Similarly, a 1:1 mixture of TNKS-12345 and a
GMD mutant with the TRF1 TBM (GMD[T]) obtained the
same distribution observed for WT GMD, demonstrating that
alteration of the TBM does not have a major impact on complex
formation (Fig. S5, G–I), suggesting that the TBM sequence
does not influence TNKS:GMD stoichiometry. Isothermal
titration calorimetry (ITC) analysis of the TNKS-12345:GMD
binding interaction also indicated an approximate 1:1 stoichi-
ometry (n � 0.8 � 0.1) (Fig. 6G). Ultimately, these data suggest
that the TNKS ankyrin repeat domain forms a stable 1:1 com-
plex with a tetramer of GMD.

SV-AUC analysis of TRF1 demonstrated that the unbound
protein sediments at 3.7S as a single species with the approxi-
mated molecular mass of a dimer (79 versus 100.5kDa theoret-
ical) (Fig. S2, C, F, and G). SV-AUC analysis of mixtures of
TNKS-12345 and TRF1 at different ratios yielded multipeak
c(S) distributions that extended as far out as 30S, indicating
formation of large aggregates that precluded further analysis
(Fig. S6, A–D and H). Reducing the concentration of both
TNKS-12345 and TRF1 and the TNKS:TRF1 ratio reduced the
aggregation tendency, yielding a two-peak distribution: a 2.4S
peak that corresponded to a TNKS-12345 monomer and a 4.2S
species (Fig. S6, E–H). The identity of this latter species could
not be established because the c(S) distribution was unaffected
by changing the TNKS-12345:TRF1 ratio, possibly due to
aggregation and/or solubility issues.

To determine the effect of concentration on aggregate for-
mation, we conducted a solubility assay wherein TNKS-12345

Figure 5. The effect of TBM alteration on TNKS binding to and PARylation of TRF1 and GMD. A, schematic of TBM mutations wherein specific residues
between the TRF1 and GMD TBMs were exchanged. B, results and quantification of pulldown experiments analyzing the binding of TRF1 constructs with TBM
swapping mutants. Histidine-tagged TNKS constructs were either WT TNKS-12345 or TNKS-xx3xx. Input proteins (Load) and elution fractions (Elute) were
analyzed by SDS-PAGE. Binding partner density was normalized to the density of TNKS in each reaction. Data represent the mean, error bars represent S.D. C,
TNKS PARP activity assays and quantification analyzing the effect of TBM mutation on PARylation of TRF1. The designated reaction mixtures were analyzed by
SDS-PAGE (Load) and by Western blot analysis of PARylation (�PAR). A His-tagged protein (Stnd) was added to each reaction after quenching to assess transfer
efficiency of the blot; the protein was detected with an anti-His antibody (�His). Data represent the mean, error bars represent S.D. D, results and quantification
of pulldown experiments performed as in B except using GMD constructs with TBM mutations. E, TNKS PARP activity assay performed as in C except using GMD
constructs with TBM mutations. For activity assays, NS-TNKS and GMD were loaded at 0.5�M, and TRF1 was loaded at 1�M to better resolve the subtle
differences in PARylation density. The black divider lines in the center of the gel in D designate where the image has been sliced for presentation. For C and E, see
Fig. S4, A and B, for the complete Western blot images.
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was mixed with an increasing concentration of TRF1. TNKS-
12345:TRF1 mixtures were incubated for 30 min at room tem-
perature and then spun. The supernatant and pellet were eval-
uated by SDS-PAGE. The solubility assay demonstrated that
the TNKS-12345 distribution was shifted to the insoluble pellet
as the TRF1 concentration increased (Fig. S7, A–C). This redis-
tribution was not observed with the mutant TRF1(R13A), sug-
gesting that the shift in TNKS-12345 solubility was due to
direct interaction with TRF1. The formation of aggregates
therefore appears to be due to TRF1 drawing TNKS-12345 into
the pelleted fraction. However, whether the TNKS-12345:
TRF1 interaction is inherently less soluble or TNKS-12345

preferentially binds a lower-solubility form of TRF1 could not
be resolved in this analysis.

