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Summary

Cryo-electron microscopy (cryo-EM) has become a mainstream technique for determining the 

structures of complex biological systems. However, accurate integrative structural modeling has 

been hampered by the challenges in objectively weighing cryo-EM data against other sources of 

information due to the presence of random and systematic errors, as well as correlations, in the 

data. To address these challenges, we introduce a Bayesian scoring function that efficiently and 

accurately ranks alternative structural models of a macromolecular system based on their 

consistency with a cryo-EM density map and other experimental and prior information. The 

accuracy of this approach is benchmarked using complexes of known structure and illustrated in 

three applications: the structural determination of the GroEL/GroES, RNA polymerase II, and 

exosome complexes. The approach is implemented in the open-source Integrative Modeling 
Platform (http://integrativemodeling.org), thus enabling integrative structure determination by 

combining cryo-EM data with other sources of information.

Introduction

Over the last two decades, cryo-electron microscopy (cryo-EM) has enabled the structural 

characterization of complex biological systems beyond the capabilities of traditional 

techniques, such as X-crystallography and nuclear magnetic resonance (NMR) spectroscopy 

(Callaway, 2015; Kuhlbrandt, 2014; Nogales, 2016). This progress has been fueled by the 

continuous advances in both instrumentation and software for cryo-EM image processing 

(Bai et al., 2015; Glaeser, 2016; Li et al., 2013). As a result, the resolution of the structures 
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from cryo-EM is rapidly approaching that of X-ray crystallography. Most importantly, cryo-

EM does not require crystallizing the system prior to data acquisition, needs a small amount 

of sample, does not require isotopic labeling, and is applicable to systems larger than ~100 

kDa. Furthermore, cryo-EM has the potential of identifying multiple different structural 

states in a single experiment (Bai et al., 2015; Callaway, 2015; Glaeser, 2016; Nogales, 

2016), provided that they can be disentangled during image classification.

A number of approaches have been proposed to model macromolecular structures based on 

cryo-EM density maps (Lopez-Blanco and Chacon, 2015; Schroder, 2015). Generally 

speaking, these techniques can use one or more of the following strategies: rigid-body fitting 

of components of known structures, flexible refinement, use of homology modeling or de 
novo protein structure prediction of the components, and integrative modeling based on 

multiple types of experimental data. The most popular software packages for cryo-EM-based 

modeling include Chimera (Pettersen et al., 2004), EMfit (Rossmann et al., 2001), Modeller 

(Sali and Blundell, 1993), SITUS (Wriggers, 2012), MultiFit (Lasker et al., 2009), EMFF 

(Zheng, 2011), MDFF (Trabuco et al., 2008), Flex-EM (Topf et al., 2008), γ-TEMPy 

(Pandurangan et al., 2015), COAN (Volkmann and Hanein, 1999), MDFIT (Ratje et al., 

2010), Fold-EM (Saha and Morais, 2012), ROSETTA (DiMaio et al., 2009), EM-fold 

(Lindert et al., 2012), IMP (Russel et al., 2012), RELION (Scheres, 2012a), ISD (Habeck, 

2017), and Phenix (Adams et al., 2011). The majority of these approaches generate 

structural models that minimize the deviation between observed and predicted cryo-EM 

density maps, including by molecular dynamics (MD), Monte Carlo (MC) or normal modes 

analysis techniques (Lopez-Blanco and Chacon, 2015).

Several methods have been developed with the purpose of fitting the components of large 

macromolecular complexes into low-resolution density maps. A subset of these of methods 

use scoring functions based on cross-correlation (CC) or Laplacian-filtered CC between a 

target map and a simulated map, sampling using three-dimensional (3D) Cartesian FFT 

coupled with exhaustive rotational samples, such as COLORES (Chacon and Wriggers, 

2002), gEMfitter (Hoang et al., 2013), and PowerFit (van Zundert and Bonvin, 2015). These 

methods are normally used incrementally, i.e. by fitting one subunit at the time. In contrast, 

other modeling software packages simultaneously assemble multiple components of the 

complex. ATTRACT-EM (de Vries and Zacharias, 2012), for example, uses Gaussians 

positioned at the center of each voxel of the map, a coarse-grained representation of the 

model structure, and a gradient vector matching as energy function.

