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Abstract

High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use 

disorder (AUD); however, no effective treatments are available to treat symptoms induced by 

protracted abstinence. In the first part of this two-part review series, we examine the literature 

supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry. In 

part two, we focus in on a potential way to combat negative affect associated with AUD, by 

exploring the therapeutic potential of the endogenous cannabinoid (eCB) system. The eCB system 

is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative 

affect has long been an area of interest for developing novel therapeutics. This review details the 

recent advances in our understanding of eCB signaling in two key regions of the EA, the central 

nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), and their role 

in regulating negative affect. Despite an established role for EA eCB signaling in reducing 

negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-

associated negative affect. In this review, we present an overview of studies focusing on eCB 

signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies 

suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological 

augmentation of eCB could be a novel approach to treat aspects of AUD. Lastly, future directions 

are proposed to advance our understanding of the relationship between AUD-associated negative 

Corresponding Authors: Danny G. Winder, Ph.D., Vanderbilt Center for Addiction Research, 2215 Garland Avenue, 875A Light Hall, 
Nashville, TN 37232-0615, Phone: (615) 322-1144, Fax: (615) 343-0490, danny.winder@vanderbilt.edu, Sachin Patel, M.D., Ph.D., 
Vanderbilt University Medical Center, 8425B Medical Research Building IV (MRB IV), Nashville, TN 37232, Phone: (615) 
936-7768, Fax: (615) 343-4075, sachin.patel@vanderbilt.edu.
†Co-corresponding Authors:
*These authors contributed equally to this work

DISCLOSURES
S.P. has received research funding from H. Lundbeck A/S within the past three years and is a scientific consultant for Psy Therapeutics 
and Atlas Ventures.

HHS Public Access
Author manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2020 October 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2019 October ; 43(10): 2014–2027. doi:10.1111/acer.14159.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective 

symptoms associated with AUD.

INTRODUCTION

Alcohol use disorder (AUD) is a chronic, relapsing disorder that has been characterized by 

compulsion to seek and take alcohol, the loss of control over alcohol intake and emergence 

of negative emotional states and craving during abstinence. AUD is highly comorbid with 

psychiatric disorders such as generalized anxiety and major depression (Oliveira et al., 2018, 

Black et al., 2015, Hasin and Grant, 2002). Affective disorders and negative affective states 

can drive initial alcohol use, and can highly predict a transition from use to dependence 

(Koob and Schulkin, 2018). While negative affect contributes to all phases of addiction, it is 

highly prevalent during abstinence, as patients with AUD commonly report heightened 

anxiety, irritability, dysphoria, and negative emotional states as potent triggers of cravings 

and relapse (Fox et al., 2017, Litt et al., 1990, Cooney et al., 1997). This negative affective 

state can last from a few weeks (early abstinence) to several months (protracted abstinence) 

and is distinct from acute physical withdrawal symptoms (Heilig et al., 2010). Indeed, a 

major obstacle in the alcohol addiction recovery is the susceptibility to relapse, even after 

protracted abstinence (Willinger et al., 2002, Driessen et al., 2001). Although negative 

affective symptoms associated with protracted alcohol withdrawal are major causes of 

alcohol craving and relapse (Mathew et al., 1979, Mason et al., 2009, Driessen et al., 2001, 

Willinger et al., 2002), no effective treatments are available as use of traditional 

antidepressants has yielded inconsistent results and in some cases can even increase alcohol 

drinking (Nunes and Levin, 2004, Pettinati, 2004).

The endocannabinoid (eCB) system has attracted attention for its role in stress- and fear-

related behaviors and as a therapeutic target in neuropsychiatric disease state, including 

anxiety- and depression-related disorders (Patel et al., 2017, Hill et al., 2018, Lutz et al., 

2015). The extended amygdala (EA) plays an important role in several stress-related 

components of drug withdrawal (Koob, 2003), and is a site where the eCB system seems to 

be critical for modulating the influence of stress on the addiction cycle. The EA is an 

anatomically and neurochemically interconnected brain structure in the basal forebrain that 

mainly consist of central nucleus of amygdala (CeA) and bed nucleus of the stria terminals 

(BNST), but also the shell of the nucleus accumbens (Cassell et al., 1999). The CeA and the 

BNST exhibit overlapping cellular compositions and patterns of connectivity and both have 

been implicated in mediating alcohol-related behaviors (Koob et al., 1998). While extensive 

research has implicated the EA in modulating several facets of AUD, and parallel lines of 

research have established a critical role for the EA eCB system in modulating affective 

states, very few studies have combined these two lines of research to fully understand the 

neurobiological substrates of eCB-AUD interactions or the therapeutic potential of the EA 

eCB system for treating AUD. In Part 1 of this two-part review, we discuss in detail how 

chronic ethanol use causes dysregulation of the EA neurocircuitry and overactivation of the 

brain stress system within the EA. The current review will provide an overview of 

preclinical studies on EA-eCB signaling and its involvement in ethanol actions and AUD. 

Specifically, we will focus on eCB signaling in EA and its role in stress responsivity and 
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anxiety-related behaviors, and further, we will review ethanol-induced eCB dysregulation in 

EA and effects of pharmacological manipulation of the EA-eCB system on the ethanol 

withdrawal induced anxiety- and stress-related behaviors. Finally, we will discuss future 

directions needed to advance our understanding of the eCB signaling in EA neurocircuitry 

governing negative affective symptoms associated with AUD, highlighting the potential 

therapeutic implications of targeting EA-eCB signaling.

METHODS

The EA includes the BNST, CeA, and nucleus accumbens shell (NAcc shell), and the 

transition zone, substantia innominate (SI). For the scope of this review, we will exclude the 

NAcc shell and the SI, and instead focus on what many consider to be the two key defining 

areas of the EA, the CeA and the BNST. We identified preclinical studies through queries of 

PubMed database. The initial PubMed searches were undertaken on November 1, 2018 

using following terms, with a final updated search date of March 22, 2019:

Endocannabinoids and the extended amygdala

(endocannabinoid OR cannabinoid OR CB1 OR anandamide OR 2-arachidonoylglycerol 

OR faah OR MGL) AND (“extended amygdala” OR “central amygdala” OR “bed nucleus 

stria terminalis” OR bnst OR CeA) NOT (“substantia innominata”) NOT (“nucleus 

accumbens”). This search yielded 83 articles. After excluding reviews, human studies, and 

papers deemed irrelevant to the topic of this review, we reviewed 60 articles.