Thus, the comparative sedimentation analysis indicated that
TRF1 and GMD behave quite differently when complexed with
TNKS-12345, with GMD primarily forming a stable and rea-
sonably well-defined 1:1 complex and TRF1 forming large
aggregates under most conditions. Because TNKS catalytic
activity is coupled to self-assembly through the SAM domain,
these differences could potentially represent fundamental
properties that relate to modification capacity. For example,
GMD may favor complexation with a single ankyrin repeat
scaffold and thus avoid modification by the TNKS polymer,

Figure 6. Analysis of TNKS-12345 and GMD complex formation. A–C, SV-AUC analysis of TNKS-12345 (A), GMD (B), or the coexpressed complex of TNKS-
12345 and GMD (C). The top panels show absorbance data (circles) and associated c(S) model fit (lines). The bottom panels show residuals for the fit. TNKS was
loaded at 9.1 �M (0.8 mg/ml) in A, GMD was loaded at 2.4 �M (tetramer concentration, 9.6 �M monomer, 0.4 mg/ml) in B, and TNKS-12345:GMD coexpressed
complex was loaded at 0.5 mg/ml (resulting in 2 �M for a 1:1 TNKS-12345:GMD tetramer ratio) in C. D and E, normalized c(S) distributions (D) and solution
parameters (E) derived from sedimentation velocity experiments (A–C). F, normalized c(S) distribution derived from sedimentation velocity experiments where
TNKS-12345 and GMD were mixed at different ratios (see Fig. S5, C–E and I, for data and model fitting to the data). G, ITC analysis of the interaction between
TNKS-12345 and full-length GMD (reported as tetramer concentration). Binding and thermodynamic parameters represent mean � S.D. of three independent
experiments.
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whereas TRF1 may complex in a manner that spans multiple
tankyrase-1 molecules and is thus easily accessible for
modification.

TNKS primarily targets glutamate/aspartate residues for
PARylation in vitro

In trying to understand the physical properties of GMD that
might underlie the resistance to PARylation, we considered the
recent observation that PARP-1 and PARP-2 can target specific
residues for modification. Although glutamate and aspartate
are commonly targeted for modification, PARPs 1 and 2 can
also target serine residues for modification under specific con-
ditions regulated by the protein histone PARylation factor 1
(HPF1) (29). Although the underlying mechanism of this switch
is not understood, PARP-specific residue targeting could fun-
damentally alter our understanding of PARP regulation. For
instance, if TNKS only modifies specific residues, reduced sol-
vent exposure of the targeted residues could allow GMD to
interact with TNKS without being PARylated.

We thus explored the relative solvent accessibility of several
PAR-accepting residues in GMD and TRF1 crystal structures.
Solvent accessibility was calculated for common PAR-accept-
ing residues using the program Surface Racer (30). These values
were normalized to the maximum possible solvent accessibility
for each free amino acid residue in solution (31), yielding per-
cent maximum exposures. GMD and the TRF1 dimerization
domain (TRF1-D), the largest fragment of TRF1 crystallized to
date, were compared with each other as well as with a group of
20 other homomultimeric proteins (Table S1). The 20 consen-
sus structures, GMD, and TRF1-D all demonstrated similar sol-
vent accessibility for PAR-accepting residues glutamate, lysine,
and arginine (Fig. 7A and Table S1). Exposure of GMD aspar-
tate and serine residues was somewhat lower than the consen-
sus, and there was a noticeable paucity of serine residues on the
surface of GMD (Fig. S8, A–D). TRF1-D, in contrast, demon-
strated higher exposure for both aspartate and serine residues,
with serine residues being almost 2-fold more exposed than the
consensus. Thus, if TNKS is a serine-targeting PARP, the
reduced GMD solvent accessibility could prevent GMD from
being PARylated. However, it is noteworthy that the pattern of
increased serine and aspartate exposure noted for TRF1 was
not observed in crystal structures of other modified TNKS-
binding partners (Fig. S8E).

Targeted PARylation of specific residues may explain how
GMD can resist modification; however, the amino acid prefer-
ences of TNKS have not been explored. To address possible
amino acid preferences, we analyzed the in vitro target sites of
TRF1 and TNKS itself. PAR is a transient posttranslational
modification that is rapidly removed from target proteins by
mono- and poly(ADP-ribosyl) hydrolases, with certain hydro-
lases removing ADP-ribose from specific amino acid types (32).
Residue-specific hydrolases in combination with anti-PAR
antibodies and MAR-binding reagents are proving to be invalu-
able tools in the exploration of PARP residue targeting (33).
Poly(ADP-ribose) glycohydrolase (PARG) efficiently degrades
PAR, yet it is extremely inefficient at removing the last MAR
moiety. A PARP activity assay demonstrated that PARG treat-
ment can remove PAR from PARP-1, NS-TNKS, and TRF1, yet

a residual MAR signal remains (Fig. 7, B and C). In addition, the
mutant construct PARP-1(E988Q) that only catalyzes MARy-
lation (34, 35) and its TNKS-equivalent NS-TNKS(E1291Q)
also retained a MAR signal following PARG treatment (Fig. 7, B
and C). In contrast to PARG, the hydrolases named terminal
ADP-ribose protein glycohydrolase 1 (TARG1) and ADP-ribo-
syl hydrolase 3 (ARH3) cleave specific amino acid–linked ADP-
ribose moieties, allowing them to remove the final MAR.
TARG1 can cleave MAR as well as whole PAR chains from
glutamate and aspartate residues (36), and ARH3 degrades PAR
chains similarly to PARG but can also remove MAR from serine
residues (33).