Despite the success of these methods, the translation of cryo-EM density maps into 

structural models still presents several challenges, especially in integrative structural 

modeling, where cryo-EM data are combined with other sources of information. First, cryo-

EM density maps are affected by random and systematic errors (Bonomi et al., 2017; 

Schneidman-Duhovny et al., 2014). In particular, radiation damage to the sample upon 

prolonged exposure to the electron beam often results in regions of the density map at 

resolution lower than the average. Second, despite progress in methods for 2D classification 

and 3D reconstruction, the final maps might still average out images of particles in different 

conformations (Bonomi et al., 2016). Finally, cryo-EM maps are typically defined by a set of 

data points, or voxels, representing the electron density on a grid in real space. Neighbouring 
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voxels do not provide independent information on the system, but instead are affected by a 

certain degree of spatial correlation. Accounting for correlation as well as the presence of 

noise in the data is crucial when integrating cryo-EM with other experimental data (Ward et 

al., 2013), as the information and noise content of each piece of data needs to be accurately 

quantified to avoid biasing a model (Schneidman-Duhovny et al., 2014).

Here, we introduce a Bayesian approach (Rieping et al., 2005) to model the structure of a 

macromolecular system by optimally combining cryo-EM data with other input information. 

Bayesian inference and maximum-likelihood methods are not novel to the cryo-EM field 

(Scheres, 2012b; Sigworth et al., 2010), as they were initially introduced for aligning 

structurally homogenous sets of 2D images (Sigworth, 1998), and they are now widely used 

by software packages such as RELION (Scheres, 2012a) for single-particle reconstruction. 

In our approach, we use Bayesian inference in a way similar to that discussed in a recent 

paper (Habeck, 2017), i.e. to determine the optimal weight of cryo-EM data in integrative 

structural modeling.

Our approach models the structure of the system while simultaneously and automatically 

quantifying the level of noise in the data. Furthermore, the input data are represented in 

terms of a Gaussian mixture model (GMM) (de Vries and Zacharias, 2012; Jonic et al., 

2016; Kawabata, 2008; Robinson et al., 2015), rather than using the standard voxel 

representation. This procedure has several advantages: a) it alleviates the problem of voxel 

correlation by decomposing the density map into a set of nearly-independent GMM 

components; b) it is computationally efficient; and c) it enables a multi-scale representation 

of the model, from coarse-grained for initial efficient sampling to atomistic for refinement of 

high-resolution maps. By accounting for both data noise and correlation, this approach 

enables an effective use of cryo-EM density maps in integrative structural modeling.

In the following, we first outline our modeling approach and then benchmark its accuracy 

using synthetic low-resolution data of several protein/DNA complexes. Finally, we apply our 

approach to the integrative modeling of the GroEL/ES complex, as well as the RNA 

polymerase II and the exosome complexes, in which we combine cryo-EM with chemical 

cross-linking/mass spectrometry (XL-MS) data. This method is implemented in the open-

source Integrative Modeling Platform (IMP) package (http://integrativemodeling.org) 

(Russel et al., 2012), thus enabling integrative structure determination of biological systems 

based on a variety of experimental data, including FRET and NMR spectroscopies, XL-MS, 

small angle X-ray scattering, and various proteomics data.

Results

Protocol for low-resolution modeling of cryo-EM density maps

We implemented in IMP (Russel et al., 2012) a pipeline that enables the multi-scale 

modeling of macromolecular structures based on cryo-EM data and other structural 

information, given partial knowledge of subunits structures. The details of our approach are 

illustrated in the STAR Methods. The general 4-stage protocol proceeds as follows (Fig. 1):
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1. Gather the data, including the sequences of subunits, their structures (eg, from X-

ray crystallography, NMR spectroscopy, homology modeling, and ab initio 
prediction), and the target cryo-EM density map (Fig. 1.1).

2. Convert the data into a scoring function for ranking alternative structural models:

A. Generate a GMM representation of the density map (data-GMM) by 

using a divide-and-conquer algorithm (Fig. 1.2A, Fig. 2, and Fig. S1).

B. Assign a representation to the different components of the complex 

(Fig. 1.2B). Subunits are represented by spherical beads to coarse-grain 

the atomic degrees of freedom. For a given domain, the beads are either 

constrained into a rigid body or allowed to move flexibly, depending on 

the uncertainty about the domain structure. The beads represent one or 

more contiguous residues, depending on the level of coarse-graining 

(Erzberger et al., 2014; Fernandez-Martinez et al., 2016; Robinson et 

al., 2015).

C. The electron density of the model is also described by a GMM (model-

GMM) and is used to compute the fit of the model to the cryo-EM 

density map (Fig. 1.2C).

D. The scoring function that ranks the models according to how well they 

fit the input information is derived from the posterior probability, which 

includes a likelihood function for the cryo-EM data (Fig. S2), and prior 

terms such as the bead sequence connectivity and excluded volume 

(Fig. 1.2D).

3. Sample models using MC and replica exchange methods (Swendsen and Wang, 

1986), with an iterative approach to maximize sampling exhaustiveness (Fig. 1.3 

and Fig. S3).

