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ABSTRACT tRNA m2G10/m2
2G10 methyltransferase (archaeal Trm11) methylates the

2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethyl-
guanosine (m2

2G10) via N2-methylguanosine (m2G10). We determined the complete
sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermo-
coccus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass
spectrometry following enzymatic digestion of tRNATrp identified 15 types of modi-
fied nucleoside at 21 positions. Several modifications were found at novel positions
in tRNA, including 2=-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2=-
O-methyluridine at position 20, 5,2=-O-dimethylcytidine at position 32, and 2=-O-
methylguanosine at position 42. Furthermore, methylwyosine was found at position
37 in this tRNATrp, although 1-methylguanosine is generally found at this location in
tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene dis-
ruptant strains and compared their tRNATrp with that of the wild-type strain, which
confirmed the absence of m2

2G10 and other corresponding modifications, respec-
tively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 dou-
ble disruptant strain suggested that this methylation is mediated by Trm14, which
was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew
poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival
at high temperatures. The m2

2G10 modification might have effects on stabilization
of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these
results provide new clues to the function of modifications and the substrate specific-
ities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for
tRNA stabilization of this archaeon at high temperatures.

IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can
grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined
by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside
were observed at 21 positions, including 5 modifications at novel positions; in addi-
tion, methylwyosine at position 37 was newly observed in an archaeal tRNATrp. The
construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the en-
zymes responsible for modifications in this tRNA. The lack of 2-methylguanosine
(m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this
position is methylated by Trm14, which was previously identified as an m2G6 meth-
yltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11
is required for T. kodakarensis survival at high temperatures.
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Adaptor molecule tRNA is required for the conversion of genetic information
encoded by nucleic acids to amino acid sequences in proteins. Numerous tRNA

modifications are needed for sufficient and correct protein synthesis. To date, more
than 100 modified nucleosides have been found in tRNAs from various living organisms
(1). In particular, tRNAs from hyperthermophiles contain various modified nucleosides
(2–6), which are thought to maintain the functions of tRNA at high temperatures.
However, there are only a few examples of a tRNA sequence containing modified
nucleosides from hyperthermophilic archaea (i.e., Sulfolobus acidocaldarius initiator
tRNAMet [7] and, as published during the preparation of this report, Methanocaldococ-
cus jannaschii tRNAs with several modifications mainly found in anticodon-arms in
tRNAs [8]). In general, determining the sequence of tRNA from thermophiles is not so
easy, because these tRNAs are structurally very rigid and contain numerous modified
nucleosides. In some cases, preparation of standard compounds of modified nucleo-
sides is necessary.

In a recent study, we reported the crystal structure of tRNA m2G10/m2
2G10 meth-

yltransferase from Thermococcus kodakarensis (9), a hyperthermophilic archaeon that
grows at 60 to 100°C (10). Archaeal tRNA m2G10/m2

2G10 methyltransferase catalyzes
the transfer of a methyl group from S-adenosyl-L-methionine to the 2-amino group in
guanosine at position 10 (G10) in tRNA and forms N2,N2-dimethylguanosine (m2

2G) via
the intermediate N2-methylguanosine (m2G) (11). Although its eukaryotic counterpart
(Trm11) requires another subunit (Trm112) (12, 13) for enzymatic activity (14), the
archaeal enzyme does not require a partner subunit (11). Furthermore, the eukary-
otic Trm11–Trm112 complex catalyzes a single methyl transfer reaction and forms
only m2G10 in tRNA. Therefore, the archaeal enzyme has been called Trm-G10 (11)
or Trm-m2

2G10 (15) to distinguish it from the eukaryotic enzyme. In this study,
however, we use the name “archaeal Trm11” instead of Trm-G10 or Trm-m2

2G10
enzyme, owing to the amino acid sequence similarity between the eukaryotic and
archaeal enzymes (9).

Many types of modified nucleoside are specifically formed in individual tRNAs, and
they are considered to confer various functional hallmarks on tRNA in a coordinated
manner. To gain insight into the molecular and physiological roles of m2

2G10 and
Trm11, it is necessary to reveal the complete sequence of substrate tRNAs for Trm11,
including other modified nucleosides. In the present work, we therefore determined
the complete sequence of tRNATrp isolated from T. kodakarensis and found several
modified nucleosides at novel positions that have not been detected in any tRNA
reported so far. Furthermore, established genetic manipulation systems for T. kodaka-
rensis (16–20) enabled us to construct a Tk0981 (trm11) gene disruptant strain (Δtrm11)
and additional gene disruptant strains responsible for other modified nucleosides. By
analyzing tRNATrp from the disruptant strains, we observed the lack of m2

2G10 in
tRNATrp from the Δtrm11 strain and confirmed that corresponding modified nucleo-
sides were absent in individual gene disruptant strains.

We also studied the growth of the trm11 gene disruptant (Δtrm11) strain at high
temperatures. We discuss our findings in terms of the stability of tRNA in hyperther-
mophilic archaea and the survival of these microbes at high temperatures.