To examine whether TNKS is a serine-targeting PARP, we
conducted a hydrolase time series with TARG1, ARH3, and
both hydrolases in combination. The NS-TNKS(E1291Q) con-
struct was utilized in these experiments to better observe the
residue-specific de-MARylation activities of the hydrolases and
to improve quantification of assay results. NS-TNKS(E1291Q)
and TRF1 mixtures were incubated for 30 min, the reaction was
quenched with the PARP inhibitor rucaparib, and hydrolases
were then added. Samples were taken at specific times, and
these reactions were quenched by the addition of Laemmli sam-
ple buffer. Over the time series, TARG1 was able to significantly
reduce TRF1 and NS-TNKS(E1291Q) MAR density, consistent
with removal of MAR from glutamate residues (Figs. 7, D and E,
and S9A). However, TARG1 could not entirely remove the
MAR signal, suggesting that TNKS targets other residues as
secondary acceptors of PAR. ARH3 did not significantly reduce
either TRF1 or TNKS MAR signal, and combining ARH3 and
TARG1 did not remove more MAR than TARG1 alone. These
data suggest that glutamate/aspartate, and not serine, is the
primary residue targeted by TNKS for PARylation in vitro.
Notably, the TNKS MAR signal decreased to a lesser extent
than that of TRF1. TNKS automodification may therefore tar-
get residues other than glutamate/aspartate and serine, or
TNKS sites may simply be less accessible to the hydrolases used
in this experiment. We also confirmed that HPF1 does not alter
the substrate specificity of TNKS, in contrast to its action on
PARP-1 (Fig. S9, B and C).

Discussion

The adaptability of the TNKS ankyrin repeat domain allows
it to accommodate a considerable amount of sequence and
structural variation in binding partners. Structural plasticity is
undoubtedly critical for TNKS function as a scaffolding pro-
tein. However, TNKS-binding partners demonstrate such
remarkable heterogeneity that the parameters that influence
binding and PARylation are not well-understood. In this study,
we utilize the full-length versions of binding partners TRF1 and
GMD to expand our understanding of the parameters that con-
tribute to interaction with and modification by TNKS.

Using mutagenesis in combination with binding and activity
assays, we demonstrate that both the quaternary structure and
TBM sequence of TRF1 contribute to TNKS interaction as well
as the capacity for TRF1 to be modified by TNKS. Disrupting
TRF1 dimerization decreased interaction with TNKS signifi-
cantly and resulted in a subsequent decrease in PARylation. In
consideration of the TRF1 TBM sequence, the critical impor-
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tance of TBM residues at position 1 (Arg) and position 6 (Gly) is
well-established. However, our analysis of TBM exchange
mutants of TRF1 that altered positions 3/4, 7/8, and 3/4/7/8
indicates that changes at less stringently conserved positions
within the TBM can also affect TNKS interaction with TRF1.
Structural analysis of a TRF1 peptide bound to ARC2 revealed
that the side chains of the residues at positions 3, 4, and 7 do not
engage the ARC pocket (37). In contrast, the side chain of the
Asp-20 residue at position 8 interacts with an Arg residue
within TNKS. The TBM exchange mutant affecting positions
7/8 substitutes polar Asp-20 for a nonpolar Met residue, most
likely disrupting this Asp–Arg contact and significantly reduc-

ing TRF1 binding and PARylation. The decrease in binding and
PARylation of the TRF1(Pos. 3/4) construct suggests that these
residues have an indirect contribution to TNKS interaction.
Furthermore, the analysis of TNKS interaction with a library of
TBM peptides established sequence preferences for each of the
eight positions in the context of binding partner 3BP2 (15).
According to those preferences, the TRF1 TBM exchange
mutations used in this study should have increased binding;
however, in the context of the TBM of TRF1, each of the
mutants reduced interaction with TRF1. The observed varia-
tion in TBM sequences may thus represent a mechanism for
precisely modulating the specific affinity of each TNKS-bind-