Endocannabinoids, alcohol, and the extended amygdala

(endocannabinoid OR cannabinoid OR CB1 OR anandamide OR 2-arachidonoyl glycerol 

OR “cannabinoid receptors” OR FAAH OR MGL) AND (alcohol OR ethanol OR etoh) 

AND (“extended amygdala” OR “central amygdala” OR “bed nucleus stria terminalis” OR 

BNST OR CeA) NOT (“substantia innominata”) NOT (“nucleus accumbens”). This search 

yielded 21 articles. After excluding reviews, human studies, and papers deemed irrelevant to 

the topic of this review, we reviewed 7 articles.

The above search criteria were used to summarize extant literature; however, additional 

citations not present in the search results, but deemed relevant were included to support the 

topics covered in this review.

INTRODUCTION TO THE ENDOCANNABINOID SYSTEM

The eCB system is a versatile neuromodulatory system expressed widely throughout the 

central nervous system and is involved in numerous fundamental physiological processes. 

The eCB signaling system is composed of cannabinoid receptors, the endogenous ligands 

and enzymes involved in synthesis, degradation and transportation of eCBs. The 

cannabinoid receptors are G protein-coupled receptors activated by endogenous or 

exogenous cannabinoids. There are two types of cannabinoid receptors: cannabinoid 

receptor type- 1 (CB1) and type-2 (CB2) (Matsuda et al., 1990, Munro et al., 1993). CB1 

receptors are expressed almost everywhere in the body but most abundantly in the central 
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nervous system (Mackie, 2005, Freund et al., 2003). CB2 receptors are mainly expressed in 

peripheral immune cells (Liu et al., 2009), although emerging evidence suggests the 

presence of CB2 receptors in brain under some circumstances as well (Buckley et al., 2000, 

Lanciego et al., 2011). CB1 receptors are predominantly expressed on the axon terminals 

within the brain (Howlett et al., 2002, Katona et al., 1999). Activation of CB1 receptors 

results in inhibiting the release of various neurotransmitters such as glutamate, GABA, 

serotonin, dopamine, and noradrenalin (Piomelli, 2003, Katona and Freund, 2012).

Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most well-studied eCBs 

(Devane et al., 1992, Mechoulam et al., 1995, Sugiura et al., 1995). These are retrograde 

lipid messengers synthesized primarily on-demand in postsynaptic neurons from membrane 

phospholipids (Lu and Mackie, 2016). They travel to presynaptic neurons to activate CB1 

receptors and inhibit neurotransmitter release (Castillo et al., 2012). eCBs have been shown 

to mediate multiple forms of short-term plasticity in the form of depolarization-induced 

suppression of inhibition/excitation (DSE/DSI) and long-term depression (LTD) depending 

on the brain region and synapses (Kreitzer and Regehr, 2001, Lu and Mackie, 2016, Ohno-

Shosaku et al., 2001). AEA signaling extends beyond eCB signaling and acts as an 

endogenous ligand for transient receptor potential channels (TRPV1), peroxisome 

proliferator activated receptor (PPAR) alpha, PPAR gamma and L-type Ca+2 cannels 

(O’Sullivan, 2007, Bouaboula et al., 2005, Di Marzo et al., 2002, Toth et al., 2009).

AEA is synthesized from its membrane phospholipid precursor N-arachidonoyl 

phosphatidylethanolamine (NAPE) through hydrolysis by a phospholipase D (NAPE-PLD), 

and degraded by fatty acid amide hydrolase (FAAH) (Liu et al., 2008). 2-AG is synthesized 

from membrane phospholipids via sequential activation of phospholipase C (PLC) and 

diacylglycerol lipase (DAGL) (Murataeva et al., 2014) and primarily degraded by 

monoacylglycerol lipase (MAGL). Pharmacological modulation of eCB signaling, via 

inhibition of AEA and 2-AG degradation represents a novel approach for the treatment of a 

variety of psychiatric disorders (Clapper et al., 2018) and several compounds targeting 

FAAH and MAGL are in clinical trials (Huggins et al., 2012, Kerbrat et al., 2016, van 

Esbroeck et al., 2017). The FAAH inhibitor, PF-04457845 has shown promise for the 

treatment of cannabis dependence (D’Souza et al., 2019), while several MAGL inhibitor 

trials are in early phases trails but have yet to be tested in substance use or related disorders 

(Granchi et al., 2017).

THE ANATOMY OF ENDOCANNABINOID SIGNALING IN THE EXTENDED 

AMYGDALA

CeA

In the CeA, eCB ligands, receptors, and enzymes are all expressed, albeit at varying levels. 

While CB1 mRNA is uniformly expressed in the CeA (Matsuda et al., 1993, Marsicano and 

Lutz, 1999, Chhatwal et al., 2005, Hermann and Lutz, 2005), CB1 protein expression is 

more intense in the lateral subdivision of the CeA (CeAL) than the centromedial amygdala 

(Kamprath et al., 2011, McDonald and Mascagni, 2001, Ramikie and Patel, 2012, Tsou et 

al., 1998). Our group revealed a detectable CB1 mRNA signal within the CeA and abundant 
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expression of CB1 mRNA in basolateral amygdala (BLA) neurons, which project 

glutamatergic afferents to CeAL. Consistent with this, CB1 receptors were found to be 

heavily expressed in the presynaptic boutons forming asymmetric synapses onto dendritic 

shafts and spines within the CeAL. Figure 1 depicts a simplified illustration of the eCB 

signaling in the CeA. CB1 receptors are also present in astrocytes in the CeA, and can be 

activated by eCBs released from neurons in the medial subdivision of the CeA (CeAM) 

(Martin-Fernandez et al., 2017). Activation of astrocytic CB1 receptor increases astrocytic 

calcium levels, enhancing inhibitory synaptic transmission at CeAL-CeAM synapses and 

depressing excitatory synaptic transmission at BLA-CeAM synapses (Figure 1). The CeA 

sends inhibitory efferent projections to the BNST, periaqueductal gray (PAG), locus 

coeruleus, and parabrachial nucleus (PBN) (Janak and Tye, 2015, Dong et al., 2001). These 

projections play important role in mediating emotional, fear-related responses and alcohol-

related behaviors (Pomrenze et al., 2015, Janak and Tye, 2015). CeA-BNST inhibitory 

projections are regulated by the eCB signaling (Lange et al., 2017). However, it is still 

unclear whether eCB signaling regulates long-range CeA efferent projections. The 2-AG 

synthesizing enzyme DAGLα is expressed postsynaptically in the CeA in dendritic shafts 

and spine heads forming asymmetric synapses in the CeAL (Patel et al., 2009, Ramikie et 

al., 2014, Yoshida et al., 2011). The 2-AG- and AEA-degrading enzymes MAGL and FAAH 

are also expressed in the CeA, albeit at relatively low levels (Dinh et al., 2002, Gulyas et al., 

2004, Thomas et al., 1997). In summary, the eCB machinery is highly expressed in the CeA. 