4. Analyze the sampled models in terms of their variability by clustering. (Fig. 1.4).

Benchmark of the divide-and-conquer fit of the data-GMM

We assessed the accuracy of our divide-and-conquer approach by determining the data-

GMM of 20 experimental density maps at different resolutions (Liu et al., 2016; Malet et al., 

2010; Wang et al., 2007), ranging from 3.6 Å to 25 Å (Table 1). This benchmark revealed 

that the number of Gaussian components needed to achieve a given accuracy of the optimal 

data-GMM varies with the resolution of the map and molecular weight of the complex (Fig. 

3A). Indeed, for a given number of components and molecular weight, the data-GMM 

correlation coefficient is lower for higher-resolution maps. In other words, high resolution 

maps and maps of high molecular weight complexes contain more information and therefore 

require additional components to describe the ensemble of their features.

We used this benchmark to calculate the resolution of the cryo-EM density maps as a 

function of the number of Gaussians per mass-unit of the optimal data-GMM (Fig. 3B). This 

relationship can be used to: a) estimate the resolution of a GMM generated from a known 
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structure, and b) estimate the number of Gaussians needed to fit a cryo-EM density map of a 

given mass and resolution.

Our divide-and-conquer approach allowed us to overcome the computational inefficiency of 

the traditional expectation-maximization algorithm for fitting GMM with a large number of 

components. For example, in the case of the yeast cytoplasmic exosome at 4.2 Å resolution 

(EMDB code 3366) (Liu et al., 2016), our approach required 24 minutes and less than 1 GB 

to generate GMMs with 4, 16, 64, 256, 1024, and 4096 components. In contrast, a serial 

implementation on a single computer required over 48 hours and 182 GB of memory for 

fitting with 4096 components.

Benchmark of the modeling protocol

We assessed the accuracy of the modeling protocol using a benchmark of 21 protein/DNA 

complexes consisting of 2 to 7 subunits (Table 2) (Velazquez-Muriel et al., 2012) and 

simulated cryo-EM density maps with a resolution of ~10 Å. No additional experimental 

data beside the crystal structure of the individual components were included, as our aim was 

to explore the performance of the cryo-EM scoring function alone. The detailed results of 

the benchmark are reported in Table S1.

The average accuracy p(10) (STAR Methods) of the whole benchmark was 88%. We 

classified the outcomes of our benchmark into three categories. We defined a full positive 
result when the global root mean square deviation (rmsd) with respect to the reference 

structure along with the rmsds of all the individual subunits were lower than 10 Å. A partial 
positive result was achieved when the global rmsd was lower than 10 Å but some of the 

subunits were misplaced, resulting in a rmsd greater than 10 Å for at least one subunit. A 

negative result was obtained when the global rmsd was greater than 10 Å. Out of the 21 

complexes, we obtained 16 full positives (2UZX, 3R5D, 1CS4, 2WVY, 2DQJ, 1VCB, 

2GC7, 2BO9, 2BBK, 1GPQ, 3V6D, 3SFD, 3PDU, 3NVQ, 2Y7H, and 1SUV), 3 partial 

positives (1Z5S, 3LU0, and 1MDA), and 2 negatives (3PUV and 1TYQ) (Table 2 and Fig. 

4).

The majority of the complexes belonged to the full positive category and were accurately 

modeled, with an average global rmsd from the reference structure equal to 2.2 Å. In the 

following, we discuss the few partial positive and negative results, highlighting the reasons 

behind their lower accuracy.

The best-scoring model of the 4-subunits 1Z5S had a rmsd of 9.0 Å, p(10) of 0.86, APS of 

(1.8 Å, 32.1°), and CC of 0.87. All best scoring models are grouped into a single cluster. The 

origin of the inaccuracy was subunit B, which was mis-rotated by almost 180°. The reason 

was that this subunit has a cylindrical shape and therefore the expected density is nearly 

invariant under rotations around the main axis.

The best-scoring model of the 5-subunits 3LU0 had a rmsd of 9.3 Å, p(10) of 0.85, APS of 

(4.3 Å, 5.7°), and CC of 0.74. The best scoring models were grouped into two clusters. In 

the first cluster containing the best scoring model, the lower accuracy of the models was due 

to subunits A, B, and E. Subunits A and B, while positioned in the correct region of the 
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density map, were displaced by 10.9 Å and 7.3 Å and mis-rotated by 33.7° and 24.1°, 

respectively. Subunit E was also displaced by 13.5 Å and mis-rotated by 34.6°. In the second 

cluster, the situation was similar, with subunit E displaced even farther apart in the incorrect 

region of the density, with a Placement Score of (72.6 Å, 151.7°).