Figure 7. TNKS as a glutamate-targeting PARP in vitro. A, solvent accessibility of common PARylated residues in TRF1-D (DNA-binding domain) and GMD
crystal structures compared with a consensus residue exposure derived from a collection of homomultimeric crystal structures (see Table S1). B and C, activity
assays examining the effects of PARG treatment of PAR/MAR-modified PARP-1 (B) and PAR/MAR-modified NS-TNKS with TRF1 (C). PARP-1 constructs consisted
of WT PARP-1 and NS-TNKS as well as mutants PARP-1(E988Q) and NS-TNKS(E1291Q) that are confirmed to primarily synthesize MAR. The designated reaction
mixtures were analyzed by SDS-PAGE (Load) and by Western blot analysis of PARylation (�PAR) and MARylation (�MAR). A His-tagged protein (Stnd) was added
to each reaction after quenching to assess transfer efficiency of the blot; the protein was detected with an anti-His antibody (�His). D, NS-TNKS(E1291Q) and
TRF1 were mixed, incubated for 30 min (with or without NAD as indicated), and then quenched by the addition of PARP inhibitor rucaparib. MAR-modified
NS-TNKS(E1291Q) was then treated with the hydrolases TARG1 and ARH3 (alone and in combination) over a time course to measure their ability to remove
MAR. Reactions were quenched by the addition of Laemmli sample buffer. The designated reaction mixtures were analyzed by SDS-PAGE (Load) and by
Western blot analysis of MARylation (�MAR). A His-tagged protein (Stnd) was added to each reaction after quenching to assess transfer efficiency of the blot;
the protein was detected with an anti-His antibody (�His). See Fig. S9, D and E, for the complete SDS-PAGE and Western blot images. E, quantification of the
TRF1 band intensity from D. Quantification of the band intensity of NS-TNKS(E1291Q) is shown in Fig. S9A. Data represent the mean, error bars represent S.D.
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ing partner, rather than modulating a single “ideal” binding
sequence.

Substituting the TBM of GMD with the higher-affinity
sequence of TRF1 did not have a pronounced impact on bind-
ing, and it did not result in PARylation of GMD. As a tetramer
with four TBMs, avidity may facilitate higher-affinity interac-
tions between GMD and TNKS-12345, perhaps overriding sub-
tle changes in the affinity of the TBM sequence. Consistently,
tetramer-deficient GMD constructs demonstrated significantly
reduced binding to TNKS-12345 relative to WT GMD, suggest-
ing that the GMD:TNKS binding mode involves several TBMs
on a single GMD tetramer. We further observed that GMD
forms a stable 1:1 complex with TNKS-12345, suggesting that
the multiple TBMs of a GMD tetramer primarily interact with a
single ankyrin repeat region of TNKS. In contrast, we were
unable to obtain insights into the stoichiometry and structure
of the TRF1 complex with TNKS, largely due to solubility issues
that arose after mixing the otherwise reasonably well-behaved
samples. We anticipate that the formation of insoluble aggre-
gates of TRF1 and TNKS could be indicative of the type of
complex these proteins might form in cells when multiple cop-
ies of TRF1 coating telomeres and multimeric forms of TNKS
interact.

Using residue-specific hydrolases, we showed that TNKS pri-
marily targets glutamate/aspartate residues as acceptors of
ADP-ribose on itself and TRF1 in vitro. We also demonstrated
that the newly identified HPF1, which steers PARP-1/PARP-2
toward modifying serine residues, does not have the same
impact on TNKS modification. The mechanisms underlying
PARP residue targeting, let alone its potential implications for
TNKS activity, are not well-understood. TNKS may not
undergo this level of regulation, or perhaps there are other cel-
lular factors that control TNKS in this manner that have yet to
be identified.

Nevertheless, despite possessing surface-exposed glutamate/
aspartate and forming a stable complex with the ankyrin repeat
domain, GMD was not detectably modified. Although the
absence of modification is consistent with previously published
findings (17), the constraints that suppress GMD PARylation
remain enigmatic. In PARP-1, PARylation is autoinhibited by a
helical domain within the catalytic region. When PARP-1
DNA-binding domains engage damaged DNA, a series of inter-
domain contacts destabilize the autoinhibited conformation,
thus enabling PARylation. Although the autoinhibitory helical
domain is absent in the CAT of TNKS, direct and specific inter-
actions between binding partners and the CAT could serve as
an additional layer of regulating whether a given TNKS-binding
partner is modified. A recent study has suggested that TNKS
activity is regulated by the formation of a CAT:CAT dimer (38).
In the proposed model, SAM-mediated self-assembly causes
the CAT domains of neighboring TNKS molecules to assemble
along a specific interface. The formation of the dimer interface
is proposed to induce a more open conformation that is more
accessible to NAD�. In support of this model, disruption of
the SAM:SAM interface, or proposed CAT:CAT interface,
greatly reduced catalytic activity (38). The propensity for GMD
to form 1:1 complexes with the TNKS ankyrin repeat domain
suggests that GMD preferentially engages monomeric, and per-

haps inactive, TNKS. Using this mechanism, GMD could avoid
being PARylated and play a role in restraining TNKS activity in
cells. GMD binding could also potentially shield the ankyrin
repeat region from other binding partners, perhaps buffering
TNKS activity in certain stages of the cell cycle.