The CB1 receptors are mainly present on the presynaptic boutons of glutamatergic neurons 

but also GABAergic terminals and astrocytes at lower levels.

BNST

Uniform CB1 mRNA expression and moderate protein levels have been reported in the 

BNST (Chhatwal et al., 2005, Hermann and Lutz, 2005, Marsicano and Lutz, 1999, Massi et 

al., 2008, Matsuda et al., 1993, Puente et al., 2011, Tsou et al., 1998). CB1 receptor 

expression is detected within the BNST on the axon terminals arising from the infralimbic 

cortex (Massi et al., 2008). Particularly intense CB1 labeling is found in anterodorsal, 

anteroventral and anterolateral parts of BNST (Puente et al., 2010). . CB1 receptors are 

localized in the both excitatory and inhibitory-like boutons synapsing onto BNST neurons 

(Figure 2) (Puente et al., 2011, Puente et al., 2010); 55% excitatory and 64% of inhibitory 

synaptic terminals showed CB1 immunolabeling in anterolateral BNST (Puente et al., 2010). 

Interestingly 22% of Corticotrophin releasing hormone (CRH)-positive cells co-express CB1 

mRNA (Cota et al., 2007). The BNST receives inputs from variety of cortical structures such 

as the infralimbic cortex, insula, CeA, BLA and medial amygdala. Glutamatergic inputs 

from infralimbic cortex, insula, and BLA, and GABAergic inputs from the CeA are CB1 

sensitive (Centanni et al., 2018, Lange et al., 2017, Massi et al., 2008). Moreover, BNST 

neurons send dense projections to the PBN, lateral hypothalamus, PAG, and ventral 

tegmental area (VTA) (Dong and Swanson, 2004, Daniel and Rainnie, 2016). Although 

BNST efferent projections are important in mediating the behaviors related to stress, reward 

and emotional processing, it is not clear whether these projections are regulated by eCB 

signaling in the downstream structures. DAGLα is expressed in the postsynaptic dendritic 

and spine compartment away from postsynaptic densities in BNST neurons (Puente et al., 

2011). In contrast, NAPE-PLD is expressed in the perisynaptic region of dendrites and spine 
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membranes contacted by excitatory synaptic terminals (Puente et al., 2011). In terms of 

degradation enzymes, the BNST contains relatively low levels of FAAH and MAGL (Gulyas 

et al., 2004). Figure 2 depicts a simplified illustration of eCB signaling in the BNST. In 

summary, the eCB machinery is moderately expressed in BNST. CB1 receptors are 

expressed on both afferent GABAergic and glutamatergic neurons. NAPE-PLD is expressed 

in the perisynaptic region while DAGLα is expressed away from postsynaptic densities in 

postsynaptic spines and dendrites.

CANNABINOID MODULATION OF SYNAPTIC SIGNALING IN THE 

EXTENDED AMYGDALA

CeA

Pharmacologically activating cannabinoid receptors in acute CeA slices decreases 

GABAergic transmission and increases the paired-pulse ratio (PPR) in a CB1-dependent 

manner (Roberto et al., 2010). In contrast, acute CB1 blockade elicites a marked increase in 

inhibitory postsynaptic current (IPSC) amplitude and decreases PPR suggesting a tonic 

eCB/CB1 tone actively inhibits GABAergic transmission in the CeA (Neu et al., 2007, 

Roberto et al., 2010). Moreover, CB1 receptors in the CeA mediate short-term synaptic 

plasticity, namely DSI and DSE. Inhibitory inputs from CeAL to CeAM are susceptible to 

DSI and excitatory inputs from BLA to CeAM are susceptible to DSE (Figure 1) (Kamprath 

et al., 2011). Both DSI and DSE are blocked by a CB1 antagonist and absent in CB1 KO 

mice (Kamprath et al., 2011).

CB1 receptor activation also significantly depresses evoked excitatory postsynaptic current 

(eEPSC) amplitude to ∼50% of baseline (Ramikie et al., 2014). Further, CeAL neurons 

express prototypic 2-AG-mediated eCB signaling (i.e., DSE) mediated via a calcium-

dependent, 2-AG synthesis inhibitor tetrahydrolipstatin (THL)-sensitive, and CB1-dependent 

mechanism (Ramikie et al., 2014). However, the effects of the CB1 agonist CP55940 on 

GABAergic transmission were smaller and more variable relative to the effects on 

glutamatergic transmission (Ramikie et al., 2014). Interestingly, acute activation of mAChRs 

by Oxo-M increases AEA-mediated depression of glutamatergic transmission (Ramikie et 

al., 2014), while prolonged activation of mAChRs results in increases tonic and phasic 2-

AG-mediated depression of CeA glutamatergic synapses (Ramikie et al., 2014). Recently, 

Hou et al. examined eCB signaling within two major electrophysiologically distinct CeAL 

neuron classes; early spiking and late spiking neurons (Hou et al., 2016). Robust DSI is 

exclusively present at the synapses with presynaptic early spiking cells. DSI indeed only 

occurred at the early spiking→ late spiking or early spiking→ early spiking synapses but 

not at late spiking→ early spiking or late spiking→ late spiking synapses suggesting that 

CB1 receptors might be expressed only on early spiking axon terminals (Hou et al., 2016). 

These data reveal CeA activity to be regulated by tonic and phasic forms of eCB signaling.

The CeA is a principal output nucleus of amygdala containing rich local GABAergic 

microcircuits and long range projections influencing the excitability of downstream nuclei. 

The fine-tuning of GABAergic signaling is a prerequisite in controlling CeA output neurons. 

In CeAL, eCB released from GABAergic neurons will activate CB1 receptors on 
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glutamatergic afferents and dampen glutamate release onto inhibitory CeAL neurons 

resulting in disinhibition of CeAM. In CeAM, a tonic eCB tone will dampen local GABA 

release and consequently increase activity of CeAM neurons. Both mechanisms could 

increase in inhibition of downstream nuclei. Conversely, CB1 blockade could increase 

glutamate release in CeAL and GABA release in CeAM, dampening CeA output and 

relieving inhibition of downstream structures. Functional consequences of these proposed 

circuit-modulatory mechanisms are currently under investigation.