The best-scoring model of the 6-subunits 1MDA had a rmsd of 8.1 Å, p(10) of 0.85, APS of 

(3.2 Å, 34.0°), and CC of 0.75. All best scoring models were grouped into a single cluster. 

The origin of the inaccuracy was the orientations of subunit A and M, which were both mis-

rotated by almost 180°. The reason was that these subunits have near cylindrical shape and 

therefore their expected densities are almost invariant under rotations around the main axis.

The best-scoring model of the 5-subunits 3PUV had a rmsd of 23.4 Å, p(10) of 0.64, APS of 

(8.0 Å, 31.1°), and CC of 0.74. All best scoring models were grouped into a single cluster. In 

the best-scoring model, subunits E, F, and G were correctly positioned. Subunits A and B 

were instead both misplaced and mis-rotated, with APS of (17.6 Å, 17.7°) and (18.1 Å, 

136.7°), respectively. The reason was that these subunits formed a closed dimer of roughly 

cubical shape, whose density could be fit also by an incorrect model in which the positions 

of the domain of subunits A and B were swapped.

The best-scoring model of the 7-subunits 1TYQ had a rmsd of 19.8 Å, p(10) of 0.65, APS of 

(4.1 Å, 58.2°), and CC of 0.65. The best scoring models were grouped into 3 clusters. In all 

clusters, subunits D and F were both misplaced and mis-rotated. The most likely reason for 

this inaccuracy was that these subunits formed an elongated helical bundle of about 40 

residues in length, making sampling more challenging due to steric effects. In the first 

cluster containing the best scoring model, subunit E was also mis-rotated by almost 180°, 

due to its globular shape.

Modeling of the GroEL/ES complex

The ADP-bound GroEL/ES is a 21-subunit molecular chaperone that assists protein folding 

in bacteria. We used cryo-EM data at 23.5 Å resolution (EMDB code 1046) (Ranson et al., 

2001) and the crystallographic structures of the subunits (PDB code 1AON) (Xu et al., 1997) 

(Fig. S4).

The 100 best-scoring models grouped into 3 clusters, which were mainly different in the 

orientation of the GroEL-trans subunit (Fig. 5 and Table S2). All three clusters presented a 

misrotation of the GroES subunit, which was due to the small size of the subunit and the low 

resolution of the map (de Vries and Zacharias, 2012; Habeck, 2017; Kawabata, 2008). The 

rmsd of the best scoring model (Fig. S4) with respect to the reference structure was 9.0 Å, 

with p(10) of 0.98 and data-model CC of 0.85. Notably, GroES and GroEL-cis proteins were 

determined with lower precision than GroEL-trans.

Integrative modeling of the RNA polymerase II

The yeast RNA polymerase II is a 12-subunit complex that catalyzes DNA transcription to 

synthesize mRNA strands (Armache et al., 2005). To model this complex, we used the 

structures of all its subunits as determined in the RNA polymerase II X-ray structure (PDB 

code 1WCM) (Armache et al., 2005). We incorporated a low-resolution cryo-EM map of the 
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RNA polymerase II-Iwr1 complex (EMDB code 1883) (Czeko et al., 2011) and two XL-MS 

datasets (Fig. 6, Fig. S5, and Fig. S6).

997 of the 1000 best scoring models grouped in the first cluster. The rmsd of the best scoring 

model with respect to the reference structure was 32.9 Å, with a p(20) of 0.80 and a data-

model CC of 0.52. The major contribution for the inaccuracy was the misplacement of 

subunit Rpb8. The reason for the misplacement was that Rpb8 was not cross-linked with the 

rest of the complex. Excluding Rpb8 from the rmsd calculation yielded a rmsd of 21.2 Å.

We analysed the position of each subunit of the complex (Fig. 6D). Subunits 1 to 5 (81% of 

the mass of the complex) had a rmsd with respect to the reference structure under 20 Å. The 

following subunits had a rmsd over 20 Å with respect to the reference structure: Rpb6 (32.0 

Å), Rpb 7 (28.1 Å), Rpb 8 (133.3 Å), Rpb9 (51.9 Å), Rpb 10 (27.3 Å), Rpb 11 (25.5 Å) and 

Rpb 12 (29.0 Å). Note that Rpb1 was correctly localized in the cryo-EM map but the domain 

corresponding to residues 1275–1733 was misplaced. Another reason for the inaccuracy is 

that subunits Rpb8, Rpb9, and Rpb12 were weakly cross-linked with the rest of the complex, 

forming 0, 1 and 3 cross-links respectively.