Although we could produce a form of catalytically active
TNKS suitable for biochemical analysis (NS-TNKS), the pro-
tein was not of suitable quality to answer detailed structural
questions regarding the role of GMD on TNKS self-assembly or
whether GMD has some other structural influence that regu-
lates catalytic output (e.g. locking the CAT in an inactive or
sequestered conformation). However, it is notable that the
tetramer-deficient mutants still bound to TNKS at some level
but did not undergo PARylation, arguing against the GMD
tetramer having a specific structural impact on TNKS that
modulates activity. Alternatively, GMD may possess structural
features that are resistant to modification. PARP-1 automodi-
fication sites have been mapped utilizing MS (39). Aside from a
few sites near the CAT domain, PARP-1 primarily modifies
glutamate, aspartate, and lysine residues that are on flexible
linkers or adjacent domains. Flexibility or even specific surface
and sequence features may therefore be a critical determinant
for sites of PARylation. Crystal structures of GMD demonstrate
that individual monomers adopt globular, condensed cylindri-
cal structures that assemble into tightly packed tetramers,
which could represent the physical basis for the lack of GMD
PARylation. It is also important to note that although GMD is
not PARylated, TNKS may impact GMD function by binding
GMD and then PARylating subsequent GMD-binding partners
or even simply blocking substrate-binding sites.

Pharmacological inhibition of PARP-1 catalytic activity is a
potent treatment for BRCA-deficient cancers (40). Similarly,
inhibition of TNKS catalytic activity has applications in fibrosis,
colorectal cancer, and gastric cancer (4, 41, 42, 44). However,
the current PARP inhibition strategy involves using small mol-
ecules to compete with NAD� for the catalytic site (45).
Although effective for PARP-1, this method of inhibition has
been shown to simultaneously inhibit multiple TNKS functions
(46, 47). CAT-targeted inhibition strategies may therefore
affect all TNKS functions, and as some of these functions
include apoptosis and Golgi trafficking, the current PARP inhi-
bition strategy may have undesirable off-target effects. Alterna-
tively, we have demonstrated that the interaction between
TRF1 and the ankyrin repeat domain is extremely sensitive to
TBM swapping and changes in multimeric state. Alteration
of the TBM sequence strongly decreased TNKS:TRF1 interac-
tion and PARylation without disrupting TRF1 architecture.
Targeted disruption of specific ARC:TBM interactions may
therefore represent a novel TNKS inhibition strategy that does
not target the CAT, and this strategy has recently been shown
to be an effective means for inhibiting TNKS Wnt signaling
function (48). Importantly, due to the high structural similarity
of CAT domains within the PARP family, existing PARP inhib-
itors can inhibit multiple PARP family members. Indeed, the
least selective Food and Drug Administration–approved PARP
inhibitor, rucaparib, is a potent TNKS inhibitor (49). The ability
to target a domain that is unique to TNKS may facilitate TNKS
inhibition without affecting other family members, allowing for
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a better understanding of the cellular functions of TNKS as well
as the physiological effects of TNKS inhibition therapy.

Experimental procedures

Gene cloning

Human TNKS constructs were expressed from a synthetic
TNKS gene (GenScript) in pET47 (ARC1–5, residues 174 –961)
or pET50 (NS-TNKS, residues 174 –1327) expression vectors.
Human GMD and TRF1 were expressed in pET28 and were
kind gifts from Dr. Susan Smith (New York University) and
Dr. David Chen (University of Texas Southwestern), respec-
tively. TNKS, TRF1, and GMD mutants were created using
QuikChange mutagenesis. Human HPF1 was produced as a
fusion to an N-terminal SUMO tag from a pET28 expression
vector (BioBasic). Human PARG (residues 488 –976) was pro-
duced from a pET28b expression vector, a kind gift from Dr.
Ivan Ahel (University of Oxford, Cambridge, UK).