RESULTS
Purification and sequencing of tRNATrp from T. kodakarensis. To determine all

modified nucleosides formed in a substrate tRNA for Trm11 of T. kodakarensis, we used
tRNATrp as the target tRNA for the following reasons. First, there is only one tRNATrp gene
in the genome; therefore, the gene is causally expressed in T. kodakarensis cells. Second, the
sequence of tRNATrp differs considerably from that of other tRNA; therefore, it should be
purified relatively easily by the solid-phase DNA probe method (21). Third, given that the
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nucleosides at positions 6 and 26 in tRNATrp are both C (Fig. 1), it was expected that this
tRNA would not be methylated by Trm14 (tRNA m2G6 methyltransferase) (22) or Trm1
(tRNA m2G26/m2

2G26 methyltransferase) (20, 23–25) at the outset of the study. (As de-
scribed below, we found that Trm14 can methylate a novel residue, G67, in this study.)
Fourth, in our previous study, Trm11 of T. kodakarensis was revealed to methylate G at
position 10 to m2

2G by using in vitro transcribed tRNATrp (9), suggesting that cellular
tRNATrp is one of the substrates for Trm11 in vivo. We successfully purified tRNATrp by a
solid-phase DNA probe method.

The determined nucleoside sequence of tRNATrp is shown by a cloverleaf structure
in Fig. 1 with positions numbered in accordance with the system described in reference
26. The modified nucleosides are defined in Table 1, and their structures are available
from the Modomics database (http://modomics.genesilico.pl/) (1). The enzymes pre-
dicted to be responsible for the modified nucleosides, together with their genes, are
given in Table 2.

The sequence shown in Fig. 1 was determined by liquid chromatography-mass
spectrometry (LC/MS) analysis of digested tRNATrp from the wild-type strain. The base
peak chromatograms of tRNATrp fragments derived from digestion with RNase T1

and RNase A are shown in Fig. S1A and B, respectively, in the supplemental material.
The nucleoside composition of each fragment was determined by comparing the
measured m/z with the m/z calculated from the primary sequence of tRNATrp with
possible modifications (Tables 3 and 4). The sequences of the fragments and
modification sites were assigned by collision-induced dissociation (CID) (Fig. S1C).
Pseudouridine (�), a mass-silent uridine modification, was identified in a similar
way, but with derivatization to 1-cyanoethyl � by acrylonitrile treatment prior to
RNase digestion (Fig. S1C). In these analyses, Cm32 was found to be further
methylated (RNase A-derived fragment 4). We deduced that the second methylation
would be a base methylation: m5Cm has been found specifically in thermophilic
archaea (2, 4–6). In humans, the ALKBH1 gene is responsible for f5Cm34 formation
in tRNALeu

CAA (27): in ALKBH1 knockout cells, the intermediate m5Cm34 is found in
tRNALeu

CAA instead of the final product (f5Cm34). Here, therefore, we used this
modified nucleoside (m5Cm) as a standard marker. We purified tRNALeu

CAA from
human ALKBH1 knockout cells and tRNATrp from T. kodakarensis and digested them
to nucleosides, which were then mixed and analyzed by LC/MS (Fig. 2). The
dimethylated C in T. kodakarensis tRNATrp was eluted at the same time as the

FIG 1 Cloverleaf structure of tRNATrp from T. kodakarensis. The modified nucleosides are defined in Table 1.
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standard m5Cm by LC (Fig. 2, top), and CID analysis showed that the cytosine base
is monomethylated (Fig. 2, bottom). On the basis of these results, we concluded
that a portion of Cm32 is modified to m5Cm32 in tRNATrp. All modifications were
also confirmed by LC/MS analysis of nucleosides derived from complete digestion

TABLE 1 Abbreviations of modified nucleosides used in this study

Abbreviation Modified nucleoside

m3C 3-Methylcytidine
m4C N4-Methylcytidine
f5Cm 5-Formyl-2’-O-methylcytidine
D Dihydrouridine
m5U 5-Methyluridine
m1G 1-Methylguanosine
m7G 7-Methylguanosine
�m 2’-O-Methylpseudouridine
m1Im 1,2’-O-Dimethylinosine
m2

2Gm N2,N2,2=-O-Trimethylguanosine
s2U 2-Thiouridine
ac6A N6-Acetyladenosine
Cm 2=-O-Methylcytidine
s4U 4-Thiouridine
m2

2G N2,N2-Dimethylguanosine
� Pseudouridine
G� Archaeosine
s2C 2-Thiocytidine
Um 2=-O-Methyluridine
m5Cm 5,2=-O-Dimethylcytidine
mimG Methylwyosine
Gm 2=-O-Methylguanosine
m5C 5-Methylcytidine
m5s2U 5-Methyl-2-thiouridine
m1I 1-Methylinosine
m1A 1-Methyladenosine
m2G N2-Methylguanosine
imG-14 4-Demethylwyosine
imG2 Isowyosine
imG Wyosine
yW-86 7-Aminocarboxypropyldemethylwyosine
yW-72 7-Aminocarboxypropylwyosine
Am 2=-O-Methyladenosine