There was a total of 9 violated cross-links (3.5% of the total dataset), which involved the 

following subunits: Rpb1-Rpb1 (2 cross-links) Rpb1-Rpb2 (2 cross-links), Rpb1-Rpb4 (1 

cross-link), Rpb1-Rpb6 (1 cross-link), and Rpb2-Rpb2 (3 cross-links) (Fig. 6E).

Integrative modeling of the exosome complex

The 10-subunit yeast exosome complex is a macromolecular machine responsible for 

processing and degrading RNA in eukaryotic cells (Houseley et al., 2006). To model this 

complex, we used the structures of all subunits of the complex in one state, the crystal 

structure of the RNA-bound exosome (PDB code 4IFD). We also incorporated independent 

data collected in another state, the low-resolution cryo-EM map of the RNA-free exosome 

(EMDB code 3367) (Liu et al., 2016) and a dataset of 98 cross-linked residue pairs obtained 

by XL-MS (Shi et al., 2015) (Fig. 7, Fig. S7, and Fig. S8).

To the best of our knowledge, no high-resolution structure of the RNA-free 10-subunit 

exosome complex alone is available. We thus used the structure of the RNA-free exosome in 

complex with Ski7 (PDB code 5G06) as a reference to test the accuracy of our models. We 

expected our models to differ from the reference, especially in the region at the top where 

the complex interacts with Ski7. Here, for instance, when one rigidly fits the entire reference 

structure to the RNA-free density map, the Csl4 subunit extends outside the density map 

(Fig. 7D), most likely as a consequence of the interaction with Ski7. On the other hand, the 

lower region in which Dis3 is located is expected to be structurally similar to the reference. 

In addition, cross-links were extracted from whole-cell lysate and therefore might reflect a 

mixture of different compositional and conformational states (Shi et al., 2015).

The 1000 best scoring models grouped into a single cluster. The rmsd of the best scoring 

model with respect to the reference structure was 29.4 Å, with a p(10) of 0.47 and a data-

model CC of 0.79. We analysed the position of each subunit of the complex (Fig. 7D). 

Strikingly, each domain of Dis3 was properly placed in its respective density region (Fig. 
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7D). Subunit Csl4 was localized entirely inside the density map, at variance with the 

reference structure. Subunits Rrp45, Ski6, Rrp46, Rrp40, and Rrp4 occupied the correct 

regions of the density map. Subunits Rrp42, Rrp43, and Mtr3 were misplaced, but still 

occupied the upper region of the density map. The majority of the cross-links were satisfied, 

with measured distance between cross-linked residue pairs always below 35 Å, with a few 

exceptions. The cross-link between residue 71 of Rrp43 and residue 104 of Rrp42 was 

violated (Fig. 7E). Three other cross-links involving Dis3 were found to be inconsistent with 

the cryo-EM map and therefore were violated. These distance restraints might be satisfied in 

the RNA-bound exosome form, which we expect to be present under the conditions in which 

the XL-MS data were collected.

Discussion

A major problem in integrative structure modeling, in which data of different types are 

combined to model the structure of a biological complex, is to determine the relative weight 

of each piece of information. Inaccurate weighing results in models biased towards a 

particular source of data, thus reducing the accuracy of the model and under- or over-

estimating its precision. To optimally weigh each piece of information, two main factors 

need to be considered: the accuracy or level of noise in the data and the correlation between 

data points.

Our Bayesian approach addresses these challenges by introducing several technical features. 

First, building on the gmconvert utility (Kawabata, 2008), we developed a divide-and-

conquer strategy to efficiently compute GMM with a large number of components in order 

to reduce the correlation between voxels. Second, our approach accounts for the presence of 

variable level of noise across the experimental map and weighs each component of the 

GMM accordingly. Third, we created a multi-scale modeling approach, as the scoring 

function can be adapted to any coarse-grained representation of the model and any 

resolution of the experimental density map. Fourth, we used a combination of flexible and 

rigid degrees of freedom in the modeling: each domain with a known structure is constrained 

into a rigid-body, while all missing parts (loops, termini, or unknown regions) are 

represented by flexible strings of beads. Finally, we developed an enhanced-sampling 

technique based on an iterative replica exchange strategy and a MC mover that randomly 

swaps rigid-bodies with similar shape.

Comparison with existing approaches

To compare our approach with state-of-the-art methods for modeling macromolecular 

complexes using low- and intermediate-resolution cryo-EM maps, we first examined the 

results of the benchmark carried out with γ-TEMPy (Pandurangan et al., 2015). This method 

scores the models using mutual information between model and experimental densities and 

uses a genetic algorithm to accelerate sampling. In the following, we compare our approach 

with γ-TEMPy in terms of accuracy of the scoring function, sampling efficiency, and 

computational performances.