Protein and peptide preparation

ARC1–5 constructs were expressed as His6 fusion proteins as
described previously as was fluorescently labeled Axin peptide
(16). NS-TNKS constructs were expressed as NusA-SUMO
(SUMO)-tagged fusion proteins in Escherichia coli strain
BL21(DE3). Cells were grown to 0.8 OD in LB medium with 10
mM benzamide and induced with 200 �M �-D-thiogalactopyra-
noside at 16 °C for 20 h. Cells were pelleted and resuspended in
25 mM HEPES, pH 8.0, 500 mM NaCl, 0.5 mM tris(2-carboxy-
ethyl)phosphine (TCEP), and 5% glycerol and stored at �20 °C.
Cell pellets were thawed in a room temperature water bath and
adjusted to 0.1% Nonidet P-40 (NP-40), and the following pro-
tease inhibitors: 1 mM phenylmethylsulfonyl fluoride, 0.5 �g/ml
leupeptin, 0.7 �g/ml pepstatin A, 0.5 �g/ml antipain, and 0.5
�g/ml aprotinin. Samples were lysed using a cell homogenizer
(Avestin) and then spun for 2 h at 40,000 � g at 4 °C. Superna-
tants were loaded onto a 5-ml HP chelating column (GE
Healthcare) charged with Ni(II) pre-equilibrated with lysis
buffer without NP-40. The column was washed with a low-salt
buffer (500 mM NaCl, 25 mM HEPES, pH 8.0, 0.5 mM TCEP, 20
mM imidazole, 5% glycerol, and protease inhibitors), high-salt
buffer (1 M NaCl, 25 mM HEPES, pH 8.0, 0.5 mM TCEP, 20 mM

imidazole, 5% glycerol, and protease inhibitors), and low-salt
buffer again and eluted with elution buffer (500 mM NaCl, 25
mM HEPES, pH 8, 0.5 mM TCEP, 400 mM imidazole, 5% glyc-
erol, and protease inhibitors). Samples were then diluted 1:1 in
50 mM Tris, pH 7.5, 5% glycerol, 1 mM EDTA, and 0.1 mM TCEP
and loaded onto a 5-ml HP heparin column (GE Healthcare)
equilibrated with 250 mM NaCl, 25 mM Tris, pH 7.5, 5% glyc-
erol, 0.1 mM TCEP, and 1 mM EDTA. Proteins were eluted with
an increasing gradient of NaCl, pooled, concentrated, and
stored at �80 °C. Protein concentrations were measured using
absorbance at 280 nm and confirmed visually on SDS-PAGE
versus a BSA standard. GMD and TRF1 constructs were
expressed in E. coli strain Rosetta II (DE3), grown, and pelleted
as with the NS-TNKS constructs although without the addition
of benzamide. Cells expressing GMD and TRF1 were lysed and
run over a nickel column the same as with NS-TNKS. TRF1
purification also included heparin chromatography. TRF1 and
GMD were concentrated and then passed over a Sephacryl 200

gel filtration column (GE Healthcare) in 20 mM HEPES, pH 8.0,
150 mM NaCl, 0.1 mM TCEP, 0.1 mM EDTA, and 5% glycerol.
Fractions containing TRF1 or GMD were pooled, mixed with
SUMO-protease ULP1, and dialyzed for a minimum of 2 � 2 h
against 2 liters of 25 mM HEPES, pH 8.0, 150 mM NaCl, 30 mM

imidazole, 0.1 mM TCEP, and 5% glycerol at 4 °C. Samples were
then loaded onto a 5-ml chelating column pre-equilibrated
with dialysis buffer, and untagged proteins were collected in
the flow-through. Proteins were then concentrated as with NS-
TNKS. TNKS-12345:GMD complexes were obtained by simul-
taneously expressing both proteins in Rosetta II cells. Stable
complexes were purified by chelating column and size-exclu-
sion chromatography and concentrated as described above.
PARG was expressed in BL21(DE3) cells and purified over
Ni(II) and gel-filtration columns as described above. SUMO-
HPF1 was expressed in E. coli Rosetta II cells and purified over
a Ni(II) column as described for TNKS above but in the absence
of glycerol. The SUMO tag was then digested using ULP1 pro-
tease, and the cut sample was passed again over a Ni(II) column.
The untagged HPF1 that flowed through the column was col-
lected and diluted to 50 mM NaCl and then loaded consecu-
tively onto heparin and gel-filtration columns as described
above. PARP-1 constructs were expressed and purified as
described previously (8). Fluorescently labeled and unlabeled
TRF1 (N-APSPRGCADGRDADPT-C) and GMD (N-CP-
SARGSGDGEMGKPR-C) were ordered from GenScript.
Lyophilized peptides were resuspended in 20 mM HEPES, pH
8.0, 100 mM NaCl, 0.1 mM TCEP, and 1 mM EDTA and then
stored at �80 °C. Purified TARG1 and ARH3 proteins were a
kind gift from Dr. Ivan Ahel and purified as described previ-
ously (36, 50).