TABLE 2 Predicted enzymes and genes for tRNATrp nucleoside modificationsa

Modified nucleoside
and position Enzyme(s) or RNA Predicted gene ID

Cm6 Unknown Unknown
s4U8 ThiI Tk0366
m2

2G10 Archaeal Trm11 Tk0981
�13 TruD Tk2302
G�15 ArcTGT, ArcS Tk0760, Tk2156
s2C17 Unknown Unknown
Um20 L7Ae, Nop5, archaeal fibrillarin, C/D-box guide RNA Tk1311, Tk0184, Tk0183, RNA
�22 Unknown Unknown
m5Cm32 Unknown methyltransferase, archaeal TrmJ Unknown, Tk1970
Cm34 L7Ae, Nop5, archaeal fibrillarin, intron (C/D-box guide RNA) Tk1311, Tk0184, Tk0183, intron
mimG37 Trm5b, TYW1, TYW3, Trm5a Tk0497, Tk1671, Tk0175, Tk2223
Cm39 L7Ae, Nop5, archaeal fibrillarin, intron (C/D-box guide RNA) Tk1311, Tk0184, Tk0183, intron
Gm42 L7Ae, Nop5, archaeal fibrillarin, C/D-box guide RNA Tk1311, Tk0184, Tk0183, RNA
m5C48 Archaeal Trm4 Tk0360
m5C49 Archaeal Trm4 Tk0360
m5s2U54 RumA, TtuA?, TtuB?, � Tk2134, Tk1556?, Tk1093?, �
�55 Pus10 or archaeal Cbf5 Tk0903 or Tk1509
Cm56 Trm56 Tk0060
m1I57 Archaeal TrmI, unknown deaminase Tk1328, unknown
m1A58 Archaeal TrmI Tk1328
m2G67 Trm14 Tk1863
a?, enzymatic activity of the protein has not been confirmed in archaea.
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of tRNATrp (Fig. S2). All of the fragments detected with modifications are listed in
Tables 3 and 4.

m2
2G10 formation by Trm11 in vivo and growth phenotype of the trm11 gene

disruption. In the wild-type tRNATrp, m2
2G was detected in RNase T1-derived fragment

7 and RNase A-derived fragment 8, indicating that m2
2G is present at position 10. No

m2G at position 10, an intermediate of m2
2G10, was detected in our analysis (data not

shown), indicating that m2
2G10 is efficiently introduced by Trm11 in vivo. To confirm

that the trm11 gene is responsible for the m2
2G10 modification, we constructed a trm11

gene disruptant (Δtrm11) strain (Fig. S3 and S4). The methods for construction of the
gene disruptant strain are described in the supplemental material. The m2

2G nucleoside
was not detected in the corresponding fragments of tRNATrp from the Δtrm11 strain
(Fig. S5), and the nucleoside at position 10 was confirmed as unmodified G. We
therefore concluded that the trm11 gene is responsible for the m2

2G10 modification in
tRNATrp. During the preparation of this paper, it was reported that the m2

2G content in
total tRNA from a T. kodakarensis trm11 gene disruptant strain, which was obtained by

TABLE 3 List of fragments of T. kodakarensis tRNATrp after digestion with RNase T1
a

Fragment no. Fragment sequence Mol wt

Monoisotopic m/z

Charge stateCalculated Observed

1 CmUCmCAmimGACmCCGmCGp 4,274.682 711.439 711.439 –6
2 m5s2U�Cmm1Im1AAUCCCCGp 3,908.532 643.412 643.414 –6
3 UmCCA�CAUCGp 3,173.420 633.676 633.676 –5
3= UCCA�CAUCGp 3,159.404 630.873 630.874 –5
4 CCCCCACCAOH (3= terminal) 2,731.438 1,363.711 1,364.713 –2
5 �AG�Cs2CUGp 2,316.295 1,157.134 1,157.139 –2
5= �AG�CCUGp 2,300.318 1,149.151 1,149.149 –2
6 Am5Cm5CGp 1,330.224 664.104 664.103 –2
6= ACm5CGp 1,316.209 657.097 657.099 –2
7 m2

2GUGp 1,042.162 1,041.154 1,041.152 �1
8 s4UGp 685.060 684.053 684.051 �1
9 Cm2Gp, CmGp 682.115 681.107 681.106 �1
8= UGp 669.083 668.075 668.074 �1
10 CGp 668.099 667.091 667.089 �1
aPartially modified fragments detected in reasonable quantity are indicated. “OH” and “p” indicate the 3= terminal hydroxyl group and terminal phosphate,
respectively.

TABLE 4 List of fragments of T. kodakarensis tRNATrp after digestion with RNase Aa

Fragment no. Fragment sequence Mol wt

Monoisotopic m/z

Charge stateCalculated Observed

1 pGGGGGCmGs4Up (5= terminal) 2,809.321 1,403.653 1,403.651 –2
1= pGGGGGCmGUp (5= terminal) 2,793.344 1,395.664 1,395.665 –2
2 GGGGm5s2U�p 2,040.244 1,019.114 1,019.115 –2
3 AmimGACmCp 1,711.308 854.646 854.650 –2
4 GGGm5CmUp 1,692.251 845.118 845.114 –2
4= GGGCmUp 1,678.235 838.110 838.114 –2
5 Cmm1Im1AAUp 1,659.266 828.625 828.627 –2
6 GGAm5Cp 1,356.215 677.100 677.097 –2
6= GGACp 1,342.199 670.092 670.095 –2
7 GGUmCp 1,333.188 665.586 665.588 –2
8 Gm2

2GUp 1,042.162 1,041.154 1,041.155 �1
9 AG�Cp 1,038.178 1,037.171 1,037.170 �1
7= GGUp 1,014.131 1,013.123 1,013.124 �1
10 GmCp 682.115 681.107 681.107 �1
11 m2GCp 682.115 681.107 681.106 �1
12 G�p 669.083 668.075 668.075 �1
13 GCp 668.099 667.091 667.091 �1
14 AUp, A�p 653.088 652.081 652.081 �1
15 ACp 652.104 651.097 651.097 �1
16 CmCp 642.109 641.101 641.102 �1
aPartially modified fragments detected in reasonable quantity are indicated. “OH” and “p” indicate the 3= terminal hydroxyl group and terminal phosphate,
respectively.
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transposon random mutagenesis, was decreased relative to that from the wild-type
strain (28). Our results provide experimental support for that observation.