In order to compare the accuracy of the two approaches, we examined our best scoring 

model (Table 2) and the γ-TEMPy high scoring model (HS in Table 1 of Ref. (Pandurangan 
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et al., 2015)) on a subset of 9 test cases of our benchmark that were also included in the γ-

TEMPy benchmark (PDB codes 2DQJ, 2BO9, 2BBK, 2GC7, 1VCB, 1TYQ, 1MDA, 1GPQ, 

and 1CS4). In all cases, our approach produced models that were significantly more 

accurate. Particularly striking is the 3-subunits complex 1VCB, which our method and γ-

TEMPy modeled with rmsd of 2.2 Å and 25.3 Å, respectively.

To assess sampling efficiency, we compared our best rmsd model with the γ-TEMPy best 

prediction (BP in Table 1 of Ref. (Pandurangan et al., 2015)). In 8 out of 9 cases, our 

approach was capable to sample more native-like models. Only in the case of 1TYQ, our 

best rmsd model was less accurate (19.1 Å) than the BP model generated with γ-TEMPy 

(16.9 Å).

To assess the performances of the two approaches, we monitored the computational cost to 

run the two benchmarks, defined by the total number of core hours required to complete one 

test case. Our benchmark was executed in parallel on 48 cores on a compute cluster 

equipped with 2.50 GHz Intel(R) Xeon(R) E5-2670 v2 processors. The minimum, 

maximum, and average computational cost across all test cases was 320, 6840, and 2166 

core hours, respectively. Furthermore, this computational cost depends on the number of 

components of the data-GMM, which is particularly advantageous with over-sampled low-

resolution maps. Each computation of the γ-TEMPy benchmark was instead run on 160 

cores distributed on 40 AMD 4-core 2.6 GHz processors. As the time measurements for the 

benchmark with 10 Å-resolution maps were not reported, we used the timings of the 20 Å-

resolution benchmark to estimate the computational cost. The reported minimum, maximum, 

and average cost across all test cases were 640, 7840, and 2720 core hours, respectively.

We then compared our approach with other integrative modeling tools in the case of the 

GroEL/ES complex (Table S3). The accuracy of our approach was: i) similar to that of 

Attract-EM (de Vries and Zacharias, 2012), IQP (Zhang et al., 2010), and γ-TEMPy 

(Pandurangan et al., 2015), ii) superior to MultiFit (Lasker et al., 2009) and gmfit 

(Kawabata, 2008), and iii) worse than ISD (Habeck, 2017). Non-integrative modeling tools, 

which fit proteins into the map sequentially such as gEMfitter (Hoang et al., 2013) and 

PowerFit (van Zundert and Bonvin, 2015), performed equivalently or better, thanks to their 

exhaustive search and/or prior map segmentation. It has to be noted, however, that 

exhaustive search might not be amenable for large multi-component complexes, sequential 

fitting might bring bias to the final models, and segmentation might be incorrect.

Our approach shares the same philosophy of the Bayesian cryo-EM restraint recently 

developed in ISD (Habeck, 2017). However, it is distinct from it because the weight of the 

restraint in the ISD case is dependent on the sampling of the density map as it does not 

consider spatial correlation between voxels. In contrast, in our method, the number of 

Gaussians, and thus the weight, is independent from the grid-sampling of the density map.

Current limitations

In the few cases in which our approach produced results of accuracy lower than the average, 

we identified two sources of error: a) positional ambiguity, where multiple placements result 

in the same score, and b) inefficient sampling of rigid body configurations in crowded 
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environments. For example, helical bundles are difficult to model at low resolution because 

they only define a cylindrical shape in which two or more helices can be positioned in 

multiple ways. Similarly, pseudo-spherical subunits can be rotated around their center of 

mass or swapped with only minimal penalty. In addition, the placement of DNA helices is 

degenerate, because their expected density is symmetric by rotation. Finally, 

macromolecular complexes present a crowded environment in which sampling of rigid body 

configurations might be inefficient due to steric hindrance.

In applications with actual experimental density maps, we foresee an additional source of 

error that could affect the accuracy of the modeled complex. This error is associated with the 

fact that not all components of the modeled complex might have a corresponding 

experimental density or that the experimental density might represent more components than 

those explicitly modeled. Our approach currently assumes that all data-GMM components 

can be explained by a corresponding density of the model. This assumption is encoded in the 

scoring function by assigning the same total electron density to the data-GMM and the 

model-GMM, i.e. the two GMMs are normalized to the same value. It should be notated that 

this challenge, along with the two previously described, is not specific to the modeling 

protocol presented here, but it is faced by all the techniques to model architectures from low-

resolution cryo-EM data.