BNST

CB1 receptor and eCB signaling have been demonstrated to modulate both glutamatertic and 

GABAergic transmission in the BNST. For example, in vivo extracellular electrophysiology 

experiments showed specific effects of a CB1 agonism at glutamatergic synapses between 

infralimbic cortex and BNST neurons. Microinfusion of the cannabinoid agonist WIN 

55,212–2 into the BNST inhibited excitation of BNST neurons evoked by infralimbic cortex 

stimulation and these effects were mediated by CB1 receptors (Massi et al., 2008). Bath 

application of a cannabinoid agonist WIN55,212,2 to acute BNST brain slices inhibited 

field-evoked excitatory postsynaptic potentials (fEPSPs) and inhibitory postsynaptic 

potentials (IPSPs) in BNST neurons. This depression was completely reversed by 

application of CB1 antagonist SR141716A. The depression of evoked release induced by 

CB1 activation was accompanied by an increase in PPR, suggested a presynaptic site of 

action (Puente et al., 2010).

eCBs have also been shown to modulate short-term depression (STD) and LTD in the BNST. 

For example, Manzoni and co-workers showed that STD and LTD can be induced 

sequentially in the same BNST neuron without occluding each other, independently of the 

order at which they were induced (Puente et al., 2011). The CB1 antagonist AM251 

prevented both STD and LTD. However, the DAGL inhibitor prevented, while the MAGL 

inhibitor JZL184 enhanced, depolarization-induced STD in BNST neurons (Puente et al., 

2011), outlining a potentially role for 2-AG signaling in the meditation of STD at excitatory 

synapses in the (Puente et al., 2011). LTD in the BNST can also be mediated by eCB 

signaling, as activating group I mGlu receptors induces CB1-dependent acute depression in 

the BNST (Grueter et al., 2006). Further, the TRPV1 antagonists capsazepine or AMG9810 

completely prevented the induction of LTD in the BNST (Puente et al., 2011). AEA is an 

endogenous ligand for TRPV1 (Toth et al., 2009) and postsynaptic activation of TRPV1 

triggers internalization of postsynaptic AMPA receptors resulting LTD in hippocampus, for 

example (Chavez et al., 2010). A robust LTD was induced in slices pretreated with the 

FAAH inhibitors URB597 or JNJ-1661010 further implicating AEA signaling in BNST LTD 

(Puente et al., 2011). Thus, the eCB system appears to modulate synaptic transmission and 

plasticity in the BNST. In BNST neurons (both interneurons and projection neurons), the 

eCB system mediates short-term suppression i.e. DSE or DSI via 2-AG acting on 

presynaptic CB1 receptors, whereas LTD of excitatory inputs is mediated via AEA acting on 

postsynaptic TRPV1 receptors.
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THE ROLE OF EXTENDED AMYGDLA ENDOCANNABINOID SIGNALING IN 

STRESS, ANXIETY, AND FEAR

Several clinical studies have pointed the link between the stress-related disorders and 

cannabis use. Posttraumatic disorder (PTSD) patients are more likely to use cannabis (Bonn-

Miller et al., 2007), suggesting the comorbidity between PTSD and cannabis use. Many 

patients with PTSD cite the ability of cannabis to promote relaxation and sleep, and reduce 

anxiety symptoms as motives for continued use (Betthauser et al., 2015, Bonn-Miller et al., 

2007). In contrast, blockade of CB1 receptor has reported to produce depressive-like and 

anxiogenic effects in humans, which ultimately led to the withdrawal of CB1 antagonist 

rimonabant from European market (Doggrell, 2008, Marco et al., 2011). These data strongly 

implicate cannabinoid signaling in the regulation of anxiety and stress responsivity in 

humans. In the following section, we will discuss preclinical studies examining the eCB 

signaling in the CeA and BNST in the modulation of anxiety-related behaviors and stress 

responsivity.

CeA

Stress sensitivity is increased in animals that had received chronic treatment of a high dose 

of the cannabinoid agonist HU210, as these mice showed an exaggerated corticosterone 

secretion in response to restraint stress compared to control mice (Hill and Gorzalka, 2006). 

Importantly, robust expression of the immediate early gene c-fos was found in the CeA in 

response to acute stress in animals chronically HU-210 treated mice. This early study 

suggested the possibility that cannabinoid sensitization of acute stress effects could involve 

the CeA. This increased stress sensitivity might be due to the downregulation of CB1 

receptors on glutamatergic axon terminals, which in turn could reduce threshold for the 

activation of the CeA by incoming excitatory afferents stimulated by stressful stimuli.

Activation of CB1 receptors in the CeA by a CB1 agonist reduces anxiety-like behaviors 

(Zarrindast et al., 2008), and conversely, systemic administration of the CB1 antagonist 

SR141716 precipitates a negative emotional state in rats withdrawn for 4 days from chronic 

intermittent access to a highly palatable food. This withdrawal period increased levels of 2-

AG and CB1 receptor protein and mRNA in the CeA of mice (Blasio et al., 2013). Thus, the 

2-AG/CB1 receptor system within the CeA appears to be recruited during abstinence from 

palatable diet cycling as a compensatory mechanism to dampen anxiety. In contrast, CB1 

mRNA expression is decreased in the CeA of rats with heighted anxiety after nicotine 

withdrawal (Aydin et al., 2012), collectively suggesting abstinence from drugs of abuse and 

palatable food causes dysregulation of CeA eCB signaling, with the direction of changes in 

eCB signaling depending on the nature of the withdrawal.

Microinfusion of the CB1 antagonist AM251 in the CeA acutely increases fear responses in 

an auditory fear-conditioning paradigm (Kamprath et al., 2011). The CeA also plays an 

important role in both active and passive shock avoidance. Post-training bilateral injection of 

the cannabinoid agonist WIN 55, 212–2 into the CeA significantly decreased latency to enter 

the dark compartment (paired with footshock) in a dose-dependent manner on an inhibitory 

avoidance task (Hasanein and Sharifi, 2015, Zarrindast et al., 2012). In sum, activation of 
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CeA eCB system reduces anxiety and fear-related responses. 2-AG-CB1 signaling system is 

recruited during abstinence from palatable food to compensate abstinence-induced anxiety. 