We hypothesized that the m2
2G10 modification might be required for the survival

of T. kodakarensis at high temperatures. We therefore measured the growth of the
Δtrm11 strain at 85, 90, 93 and 95°C. In addition, we constructed a complemented
(Δtrm11 � trm11) strain to confirm that the growth phenotype observed was due to the
lack of Trm11. The trm11 gene was reinserted into the chiA (Tk1765; chitinase gene)
region in the genomic DNA of the Δtrm11 strain. Deletion of the Tk1765 gene does not
cause growth defects unless chitin is used as a carbon source (29). Although its
expression level was lower in the complemented strain than in the wild-type strain,
Trm11 was expressed in the complemented strain, as determined by Western blotting
(Fig. 3A). At 85°C, the wild-type, Δtrm11, and complemented strains showed similar
growth curves (Fig. 3B). As the temperature increased, however, the growth of the
Δtrm11 strain was clearly slower than that of the wild-type or complemented strain. At
95°C, the Δtrm11 strain showed a considerable growth defect, whereas the comple-
mented strain grew at approximately the same speed as the wild-type strain, indicating
that the growth defect of the Δtrm11 strain is due to the lack of archaeal Trm11 protein.
The study based on random mutagenesis reported that the trm11 gene product is
required for the effective growth of T. kodakarensis at 93°C (28). Although there is a
slight difference in the growth speeds between our data and those data at 93°C, this
might be due to differences in the culture conditions. Collectively, these observations
reveal that Trm11 is required for the survival of T. kodakarensis at high temperatures.

Validation of predicted thiI, rumA, and TYW1 genes. In general, s4U8 modification
in eubacterial and archaeal tRNA is performed by ThiI (30). To determine whether the
s4U8 modification in tRNATrp is carried out by ThiI, we analyzed tRNATrp from the ΔthiI
strain. Whereas RNase A-derived fragment 1 (pGGGGCmGs4Up) was clearly detected in
the wild-type sample (Fig. 4A, left), this fragment was not found in the ΔthiI sample and
only RNase A-derived fragment 1= (pGGGGCmGUp) was detected (Fig. 4A, right). These
results confirm that the s4U8 modification in tRNATrp is conferred by ThiI.

S-Adenosyl-L-methionine-dependent tRNA m5U54 methyltransferase activity was
previously detected in the cell extract of Pyrococcus furiosus (31), and the responsible
rumA-like gene was identified from Pyrococcus abyssi and T. kodakarensis (32). To
determine whether the rumA gene (Tk2134) is responsible for the 5-methylation of U54
in T. kodakarensis, we analyzed tRNATrp from the ΔrumA strain. RNase T1-derived

FIG 2 Position 32 is modified to m5Cm in T. kodakarensis tRNATrp. Top, extracted ion chromatography
(XIC) showing coelution of the nucleoside modified at position 32 in tRNATrp from T. kodakaraensis and
m5Cm in human cytoplasmic tRNALeu

CAA from ALKBH1 knockout cells. Bottom, CID spectrum of m5Cm.
The cleavage position of the base-related ion is indicated on the chemical structures.
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fragment 2 (GGGGm5s2U�p) was detected in the wild-type sample (Fig. 4B, left) but not
in the ΔrumA sample, which instead contained a new fragment (GGGGs2U�p) (Fig. 4B,
right, and C). This finding indicated that the rumA gene is responsible for the m5U54
modification and also that s2U54 formation is not dependent on the presence of a
5-methyl group in m5U54.

The mimG (33) nucleoside is one of the final products of the biosynthetic pathway
of archaeal wyosine derivatives (Fig. 5A) (34, 35). Traditionally, mimG was thought to
exist only in tRNAPhe. Recently, however, it was reported that imG-14 and imG are
present at position 37 in several tRNAs from M. jannaschii (8). In that study, the modified
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nucleoside at position 37 in tRNATrp from M. jannaschii was determined to be m1G37
(8). In our study, however, LC/MS analysis indicated the presence of a modified
nucleoside corresponding to mimG (m/z 350.146) at position 37 of tRNATrp. To confirm
the presence of mimG in tRNATrp, we analyzed tRNATrp from a ΔTYW1 strain in which
the gene encoding TYW1, the enzyme catalyzing the second step of mimG synthesis,
was disrupted. We considered that if the modified nucleoside at position 37 is mimG,
then m1G37, the first product of the mimG synthesis pathway catalyzed by archaeal