Pulldown binding analysis

ARC1–5 constructs (1 �M) were mixed with TRF1 (1 �M) or
GMD (2 �M) constructs in a buffer consisting of 25 mM HEPES,
pH 8.0, 150 mM NaCl, 0.1 mM TCEP, 5% glycerol, and 0.2%
NP-40 and incubated for 30 min at room temperature. Imidaz-
ole was added to 50 mM final concentration, and samples were
loaded onto 10 �l Ni(II)-Sepharose beads in Wizard mini spin
columns (Promega) pre-equilibrated with 25 mM HEPES, pH
8.0, 500 mM NaCl, 0.1 mM TCEP, 5% glycerol, 0.2% NP-40, and
50 mM imidazole. Samples were incubated for 10 min at room
temperature and then spun for 1 min at 10,000 � g. Samples
were then washed four times by incubating in equilibration
buffer for 5 min at room temperature followed 1 min spins at
10,000 � g. Samples were treated with 25 mM HEPES, pH 8.0,
500 mM NaCl, 0.1 mM TCEP, 5% glycerol, 0.2% NP-40, and 400
mM imidazole; incubated for 10 min; and eluted by spinning
down. The flow-through was then resolved by SDS-PAGE.
TNKS and binding partner densities were quantified using
ImageJ software (51). Binding partner density was normalized
to the density of the TNKS construct in the same pulldown
reaction. All pulldown data represent results from a minimum
of three experiments.

Analytical gel filtration

Proteins were diluted to 3 mg/ml in 20 mM HEPES, pH 8.0,
0.1 mM TCEP, 0.1 mM EDTA, and 5% glycerol. Samples were
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then spun for 10 min at top speed on a tabletop centrifuge at
4 °C, and 100 �l of each sample was loaded onto a Superdex 200
10/300 column. Molecular weight estimates were determined
from a calibration curve derived from the apparent elution vol-
umes of gel-filtration standards (Bio-Rad).

PARP activity assay Western blotting

PARP-1 (0.25 �M) constructs and NS-TNKS (0.5 �M) con-
structs were mixed with NAD� (250 �M and 5 mM, respec-
tively) with equimolar concentrations of DNA (18-bp oligonu-
cleotide) or 0.5 or 1 �M of TRF1/GMD constructs (see figure
legends), respectively, in a buffer consisting of 20 mM HEPES,
pH 8.0, 150 mM NaCl, 0.1 mM TCEP, 0.1 mM EDTA, 5% glycerol,
and 5 mM MgCl2. Mixtures were incubated for 30 min and
quenched with addition of 6� concentrated Laemmli sample
buffer. A His6-tagged ARC1–3 (residues 174 – 649) construct
was included after quenching with Laemmli sample buffer at
0.2 �M as a loading and transfer control. Reactions were
incubated for 10 min at 100 °C and resolved by 7.5% SDS-
PAGE. The gel was transferred onto nitrocellulose membranes
(Pierce) and blocked for 1 h in Tris-buffered saline with Tween
(TBST; 20 mM Tris, pH 7.5, 150 mM NaCl, and 0.1% Tween 20)
supplemented with 5% evaporated cow’s milk. Blots were incu-
bated overnight with 1:2000 mouse anti-His6 (Invitrogen) and
1:3000 rabbit anti-PAR (Trevigen) antibodies at 4 °C overnight.
Blots were washed with TBST and Tris-buffered saline (20 mM

Tris, pH 7.5, and 150 mM NaCl) and then incubated with
1:15,000 IRDye�800CW donkey anti-rabbit (LI-COR Biosci-
ences) and 1:20000 IRDye680 goat anti-mouse (LI-COR Biosci-
ences) for 1 h at room temperature. Blots were washed again
and imaged on a LI-COR Odyssey gel imager (ODY-2477).
Hydrolase cleavage assays were performed by mixing the
PARP-1 (mixture described above) or NS-TNKS(E1291Q) (2
�M NS-TNKS(E1291Q), 2 �M TRF1, and 20 mM NAD�) mix-
tures and incubating them for 30 min at room temperature. The
reactions were quenched with 3.5 �M rucaparib and incubated
for 10 min. Hydrolase (PARG, TARG1, or ARH3) was added at
1 �M. Reactions containing PARG were quenched after 30 min
with Laemmli sample buffer, and time series reactions contain-
ing TARG1 or ARH3 were quenched at the times indicated.
The samples were resolved, transferred, and developed as
before except a MAR-binding reagent fused to a rabbit Fc tag
(Millipore, catalog number MABE1076) was used at a dilution
of 1:2000 instead of the rabbit anti-PAR. PAR and MAR densi-
ties were quantified using ImageJ software. All data represent a
minimum of three separate experiments.