Blockade of CeA CB1 receptors could precipitate negative emotional state and increase fear 

responses.

BNST

The BNST has been associated with stress, negative emotional state and fear-related 

behaviors (Ulrich-Lai and Herman, 2009). The presence of eCB signaling machinery in the 

BNST opens the possibility that eCBs might be playing an important role in BNST function 

and related behavioral responses. Systemic treatment with a CB1 receptor antagonist 

AM251 increases BNST neuronal activation induced by aversive stimulus, indicating that 

eCB signaling in BNST is activated during stressful events (Newsom et al., 2012). At the 

synaptic level, the BNST receives a major input from the medial prefrontal cortex (mPFC), 

and in vivo recording from BNST neurons revealed that 1h of restraint stress induced a 

switch form LTD to LTP of mPFC afferents to the BNST (Massi et al., 2008). The eCB 

system, through the stimulation of CB1 receptors present on glutamatergic terminals, plays a 

key role in this plasticity shift (Glangetas et al., 2013). This was confirmed by the fact that 

the stress-induced plasticity shift was absent in CB1−/− mice and wild-type mice that 

received bilateral microinjections of the CB1 antagonist AM251 in the BNST. The absence 

of stress-induced plasticity shift in conditional knockout Glu-CB1−/− (mice lacking CB1 

expression on forebrain glutamatergic neurons), revealed that stress-elicited shift in 

plasticity is fully controlled by CB1 receptors located on glutamatergic terminals (Glangetas 

et al., 2013). It is not clear exactly how eCB signaling on glutamatergic neurons is involved 

in stress-elicited shift in plasticity in the BNST neurons, thus future studies into the cellular 

mechanisms underlying these effects are of high importance.

BNST eCB signaling ahs also been implicated in the physiological responses to acute stress. 

Microinjection of the CB1 antagonist AM251 into the BNST enhances tachycardia 

associated with restraint stress (Gomes-de-Souza et al., 2016). Conversely, augmenting AEA 

signaling in BNST via FAAH inhibition (URB597) dampenes restraint-stress evoked 

tachycardia and microinjection of the MAGL inhibitor JZL184 into the BNST decreased 

restraint stress-evoked increase in heart rate in CB1 dependent manner (Gomes-de-Souza et 

al., 2016). These data indicate involvement of BNST eCB signaling in cardiovascular 

adjustments during emotion stress that could be mediated by local release of AEA and/or 2-

AG.

CB1 receptors in BNST were recently shown to be critical for the fear response to an 

unpredictable threat, as local BNST infusion of the CB1 antagonist AM251 prevented a shift 

from phasic fear to sustained fear in response to an unpredictable threat (Lange et al., 2017). 

Electrophysiology and optogenetics were used to identify putative glutamatergic neurons of 

the BNST that receive basal amygdala (BA) glutamatergic and CeA GABAergic afferent 

inputs regulated by the eCB system via presynaptic CB1 receptors, while the inputs from 

medial amygdala to BNST are not regulated by CB1 receptors (Lange et al., 2017). Mice 

holding a loxP-flank transcriptional stop-cassette upstream of the CB1-coding region (Stop-

CB1), which prevents CB1 expression, displayed rapidly declining phasic freezing 
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suggesting CB1 receptor function in the CeA/BA projections to alBNST is necessary to 

express sustained fear. Cre-dependent rescue of CB1 receptor function in BA/CeA neurons 

in Stop-CB1 mice reinstated sustained fear. Using conditional knock out mice, CB1 receptor 

function in both CeA GABAergic and BA glutamatergic inputs to alBNST are necessary to 

express sustained fear. These results suggest stimulation of CB1 receptors, on BA and CeA 

projections to BNST, are necessary and sufficient for the shift from phasic to sustained fear 

in response to unpredictable threat stimuli. However, CB1 receptors on these inputs are not 

involved in mediating phasic fear responses to predictable threat (Lange et al., 2017). 

Although the brain regions important for producing unconditioned anxiety and conditioned 

fear partially overlap, the aforementioned studies indicated an opposite role for the eCB 

system in mediating these behaviors. One possible explanation for this apparent difference is 

that different neural circuits regulate conditioned fear and unconditioned anxiety. It is also 

possible that eCB augmentation exerts opposing effects on fear and anxiety behaviors due to 

its action on specific glutamatergic circuits that differentially promote or inhibit the 

expression of fear and anxiety phenotypes.

EXTENDED AMYGDALA ENDOCANNABINOID SIGNALING IN ALCOHOL 

DEPENDENCE

Altered extended amygdala endocannabinoid signaling after alcohol exposure

The EA is critical for the reinforcing effects of ethanol and the transition to dependence 

(Koob et al., 1998, Koob, 2003). Ethanol perfusion increases GABAergic transmission in 

CeA by acting on both presynaptic and postsynaptic neurons (Roberto et al., 2003). 

Subsequent activation of CB1 receptors together with ethanol significantly decreases IPSC 

amplitudes by ∼30 % compared to ethanol-only. Interestingly, bath perfusion of the CB1 

antagonists AM251 or SR141716 revealed a tonic eCB/CB1 control of GABA release in 

CeA neurons of ethanol naïve rats (Roberto et al., 2010). Moreover, ethanol and AM251 or 

SR141716 increased GABA transmission in an additive manner (Roberto et al., 2010), 

indicating that CB1 signaling and ethanol-induced modulation of GABAergic transmission 

occur independently. Acute ethanol perfusion also decreases glutamatergic transmission in 

rats with no change in PPR, indicating a postsynaptic site of action of ethanol. No tonic eCB 

signaling was found at glutamatergic synapses in CeA (Kirson et al., 2018). The exact 

molecular mechanisms involved in ethanol and cannabinoid effects on GABA release are 

still unclear. It is possible that both ethanol and CB1 receptors are acting on common 

signaling pathways to regulate GABA release. Protein Kinase A (PKA) and adenylate 

cyclase (AC) antagonists inhibit the ethanol-induced increases in spontaneous GABA release 

(Kelm et al., 2008), while CB1 receptors inhibit AC and decrease PKA activity (Katona and 

Freund, 2008), therefore the AC/PKA pathway in the CeA may be a common mechanism 

targeted in opposite ways by ethanol and eCBs. Interestingly, chronic in vivo ethanol 

exposure abolishes tonic eCB/CB1 influence on mIPSC, but not sIPSC, frequency 

(Varodayan et al., 2016). This suggests that chronic ethanol exposure could decrease CB1 

receptor function at GABAergic synapses in CeA.
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Role of extended amygdala endocannabinoid signaling in ethanol abstinence-induced 
anxiety-like behavior and negative affective states