Dissemination

We implemented our modeling protocol in a series of scripts based on IMP.pmi (Webb et al., 

2018), a module of the Integrative Modeling Platform (IMP, http://integrativemodeling.org) 

(Russel et al., 2012) that can be used to build the system representation, setup the scoring 

function, define the degrees of freedom to sample, and finally analyze the solutions. Our 

approach was also implemented in the PLUMED-ISDB module (Bonomi and Camilloni, 

2017) of the open-source PLUMED library (www.plumed.org) (Tribello et al., 2014). 

Thanks to the differentiability of the scoring function, this implementation can be used for 

real-space, flexible refinement of individual models using molecular dynamics at atomistic 

resolution or, in combination with metainference (Bonomi et al., 2016), to model ensemble 

of structures representing the conformational heterogeneity hidden in low-resolution areas of 

atomistic density maps (Bonomi et al., 2018; Vahidi et al., 2018).

Star Methods

Theory

In general terms, the Bayesian approach (Rieping et al., 2005) estimates the probability of a 

model, given information available about the system, including both prior knowledge and 

newly acquired experimental data. The posterior probability p(M|D) of model M, which is 

defined in terms of its structure X and other Bayesian parameters, given data D and prior 

knowledge is:

p(M D) ∝ p(D M) ⋅ p(M) (1)
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where the likelihood function p(D|M) is the probability of observing data D given M and the 

prior p(M) is the probability of model M given prior information. To define the likelihood 

function, one needs a forward model f(X) that predicts the data point that would be observed 

for structure X in the absence of experimental noise, and a noise model that specifies the 

distribution of the deviation between the experimentally observed and predicted data points. 

The Bayesian scoring function is defined as S(M) = − log[p(D|M) · p(M)], which ranks the 

models in the same order as the posterior probability p(M|D). The prior p(M) includes the 

sequence connectivity, the excluded volume, and rigid body constraints. To compute these 

priors, the domains of the proteins are coarse-grained using beads of varying size. The 

sequence connectivity term is a sum of upper harmonic distance restraints that apply to all 

pairs of consecutive beads in the sequence, implied by the covalent structure of the 

polypeptide/polynucleotide main-chain. The excluded volume is computed from a soft-

sphere potential where the radius of a bead is estimated from the sum of the masses of its 

residues. The structures derived from X-ray data or homology models are coarse-grained 

using two categories of resolution, where beads are represented either individual residues or 

segments of up to 10 residues. Beads can be constrained into a rigid body, in which relative 

distances are fixed during sampling. Alternatively, strings of beads representing parts 

without structural information can be flexible with respect to each other. In the following, 

we define the components of the Bayesian scoring function specifically for a cryo-EM 

density map.

Experimental cryo-EM density map.—We represent the experimental density map ΨD 

in terms of a Gaussian mixture model (GMM) ϕD
j  with j components (ie, data-GMM):

ϕD
j (x) = ∑

i = 1

j
ϕD, i

j (x) = ∑
i = 1

j
ωD, i

j ⋅ G x xD, i
j , ΣD, i

j (2)

where ωD, i
j  is the (normalized) weight of the i-th component of the GMM and G is a 

normalized Gaussian function with mean xD, i
j  and covariance matrix ΣD, i

j :

G x xD, i
j , ΣD, i

j = 1
(2π)3/2 ΣD, i

j 1/2exp − 1
2 x − xD, i

j T ΣD, i
j −1 x − xD, i

j (3)

This description presents three advantages. First, it circumvents the problem of dealing with 

correlations in the data and noise that are typical of voxel-based representations, as each 

ϕD, i
j (x) might be regarded as an independent component of the density map. Second, it 

provides a computationally-convenient representation of the data in terms of analytical 

functions. Finally, it allows representing the density map at multiple resolutions, which is 

exploited here to accelerate sampling of structural models compatible with the data (ie, see 

Model Sampling paragraph below).
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The posterior probability of model M given the cryo-EM density map ΨD can be written in 

terms of all possible GMMs that can be used to represent the data:

p M Ψ D = ∑
j

p M ϕD
j p ϕD

j Ψ D (4)

In the following, we assume that the conditional probability p ϕD
j |Ψ D  selects a single GMM 

ϕD with ND components, which optimally represents the data. this situation:

p M Ψ D ∝ p M ϕD ∝ p ϕD M ⋅ p(M) (5)

Divide-and-conquer fit of the data-GMM.—To fit the experimental density map ΨD 

with a GMM ϕD, we used the Expectation Maximization algorithm implemented in the 

gmconvert software (Kawabata, 2008). This approach determines the parameters of the 

GMM (mean, weight, and covariance matrix of each Gaussian component) by maximizing 

the likelihood that the GMM density function generates the density of the voxels in ΨD. As 

the resolution of the map increases, the number of Gaussians required for the GMM to 

accurately reproduce all the features of the experimental map increases exponentially along 

with the computational time and memory required to perform the fit. To overcome these 

challenges, we developed a divide-and-conquer approach (Fig. 2). First, the map ΨD is 

masked and all voxels with a density lower than the threshold recommended in the EMDB 

database are removed. Second, a recursive procedure starts from a first iteration in which the 

map ΨD (Fig. 2A) is fit with a GMM consisting of a small number of Gaussians ND. 