FIG 4 The thiI and rumA genes are responsible for the formation of s4U8 and 5-methylation of U54,
respectively, in tRNATrp. (A) XICs of RNase A-digested fragments containing s4U (top) or U (bottom) at
position 8 (arrowheads) are shown. The sequences, m/z, and charge states are indicated on the right. n.d.,
not detected. (B) XICs of an RNase A-digested fragment containing m5s2U (top) or s2U (bottom) at
position 54 (arrowheads). The sequence, m/z, values, and charge states are indicated on the right. (C) CID
spectrum of the RNase A-derived fragment from the ΔrumA strain. The sequence and assigned signals are
shown in the inset (precursor, doubly charged ions of m/z 1,012.1).
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Trm5b (Fig. 5A) (36–38), should be detected in tRNATrp from the ΔTYW1 strain. As
expected, the modified nucleoside corresponding to mimG (m/z 350.146) was not
observed in the nucleosides from the digested tRNATrp from the ΔTYW1 strain (Fig. 5B).
Furthermore, RNase A-derived fragment 3 (AmimGACmCp) disappeared and a new
RNase A-derived fragment (Am1GACmCp) appeared (Fig. 5C). Taking the results alto-
gether, we concluded that mimG37 is present in tRNATrp from T. kodakarensis.

The trm14 gene is responsible for the m2G67 modification. The m2G67 modifi-
cation was previously found in tRNALys from Loligo bleekeri (39). Furthermore, it has
been reported that tRNAArg, tRNAAsn, tRNAGly, tRNAIle, and tRNAVal from M. jannaschii
contain m2G67 (8). The modification site (G67) forms a Watson-Crick base pair with C6
in tRNA. Archaeal Trm14 methylates G6 in tRNA and contains a THUMP domain (22, 40),
which often recognizes the CCA terminus in tRNA (9, 41, 42). Therefore, we considered
that Trm14 may be responsible for the m2G67 modification in tRNATrp. To test this idea,
we analyzed tRNATrp from the trm11 trm14 double disruptant (Δtrm11 �trm14) strain
(Fig. S6): the construction of the Δtrm11 �trm14 strain is described in the supplemental
text. As shown in Fig. 6, the m2G nucleoside (Fig. 6A) and the RNA fragment (m2GCp)
(Fig. 6B) completely disappeared in the sample from the Δtrm11 �trm14 strain, dem-
onstrating that the Trm14 is responsible for the m2G67 modification in tRNA.

DISCUSSION

Our present study revealed the complete sequence of tRNATrp from T. kodakarensis
as the first instance of this species. The result that 15 modified nucleosides were found
at 21 positions provides insight into their molecular function and their modifying genes
or enzymes. Indeed, we successfully confirmed that trm11 is the gene responsible for

FIG 5 Methylwyosine is present at position 37 in tRNATrp. (A) Predicted biosynthetic pathway of wyosine
derivatives in T. kodakarensis. This figure is based on data from a report by de Crécy-Lagard et al. (34).
The abbreviations of modified nucleotides are listed in Table 1. The predicted enzymes are indicated. (B)
Nucleoside analysis of tRNATrp from wild-type and ΔTYW1 strains. mimG is not observed in the ΔTYW1
sample. (C) In the RNase A fragment from the ΔTYW1 strain, m1G is observed at position 37 instead of
mimG37. Asterisks show other eluates with almost the same m/z values. n.d., not detected.
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m2
2G at position 10 as well as thiI for s4U, rumA for m5U, TYW1 for imG-14, and trm14

for m2G at positions 8, 54, 37, and 67, respectively, by analysis of tRNATrp from gene
disruptant strains. Notably, the requirement of trm14 for m2G67 formation has not
previously been reported. The functional features and biogenesis of modified nucleo-
sides in the tRNATrp are discussed below in detail.

To our knowledge, Cm6 has not previously been found in tRNAs from archaea,
eubacteria, and eukaryotes. However, Am6 formation activity was previously detected
in the cell extract of Pyrococcus furiosus (24). Therefore, a novel tRNA 2=-O-methyl-
transferase, which methylates the 2=-OH of ribose at position 6 in tRNA and does not
differentiate between adenine and cytosine, may exist in Thermococcus and Pyrococcus
genera. In terms of the other enzymes responsible for the observed 2=-O-methylations,
Cm56 is a product of Trm56 (43, 44). The Um20 and Gm42 modifications are likely to
be products of L7Ae, Nop5, archaeal fibrillarin (aFib), and the C/D-box guide RNA
system (45, 46), with the following predicted C/D-box RNAs: 5=-CCU GAU GAU GAG UAA
ACC CGU UGC UGA GAA AAA GAU GAU GAU GGA UGG ACC AGC UGA CC-3= (coding
region, positions 159454 to 159512) for Um20, and 5=-CGG GAU GAU GAG UCU GGA
GCC CCC UGA GAG GUG AAG AGG UUU CGC GGG GCU GAC C-3= (coding region,
positions 1371729 to 1371783) for Gm42 (underlining indicates the sequences of the C,
D=, C=, and D boxes). Furthermore, Cm34 and Cm39 are also products of L7Ae, Nop5,
aFib, and the C/D-box guide RNA system. In this case, an intron in precursor tRNATrp

functions as the guide RNA (47–49). Notably, the gene of T. kodakarensis tRNATrp

contains a similar intron (50). 2=-O-Methylated nucleosides at multiple positions in tRNA
can stabilize the tRNA structure (6). For example, Pyrodictium occultum can grow at
105°C, and various 2=-O-methylated nucleosides such as 2=-O-methylpseudouridine
(�m), 1,2=-O-dimethylinosine (m1Im), and N2,N2,2=-O-trimethylguanosine (m2