Early and protracted abstinence from alcohol reduces social interaction, increases motor 

stereotypies, and exacerbates anxiety and depressive-like behaviors (Becker et al., 2017, 

Holleran et al., 2016, Serrano et al., 2018). Ethanol-preferring rats display increased co-

morbid signs of anxiety and excessive ethanol drinking. A major contributor to excessive 

ethanol intake in this rat model relates to attenuation of anxiety-like behaviors, consistent 

with negative-reinforcement-driven alcohol consumption (Natividad et al., 2017, Stopponi et 

al., 2018). Ethanol-preferring rats display aberrations in stress signaling systems including 

upregulation of CRF1 receptor in the CeA and medial amygdala that is linked to the single 

nucleotide polymorphism in the promoter region of the gene (Hansson et al., 2007). FAAH 

activity is also increased in the CeA of ethanol-preferring rats. CRF-induced anxiety relies 

on modulation of eCBs and activation of CRF1 receptors, as CRF evokes a rapid induction 

of FAAH activity which reduces AEA (Gray et al., 2015). This increased FAAH activity is 

accompanied by reductions in AEA dialysate levels in the rat CeA of ethanol-preferring rats 

(Natividad et al., 2017). Voluntary ethanol self-administration downregulates CRF1 receptor 

transcripts in CeA and MeA and CRF1 blockade normalizes elevated FAAH expression in 

ethanol-preferring rats suggesting a mechanism whereby CRF1-mediated FAAH activity-

dependent AEA deficiency drives anxiety-like behavior and excessive drinking in this rat 

line (Natividad et al., 2017). Ethanol-preferring rats also exhibit elevated baseline 

glutamatergic transmission in the CeA which could be a consequence of AEA deficiency 

and could contribute to the behavioral phenotypes.

2-AG has also been implicated with withdrawal-induced anxiety in rodent models. 

Pharmacological augmentation of 2-AG reduces early ethanol abstinence-induced neuronal 

activity and glutamatergic transmission in the BNST (Centanni et al., 2018). The insula 

provides interoceptive cues through neuronal projections to cortical and subcortical brain 

regions, including dense projections to BNST. Insula afferents onto BNST CRF+ neurons 

are eCB-sensitive and a possible source of abstinence-induced increases in glutamatergic 

neurotransmission in BNST. Chemogenetic inhibition of insula neurons reduced early 

abstinence-induced increase in neuronal activity and glutamatergic transmission in BNST 

and decreased early abstinence-induced negative affect (Centanni et al., 2018), thus 

mimicking the effects of activating the Gi-coupled CB1 receptors and providing evidence for 

a potential role of insula-BNST eCB signaling in abstinence-induced negative affect. 

Accordingly, chemogenetic activation of the BNST neurons receiving insular projections 

produces a negative affective phenotype. This suggests a distinct role of insula-BNST 

circuits in mediating negative affect in early ethanol abstinence and that enhancing 2-AG is 

sufficient to prevent abstinence-induced hyperactivity in the BNST.

Ethanol abstinence-induced changes in expression of endocannabinoid signaling 
components in the extended amygdala

Acute ethanol withdrawal significantly changes mRNA expression for various components 

of eCB signaling system in EA. Specifically, FAAH and MAGL mRNA is significantly 

reduced after 24h of ethanol withdrawal. These changes are accompanied by decreased CB1 

and CB2 receptors mRNA expression (Serrano et al., 2012). Interestingly, the first 
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withdrawal after continuous ethanol exposure primarily alters gene expression related to 

AEA biosynthesis and clearance, whereas repeated withdrawals induced by chronic 

intermittent ethanol (CIE) exposure decreased gene expression for the 2-AG degrading 

enzyme MAGL and cannabinoid receptors (CB1 and CB2). Further, CIE significantly 

downregulates CB1 receptor function in the CeA (Varodayan et al., 2016), and alters 

behavior and physiological responses to CB1 activation (Vinod et al., 2006, Vinod et al., 

2012, Mitrirattanakul et al., 2007). Postmortem studies in AUD report disruptions of CB1 

receptor expression in ventral striatum and cortical regions (Vinod et al., 2010). Imaging 

studies have reported lower CB1 receptor availability in heavy drinking alcoholics that 

persisted for 1 month of abstinence (Ceccarini et al., 2014, Hirvonen et al., 2013). Overall 

the alterations in mRNA expression for various components of eCB signaling system were 

more prominent in rats exposed to CIE compared to continuous access exposed rats (Serrano 

et al., 2012). Abstinent rats showed alteration in gene expression of FAAH, MAGL, and 

DAGL in the CeA, suggesting sensitivity to the intermittent nature of ethanol exposure and 

post-ethanol abstinence period (Serrano et al., 2012). A recent report by the same group 

specifically studied ethanol-abstinence-induced gene expression in CeA. After 12h of 

ethanol withdrawal, the abstinence group showed an overall increase in the mRNA 

expression of MAGL, FAAH and DAGL enzymes related to the eCB signaling in CeA 

(Serrano et al., 2018). These discrepant findings could be the result of different time points 

and brain regions examined. Collectively, these studies provide evidence of ethanol-induced 

dysregulation of the eCB system.

CIE reduces baseline dialysate 2-AG levels in the CeA, and this persisted up to 7 days into 

abstinence, consistent with the increased gene expression of several enzymes involved in 

synthesis and degradation of 2-AG observed in CeA after 12h of ethanol withdrawal 

(Serrano et al., 2018). CIE and subsequent protracted abstinence did not alter AEA levels in 

the CeA. Interestingly, the reductions in CeA 2-AG levels in ethanol dependent rats were 

enhanced during acute abstinence, but 2-AG levels were normalized by re-exposure to 

ethanol (Serrano et al., 2018). As expected, increased GABA and glutamate dialysate levels 

in CeA accompanied the reduced 2-AG baseline levels (Serrano et al., 2018). These results 

suggest 2-AG may be responsible for eCB-mediated neuroadaptations in the CeA in 

response to CIE. Pharmacological and genetic 2-AG deficiency has been shown to generate 

anxiety-like and sex-specific anhedonic phenotypes (Bedse et al., 2017, Shonesy et al., 

2014) suggesting ethanol abstinence-induced 2-AG signaling deficiency in the amygdala 

could contribute to the increased anxiety-like and anhedonic phenotypes. Furthermore, 

ethanol reinstatement could normalize the eCB deficiency suggesting 2-AG deficiency may 

represent a novel mechanism contributing to negative reinforcement-driven ethanol drinking.