Fluorescence polarization binding and competition assays

Binding and competition reactions were performed and fit as
described previously (16). Binding was classified as nonquanti-
fiable (NQ) if the binding curve did not allow for a robust KD
determination. TNKS variants that exhibited NQ binding were
analyzed in at least two separate experiments, and all other KD
values were determined from a minimum of three separate
experiments. Competition experiments contained 27 nM Axin1
peptide and 1.5 �M TNKS-12345. Competitor concentrations
represent multimers or monomers, as designated in figure leg-

ends. All competition data represent a minimum of three
experiments.

Isothermal titration calorimetry

All titrations were performed at 22 °C using a Nano-ITC (TA
Instruments). Protein samples were dialyzed twice against 500
ml of a buffer containing 50 mM Tris, pH 8.5, 150 mM NaCl, 2
mM TCEP, and 5% glycerol at 4 °C. TNKS-12345 was loaded
into the 350-�l cell at 5 �M and titrated with 45 �M GMD
(tetramer concentration). The titration began with a 0.4-�l
injection followed by 24 subsequent injections of 2 �l at 3-min
intervals. The data were analyzed, and thermodynamic param-
eters were determined using NanoAnalyze software (TA
Instruments) with a one-site independent model. GMD ITC
data represent three separate experiments.

Analytical ultracentrifugation

AUC samples were dialyzed for 2 � 2 h in 500 ml of buffer
containing 50 mM Tris, pH 8.5, 150 mM NaCl, 2 mM TCEP, and
5% glycerol at 4 °C. All samples except TNKS-12345 and TRF1
mixtures were spun at 10 °C in a microcentrifuge at maximum
speed for 10 min prior to loading. Samples were analyzed in an
XL-I analytical centrifuge (Beckman) in a 50Ti rotor pre-equil-
ibrated at 10 °C. Sedimentation velocity analysis was performed
in two-sector cells with quartz windows. Absorbance scans at
280 nm were taken at �3-min intervals for �10 h while spin-
ning at 50,000 rpm. Continuous sedimentation coefficient and
c(S) plots and frictional ratios (f/f0) were generated using
SEDFIT by fitting the Lamm equation to the absorbance
boundaries (52). Theoretical molecular weights, extinction
coefficients, partial specific volumes, buffer density (r, 1.0074
g/cm3), and buffer viscosity (h, 0.01 poise) were calculated using
SEDNTERP (43).

Solubility assay

TNKS-12345 and TRF1 constructs were mixed with TNKS-
12345 at 0.4 �M and TRF1 added at increasing concentrations
and incubated at room temperature for 30 min in 20 mM

HEPES, pH 8.0, 0.1 mM TCEP, 0.1 mM EDTA, and 5% glycerol.
Samples were then spun for 10 min on a tabletop centrifuge at
full speed. The supernatant was removed to a separate tube, and
the pellet was resuspended in an equal volume of buffer. Reac-
tions were resolved by 12.5% SDS-PAGE and stained using
Imperial protein stain (Pierce). Protein densities were quanti-
fied using ImageJ software. Data represent three separate
experiments.

Solvent accessibility

Solvent accessibility was calculated using Surface Racer (30)
using the Richards’ van der Waals radii sets and a probe radius
of 1.4 Å. Surface accessibility data from the output files are
averaged by amino acid type. Average accessibility was aver-
aged for all consensus structures and compared with the max-
imum calculated solvent exposure in Tien et al. (31).

HPF1 assay

PARP-1 (1 �M) was incubated with DNA (1 �M) and HPF1 (1
�M) where indicated for 10 min at room temperature in 20 mM
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Tris, pH 7.5, 50 mM NaCl, 5 mM MgCl2, and 0.1 mM TCEP.
NAD� was added to a final concentration of 0.5 mM for 5 min.
Reactions were stopped by the addition of PARP inhibitor veli-
parib (0.5 mM). Hydroxylamine (1 M) was added when indicated
for 3 h at room temperature, and the treatment was quenched
by the addition of Laemmli sample buffer. The reactions were
resolved by 12% SDS-PAGE and visualized using Imperial stain.
NS-TNKS reactions were performed in a similar manner but
using 0.35 �M NS-TNKS and TRF1 and with an incubation time
of 30 min for the initial mixtures followed by a 30-min incuba-
tion with 2.5 mM NAD�. The reactions were resolved by SDS-
PAGE, transferred onto a nitrocellulose membrane, and
detected using the anti-pan-ADP-ribose binding reagent from
Millipore (MABE1016) at a 1:1500 dilution.
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