2Gm) are
present in tRNA from this archaeon: however, 2-thiouridine (s2U) and 5-methyl-2-
thiouridine (m5s2U) are not found (2, 51). Whereas the melting temperature of the P.
occultum tRNAMet transcript is 80°C, that of the native tRNAMet is more than 100°C (52),
indicating that the melting temperature of P. occultum tRNA is increased by more than
20°C via a combination of numerous 2=-O-methylated nucleosides. In general, 2=-O-

FIG 6 The trm14 gene is responsible for m2G67 formation. (A) Nucleoside analysis of tRNATrp from
wild-type (WT) and Δtrm11 �trm14 (double disruptant) strains. m2

2G and m2G are absent in the double
disruptant strain. (B) XICs tracing an RNase A-digested fragment containing m2G at position 67 (arrow-
head). The sequences, m/z, and charge states are indicated on the right. Asterisks show GmCp (Table 4)
with the same m/z value as the m2GCp fragment. n.d.; not detected.
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methylation shifts the equilibrium of ribose puckering to the C3=-endo form and
enhances the hydrophobic interaction. Thus, 2=-O-methylation is one of the strategies
to maintain tRNA structure at high temperatures.

The m5Cm modification has been considered to be specific to thermophilic archaea
(2, 4–6). So far, the only exception in mesophiles is the intermediate of f5Cm34
synthesis observed in human tRNALeu

CAA. For a long time, however, the position of
m5Cm in tRNA from thermophilic archaea has remained unclear, and, to our knowl-
edge, our study is the first to clarify the presence of m5Cm at position 32 in tRNA from
these microbes. The 2=-O-methylation of m5Cm32 is probably performed by archaeal
TrmJ. The substrate RNA specificity of S. acidocaldarius TrmJ was previously investi-
gated using several mutant tRNA transcripts (53); that study suggests that methylation
of ribose of C32 in T. kodakarensis tRNATrp can occur after removal of the intron. It has
been reported that C32 in tRNATrp from M. jannaschii is modified to s2C32 (8); the
modification pathway of C32 in tRNATrp differs between T. kodakarensis and M. jann-
aschii. The Cm32 modification is often observed in tRNAs that are used to decode
codons in one- and two-codon boxes (54). In terms of archaeal tRNA m5C methyltrans-
ferases, for a long time, only Trm4 had been characterized. In 1999, the enzymatic
activity of Trm4 was detected in the cell extract of P. furiosus as tRNA m5C49 methyl-
transferase (31). Subsequently, it was found that Trm4 changes its methylation site in
the presence of archease (55). Archaeal Trm4 is now known to be a multiple-site-
specific tRNA methyltransferase for m5C48 and m5C49 modifications (55). Therefore,
m5C48 and m5C49 modifications in T. kodakarensis tRNATrp can be explained by the
enzymatic activity of Trm4. Furthermore, during the preparation of this paper, it was
reported that Pyrococcus horikoshii NSUN6 methylates C72 and forms m5C72 in several
tRNAs (56). However, a tRNA m5C32 methyltransferase has not been reported in any of
the three domains of life. It is possible that the 5-methyl group in m5C32 enhances the
stacking effect of C32 with G31 and contributes to stabilizing the anticodon arm at high
temperatures.

Three types of sulfur-containing modifications were present in tRNATrp. Although
the s4U modification has been observed in unfractionated tRNA nucleosides from
several archaea (3), it has not been found in tRNAs from haloarchaea (57–59) or initiator
tRNAMet from S. acidocaldarius (7); therefore, the modified position(s) of s4U in tRNA has
been confirmed in limited tRNAs (position 8 in Thermoplasma acidophilum elongator
tRNAMet [60], Methanosarcina barkeri tRNAPyr [61], and several M. jannaschii tRNAs [8]
and positions 8 and 9 in T. acidophilum tRNALeu [62]). In terms of enzymatic properties,
ThiI from Methanococcus maripaludis has been recently shown to contain a 3Fe-4S
cluster and use inorganic sulfur compounds as sulfur donors (63).

Although the 2-thiocytidine (s2C) nucleoside has been observed in tRNAs from
several archaea (2, 3, 5), position 17 represents a novel modification site of s2C. In tRNAs
from mesophiles, position 17 is often modified to D17 (64). In Escherichia coli and
Saccharomyces cerevisiae, for example, U17 in tRNA is modified to D17 by DusB (65, 66)
and Dus1 (67), respectively. Nuclear magnetic resonance (NMR) analyses have sug-
gested that D may destabilize the structure of tRNA by promoting the C2=-endo form
of ribose (68). In general, therefore, D is thought to enhance the flexibility of tRNA. In
contrast, the 2-thio group in s2C promotes the C3=-endo form of ribose. Thus, the
conformation of the D-loop in T. kodakarensis tRNATrp seems to be different from that
in tRNA from mesophiles. Possibly, s2C17 is required to maintain the D-loop structure
(and interaction of the T and D arms) at high temperatures. The s2C modification is
usually found at position 32 in eubacterial tRNAs (e.g., Escherichia coli tRNAArg [69]) and
archaeal tRNA (8). In E. coli and Salmonella enterica serovar Typhimurium, the s2C32
modification in tRNA is performed by TtcA (70), which possesses a 4Fe-4S cluster (71).
A ttcA-like gene (Tk1821) is included in the T. kodakarensis genome (71); however, the
biosynthetic pathway of s2C17 is currently unknown.