Self-administration of ethanol increases interstitial CeA 2-AG levels, and this increase is 

absent in ethanol dependent rats (Serrano et al., 2018). Although dependent rats showed 

elevated ethanol self-administration, there were no alterations in CeA AEA levels in 

dependent or control rats. A 30 min of restraint increased CeA 2-AG levels in control rats. 

However, in ethanol dependent rats stress exposure did not alter the CeA 2-AG levels. In 

contrast, CeA AEA levels were lowered in response to stress in both control and ethanol 

dependent rats. The initial decline in brain AEA levels appears to enable the manifestation 

of the stress response and the subsequent increase in 2-AG appears to terminate the stress 
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response and HPA-axis activation. The reduced interstitial 2-AG levels observed during 

acute abstinence were accompanied by increased anxiety-like behaviors in ethanol 

dependent rats. Collectively, dysregulation of 2-AG, but not AEA signaling, appears critical 

for anxiety-like behaviors in ethanol dependent rats. It is possible that reduced CeA 2-AG 

levels that result from ethanol dependence mediate the negative affective state during 

withdrawal and that could contribute to the excessive ethanol consumption. Figure 3 depicts 

a proposed mechanism for ethanol-induced dysregulation of eCB signaling in the EA.

PHARMACOLOGICAL AUGMENTATION OF ENDOCANNABINOID 

SIGNALING FOR TREATMENT OF ETHANOL ABSTINENCE-INDUCED 

NEGATIVE EMOTIONAL STATES

A number of studies have demonstrated anxiolytic potential of pharmacological eCB 

augmentation approaches in variety of preclinical models of negative affect (Hill et al., 2018, 

Patel et al., 2017). Pharmacological inhibition of eCB-degrading enzymes, FAAH and 

MAGL, elicit promising anxiolytic effects in rodent models with limited adverse effects 

(Bedse et al., 2017, Bedse et al., 2018, Bedse et al., 2014, Bedse et al., 2015, Bluett et al., 

2014, Patel et al., 2017, Zhong et al., 2014, Lim et al., 2016). With regard to modulation of 

alcohol-abstinence-induced negative affect, MAGL inhibition (with JZL184 or MJN110) 

reverses early abstinence-induced anxiety in mice (Holleran et al., 2016, Serrano et al., 

2018), and the CB1 antagonist rimonabant blocked these effects (Holleran et al., 2016). 

FAAH inhibition with PF-3845 alleviated stress-induced increases in glutamatergic 

transmission and attenuated the excessive anxiety-like behavior in in alcohol preferring rats 

(Natividad et al., 2017). Intra-CeA injection of FAAH inhibitor URB597 attenuated ethanol 

self-administration in ethanol-preferring rats, and this may be dependent on the ability of the 

drug to decrease anxiety in ethanol-preferring rats. Accordingly, URB597 at the same dose 

that produced maximal effects on ethanol self-administration reduced anxiety-like effects in 

ethanol-preferring rats (Stopponi et al., 2018). These data demonstrate that FAAH inhibition 

in CeA alleviates co-morbid signs of anxiety and excessive ethanol drinking, which is driven 

in part by chronic dysregulation of CRF signaling. The restoration of eCB signaling with the 

inhibition of MAGL or FAAH could be a promising therapeutic approach to treat ethanol 

early abstinence-induced anxiety-like phenotype. However, the efficacy of eCB 

augmentation on protracted abstinence-induced anxiety need to be evaluated.

In summary, eCB signaling in the EA is altered in models of ethanol dependence, which 

likely plays an important role in negative affect-driven relapse and excessive drinking. eCB 

signaling in stress responsive brain circuits is blunted in protracted withdrawal suggesting 

abstinence-induced deficiencies in eCB signaling could constitute a breakdown of important 

homeostatic mechanism that dampens physiological and behavioral response to stress. 

Therefore, augmentation of eCB signaling by inhibiting the degradation of eCBs could be 

used to decrease the anxiety-like phenotype during alcohol abstinence.
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FUTURE DIRECTIONS AND CONCLUSIONS

Using our search criteria, we identify a major gap in research focusing on the relationship 

between eCB signaling in the EA and ethanol exposure. The scope of research highlighting 

the role of the EA in stress, anxiety, and depression coupled with the ability of eCB to 

modulate neuronal signaling and behavioral output in the EA highlights the growing 

therapeutic potential of the eCB system for treating negative affect associated with AUD. To 

maximize this potential, future research needs to further characterize the complex intricate 

neural signaling of the eCB system in the EA, and specifically how ethanol exposure and 

withdrawal impacts eCB signaling in these brain areas. In this vein, how eCB signaling is 

directly impacted by ethanol exposure and if ethanol directly alters eCB levels in the EA 

needs to be better studied.

Cell-type specificity

eCB signaling can modulate both excitatory and inhibitory neurotransmission underscoring 

the broad impact of this system on neurotransmission. However, the ability of eCBs to 

modulate both excitatory and inhibitory neurotransmitter release speaks to the difficulty in 

predicting the net effect on the excitation and inhibition of EA nuclei. More research needs 

to be conducted to understand the fundamental effects of eCB modulation on 

neurotransmission of specific cell-types in the EA, and moreover, how this modulation is 

altered after acute ethanol exposure, chronic ethanol exposure, acute withdrawal, and 

protracted abstinence. The effects of ethanol on several target cell -types have been 

discussed in the first review in this series, including neuropeptide markers such as CRF and 

NPY, and cell-types characterized based on their electrophysiological profiles; however, 

much less is known about eCB signaling at specific EA synapses and cell-types in the 

context of alcohol actions and neuropeptide signaling.

Input specificity

The dense expression of eCB signaling in numerous brain regions, coupled with the 

presynaptic actions of eCB signaling has further impeded progress in understanding of the 

circuit-level mechanisms by which eCBs could regulate effects of alcohol and abstinence-

related negative affect. These issues can be addressed by conducting more studies exploring 

the various inputs to the CeA and BNST, and how these inputs drive negative affect during 

abstinence. With the rapid advancement of virus-guided neural tracing, genetic 

manipulation, and brain imaging techniques, studying the effects of ethanol on specific 

inputs is more feasible than it has ever been. Understanding how ethanol exposure effects the 

various inputs to the CeA and BNST, and moreover, how eCB can modulate these inputs, 

will provide invaluable insight to guide our understanding of the circuitry driving negative 

affect and reveal new insights into the pathophysiology of alcohol abstinence-induced 

affective changes.