It was shown that the biogenesis of m5s2U54 is mediated independently by a
methyltransferase RumA and an unidentified 2-thiolation system. This feature is com-
mon to the formation of m5s2U54 in eubacterial tRNA (72, 73); however, whereas the
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methylation step in the m5s2U54 formation of archaeal tRNA is conferred by the
S-adenosyl-L-methionine-dependent enzyme (RumA) (32), that of eubacterial tRNA is
conferred by a folate- and FAD-dependent enzyme (TrmFO) (74, 75). In T. kodakarensis,
two proteins homologous to TtuA (Tk1556 gene product) and TtuB (Tk1093 gene
product) may be involved in the 2-thiolation of m5s2U54, as in eubacteria (76). Given
that archaea do not possess a homolog of the IscS protein (77), however, the complete
2-thiolation system for the formation of m5s2U54 in T. kodakarensis tRNA remains
unknown. The 2-thiolation of U54 has been found only in tRNAs from thermophiles
such as Aquifex aeolicus (78) and Thermus thermophilus (72, 79, 80). The m5s2U54
modification forms a reverse Hoogsteen base pair with A58 (or m1A58) in tRNA, like
m5U54 and m1�54 (81), and the 2-thio group in m5s2U54 enhances the stacking effect
with the G51-C61 base pair (80). Because the 2-thio modification at position 54
increases the melting temperature of tRNA by more than 3°C (72, 76, 79, 80, 82), the
m5s2U54 modification probably contributes to stabilization of the tRNA structure even
in the case of T. kodakarensis.

In this study, we found mimG37 in tRNATrp. Archaeal Trm5 can recognize the
guanine base in an A36G37 sequence (83), and there are no reports of the tRNA
specificity of TYW1, TYW2, and TYW3. Thus, our findings do not conflict with the results
of previous studies. Because position 36 in T. kodakarensis tRNATrp is an unmodified A
nucleoside, mimG37 may contribute to stabilize the base pair between A36 and U in
mRNA during the protein synthesis at high temperatures. This idea is consistent with
the fact that a mesophilic archaeon, Haloferax volcanii, does not contain wyosine
derivatives in tRNA (58, 84).

G�15 (85) is formed by ArcTGT (86) and ArcS (87), and ArcTGT from T. kodakarensis
modifies only G15 in tRNA (20). During the preparation of this paper, it was reported
that an ArcTGT gene disruptant mutant of T. kodakarensis cannot grow at 93°C (28). The
m1I57 modification is produced by deamination of m1A57, which is carried out by
archaeal TrmI (88, 89). Although deaminase activity has been detected in the cell
extract of H. volcanii (90), the responsible gene(s) has not been identified as yet. The
m1A58 modification is a product of archaeal TrmI (88), and a recent random mutation
study revealed that the trmI gene disruption strain cannot grow at 93°C (28).

In this study, we confirmed that the gene responsible for m2G67 is trm14. However,
it has not been confirmed that T. kodakarensis Trm14 methylates G6 in tRNA like M.
jannaschii Trm14. Furthermore, the presence of m2G6 modification in T. kodakarensis
tRNAs has not been confirmed. To clarify these issues, further investigation is necessary.

In T. kodakarensis, Trm10 has been reported to methylate both G9 and A9 in tRNA,
forming m1G9 and m1A9, respectively (91). Our analysis found, however, that G9 in
tRNATrp was unmodified. Therefore, T. kodakarensis Trm10 seems to methylate specific
tRNAs. Recently, kinetic analysis of T. kodakarensis Trm10 revealed that the rate-
determining step for catalysis involves a conformational change of the substrate tRNA
(92).

The �55 modification in tRNATrp is likely to be performed by archaeal Pus10 (93–95)
or archaeal Cbf5 (95–98). Because Sulfolobus solfaraticus Pus7 has been reported to
possess weak activity for �13 formation (99), the homologous protein (annotated as
TruD [100] in the database [54]; Tk2302 gene product) may form �13 in tRNATrp from
T. kodakarensis. The enzyme responsible for �22 formation in archaeal tRNA is un-
known (101). The contribution of a �13-�22 base pair to tRNA structure has been
recently reviewed (102): this base pair may stabilize the D-arm structure at high
temperatures.