Therapeutic Implications and Conclusions

As indicated throughout this review, several compounds targeting the enzymatic machinery 

driving eCB degradation, such as FAAH and MAGL, have the potential to reduce alcohol 

abstinence-induced negative affect state. Continued examination of FAAH and MAGL-
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inhibition in the various models of AUD and withdrawal-induced negative affect could help 

provide a solid preclinical base to facilitate eCB-based drug development for AUD. 

However, to produce a truly successful eCB-based pharmacotherapeutic for treating negative 

affect associated with AUD, we must use the strategies outlined above to gain a better 

understanding of how these compounds, when administered systemically, impact specific 

neural circuits and cell-types. It is, in theory, possible that eCB augmentation could induce 

adverse cannabimimetic adverse effects on motor function or cognition and carry some 

abuse liability. However, many studies to date have demonstrated preclinical efficacy of eCB 

degradation inhibitors without overt cannabimimetic side effects (Hruba et al., 2015, Bedse 

et al., 2018, Long et al., 2009, Ignatowska-Jankowska et al., 2014, Cravatt and Lichtman, 

2003, Ghosh et al., 2015, Booker et al., 2012, Curry et al., 2018, Wilkerson et al., 2016). 

Indeed, these cannabimimetic side-effects are most apparent during blockade of both FAAH 

and MAGL concomitantly (Wise et al., 2012, Hruba et al., 2015, Long et al., 2009), this 

using single enzyme inhibition represents the most likely path forward for eCB-based 

therapeutics development.

While the topic of this review focuses on eCB signaling in the EA, it should be noted that 

exciting and ongoing research examining eCB modulation of several other brain regions and 

neural circuits including the dopamine reward system in theVTA, striatum, and nucleus 

accumbens could have important implication for developing eCB-based treatments for AUD. 

Continuing parallel lines of research focused on eCB modulation of multiple aspects of 

AUD will be essential for ultimate development of novel treatments for AUD.
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Figure 1. Endocannabinoid signaling in the central nucleus of the amygdala (CeA).
Glutamatergic inputs (light green) from the basolateral amygdala (BLA) and the insula 

project onto GABAergic neurons (light red) in the lateral subdivision of the CeA (CeAL). 

These GABAergic neurons send axon terminals to the medial subdivision of the CeA 

(CeAM). Both inputs are strongly regulated by the endocannabinoid (eCB) system via 

presynaptic CB1 receptors. In the CeAL, activation of mAChRs initiates 2-arachidonoyl 

glycerol (2-AG) and anandamide (AEA) production, and subsequent activation of 

presynaptic CB1 receptors by eCBs at excitatory inputs inhibits glutamate release 

(depolarization-induced suppression of excitation, DSE). Tonic eCB signaling in the CeAM 

inhibits the GABA release onto the GABAergic projection neurons (depolarization-induced 

suppression of inhibition, DSI), regulating CeA output. eCBs also regulate synaptic 

neurotransmission in the CeAM through activation of CB1 receptors on astrocytes (light 
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violet). Activation of astrocytic CB1 receptors increases astrocytic calcium and results in 

increasing synaptic vesicle release probability in the CeL-CeM through activation of A2A 

receptors and decreases synaptic probability of release through activation of A1 receptors in 

BLA-CeAM synapses. CeA sends inhibitory efferent projections to lateral hypothalamus, 

the bed nucleus of stria terminalis (BNST), parabrachial nucleus (PBN), periaqueductal gray 

(PAG) and locus coeruleus (LC).
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Figure 2. Endocannabinoid signaling in the bed nucleus of the stria terminalis (BNST).
Excitatory inputs (light green) from medial prefrontal cortex (mPFC), basal amygdala (BA) 

and insula, and inhibitory inputs (light red) from central nucleus of the amygdala (CeA) 

project onto BNST neurons and are regulated by the endocannabinoid system via 

presynaptic CB1 receptors. Inhibitory inputs from CeA and medial amygdala (MeA) 

projecting onto GABAergic BNST neurons (light red) are devoid of CB1 receptors. Activity 

at excitatory inputs evokes postsynaptic depolarization of BNST neurons, subsequent Ca2+ 

entry via voltage sensitive calcium channels (VSCC), initiates the production of 2-

arachidonoyl glycerol (2-AG), activation of presynaptic CB1 receptors at both excitatory and 
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inhibitory inputs, in turn, resulting in short-term suppression of glutamate (depolarization-

induced suppression of excitation, DSE) and GABA (depolarization-induced suppression of 

inhibition, DSI) release. Activation of mGluR5 receptor initiates the production of 

anandamide (AEA), which further activates the postsynaptic TRPV1 channels in an 

autocrine manner. TRPV1 triggers internalization of postsynaptic AMPA receptors and 

induce long-term depression (LTD). BNST neurons send dense projections to the lateral 

hypothalamus, CeA, parabrachial nucleus (PBN), periaqueductal gray (PAG), and ventral 

tegmental area (VTA).
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Figure 3. A proposed mechanism of ethanol-induced dysregulation of endocannabinoid signaling 
in extended amygdala.
In ethanol naïve conditions (A) endocannabinoid signaling within the central nucleus of 

amygdala (CeA) and bed nucleus of stria terminalis (BNST) regulates the presynaptic 

release of glutamate through activation of CB1 receptors on glutamatergic inputs (light 

green), which dampens the activation of neurons of CeA and BNST (light gray). In ethanol 

abstinence, the levels of 2-arachidonoyl glycerol (2-AG) decreases, possibly through 

enhanced degradation by monoacylglycerol lipase (MAGL). The reduced 2-AG signaling at 

CB1 disinhibits glutamatergic inputs to CeA and BNST, resulting in increased glutamate 

release and firing of CeA and BNST neurons. Activation of CeA and BNST neurons further 

activates downstream brain nuclei involved in the brain stress system regulating the negative 

affective state. (C) Ethanol re-exposure increases the 2-AG levels through an unknown 

mechanism and temporarily alleviates negative emotional state. This model also suggests 
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pharmacological inhibition of MAGL, which would increase 2-AG signaling, could reduce 

abstinence-induced EA over activation and negative affective states.
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