It is an intriguing finding that the lack of Trm11 impacted the viability of T.
kodakarensis at high temperatures. Because m2

2G does not form a Watson-Crick base
pair with C, m2

2G10 may contribute to the folding of specific tRNAs, such as tRNAPro

from P. abyssi (15). In the case of T. thermophilus, an extremely thermophilic eubacte-
rium, tRNA modification enzymes and the modified nucleosides in tRNA form a network
(6, 72, 73, 103–106). At high temperatures, three modified nucleosides, m5s2U54 (76),
m1A58 (107), and m7G46 (103), are essential for the survival of T. thermophilus. As
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described above, the 2-thio group in m5s2U54 increases the melting temperature of
tRNA. The m1A58 modification is known to be a positive determinant of the sulfur
transfer system used for m5s2U54 formation (76). The presence of m7G46 in tRNA
increases the activity of several tRNA modification enzymes, such as TrmH (108, 109) for
Gm18, TrmD (110) for m1G37, and TrmI (105, 107) for m1A58. It is possible that
thermophilic archaea possess a similar network of tRNA modification enzymes and
modified nucleosides in tRNA. Indeed, the requirement of the archaeal trmI gene (TrmI
produces m1A57 and m1A58) for the m5s2U54 modification in T. kodakarensis has been
reported previously (28). We attempted to measure the melting temperature of tRNA
mixtures from the Δtrm11 strain, but it was not possible to determine it accurately
because it was above 100°C in the presence of 10 mM Tris-HCl (pH 7.5), 5 mM MgCl2,
and 100 mM NaCl (data not shown). Therefore, the growth defect of the Δtrm11 strain
at 95°C cannot be explained simply by the melting temperature of tRNA. As predicted
for tRNA from P. abyssi, the m2

2G10 modification in tRNA from T. kodakarensis might
have an effect on folding of a specific tRNA(s) at high temperatures. To clarify these
issues, further studies are required.

MATERIALS AND METHODS
Strains, media, and culture conditions. The strains of T. kodakarensis used in this study are listed

in Table S1 in the supplemental material. The culture methods for T. kodakarensis KUW1 (17), KUWA (20),
and gene disruptant strains are described in the supplemental text.

Disruption of trm11 (Tk0981), trm14 (Tk1863), rumA (Tk2135), thiI (Tk0368), and TYW1
(Tk1671) genes. The plasmids used for gene disruptions are listed in Table S1. The primers used for
genetic manipulations are listed in Table S2. The constructions of gene disruptant strain are described
in the supplemental text.

Construction of a complemented strain expressing Trm11 in the �trm11 strain. The conditional
expression system in T. kodakarensis has been previously described (29). The construction of a comple-
mented strain is described in the supplemental text.

Western blotting. The recombinant 6�His-tagged Trm11 protein was prepared as described
previously (9) and used to immunize rabbits and obtain antibodies (Eurofins Genomics, Inc., Japan). Cell
extracts of the wild-type and Δtrm11 strains were prepared from cells grown to an optical density at 660
nm (OD660) of �0.6. A 1-ml aliquot of cells was mixed with 10 �l of 2� SDS-PAGE loading buffer (100 mM
Tris-HCl [pH 6.8], 200 mM dithiothreitol, 2.5% SDS, 0.2% bromophenol blue, and 20% glycerol), boiled for
5 min, and then applied to a 12.5% SDS-PAGE gel. The gel was electroblotted onto a polyvinylidene
difluoride membrane (Bio-Rad Laboratories, Inc.) in accordance with the manufacturer’s instructions.
Trm11 protein was detected by using Alexa Fluor 488 –anti-rabbit IgG (Invitrogen) as a secondary
antibody and visualized with a Typhoon FLA 7000 laser scanner (GE Healthcare). For the complemented
strain (Δtrm11 � trm11), Trm11 expression was analyzed by the same method.

Purification of tRNATrp. Total RNA was extracted from 2.0 g of cells by using Isogen II (Nippon Gene
Co., Ltd.) in accordance with the manufacturer’s protocol. The tRNA fraction was further purified by 10%
PAGE (7 M urea). Transfer RNATrp was purified from the tRNA fraction by the solid-phase DNA probe
method (21). The sequence of the DNA probe was complementary to G16 to A36 in tRNATrp: 5=-TGG AGC
CCG CGA TGA TGG ACC AGG-biotin 3=.

Purification of human tRNALeu
CAA. Human cytoplasmic tRNALeu

CAA containing m5Cm was isolated
from ALKBH1 knockout cells as described previously (27).

Cyanoethylation of pseudouridines in tRNA. Five picomoles of isolated tRNA dissolved in 1 �l of
Milli-Q water was mixed with 30 �l of 50% (vol/vol) ethanol–1.1 M trimethylammonium acetate (pH
8.6)–1 mM EDTA. After the addition of 4 �l of acrylonitrile (Wako Pure Chemical Industries), the solution
was incubated at 70°C for 2 h. Cyanoethylated tRNA was collected by ethanol precipitation. The tRNA
sample was treated with RNase T1 digestion and then analyzed by liquid chromatography-mass spec-
trometry (LC/MS), as described below.

LC/MS. The isolated tRNAs were digested with RNase T1 (Ambion) or RNase A (Ambion) and
subjected to capillary LC–nano-electrospray ionization MS, as previously described (111, 112). For
nucleoside analysis, 5 to 10 pmol of tRNA was digested by a 3-step reaction using nuclease P1 (Wako
Pure Chemical Industries), phosphodiesterase I (Worthington Biochemical Corporation), and bacterial
alkaline phosphatase (Escherichia coli C75) (TaKaRa Bio) (112). The digests were subjected to hydrophilic-
interaction LC/MS analysis as described previously (113).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JB

.00448-19.
SUPPLEMENTAL FILE 1, PDF file, 3.6 MB.
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