(typically 2 or 4) (Fig. 2B Each components ϕD,i of this initial GMM is used to partition the 

original map into sub-maps ΨD,i (Fig. 2C):

Ψ D, i(x) =Ψ D(x) ·
ϕD, i(x)

∑ j = 1
ND ϕD, j(x)

(6)

This partitioning has two properties: a) each sub-map selects the part of the original map that 

overlaps with the component (ϕD,i); b) the sum of all sub-maps results in the original density 

map: Ψ D(x) = ∑i = 1
ND Ψ D, i(x) The process is repeated, and each sub-map ΨD,i is again fitted 

using a GMM with a small number of Gaussians ND (Fig. 2D), dividing the process into into 

as many branches as the number of Gaussians ND.

At each iteration the portion of the original map that is fit by a given GMM is reduced, so 

that a small number of Gaussians will eventually be sufficient to accurately reproduce high-

resolution details. Furthermore, because of property b), the global GMM defined by the sum 

of all the GMMs obtained at any given iteration also fits the original map (Fig. 2E). This 

procedure is repeated until the global GMM reaches the desired accuracy (Fig. 2F). The 

accuracy of the fit was defined as the correlation coefficient CC (Frenkel and Smit, 2002) 
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between the cryo-EM density map ΨD and the map generated by rasterizing the data-GMM 

into a 3D grid with the same mesh properties as the original density map (ie, voxel size, 

offsets, and box lengths) (Fig. 3A). The CC was computed using only those voxels whose 

density exceeds the recommended threshold value reported in the EMDB. A given branch 

was stopped when the local CC between a sub-map and its GMM was greater than 0.95. 

Since the resolution of the original map can vary locally, individual branches will be 

terminated at different iterations.

This procedure generates at each step a global data-GMM with increasing number of 

components, thus with increasing resolution. To quantify the resolution of each of these 

global data-GMMs, we computed their Fourier Shell Correlations (FSCs) with respect to the 

original map ΨD. By analogy with the method of the two half-maps (Rosenthal and 

Henderson, 2003), the resolution was defined as the inverse of the frequency at which the 

FSC crossed the 0.5 threshold (Fig. S1A). Finally, we defined the optimal data-GMM as the 

fit with resolution closest to the original map ΨD (Fig. S1B).

The entire process was parallelized to run efficiently on a computer cluster.

The forward model.—We developed a forward model to compute a cryo-EM density map 

from a single structural model. As for the data representation above, the forward model ϕM 

is a GMM with NM components (ie, model-GMM):

ϕM(x) = ∑
i = 1

NM
ϕM, i(x) = ∑

i = 1

NM
ωM, i ⋅ G x xM, i, ΣM, i (7)

For high-resolution maps, each atom can be represented by a single Gaussian, whose 

parameters can be obtained by fitting the electron atomic scattering factors for a given atom 

type (Prince, 2004). For low-resolution maps or for an efficient initial sampling of high-

resolution maps, we use a single Gaussian to represent each coarse-grained bead, with the 

Gaussian width proportional to the size of the bead. If multiple coarse-grained beads of the 

model are part of the same rigid body, the parameters of the model-GMM associated to these 

beads are computed by applying the Expectation-Maximization algorithm to the positions of 

the centers of the beads, weighed by their mass.

The noise model.—At variance with our previous effort in modeling cryo-EM data 

(Robinson et al., 2015), in this approach we will not use the global correlation coefficient 

(CC) as measure of agreement between predicted and observed density maps, but a 

likelihood obtained from the product of functions of local cross-correlation-like terms, as 

explained below. First, we define the global overlap between model and data density maps 

as:

ovMD = ∫ dxϕM(x)ϕD(x) (8)
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The standard CC can then be expressed in terms of the overlap functions as (Robinson et al., 

2015):

CC =
2ovMD

ovMM + ovDD
(9)

Notably, maximum correlation is obtained with maximum overlap ovMD since the quantities 

at the denominator of Eq. 9 do not depend on the coordinates of the particles in the structural 

model.

The global overlap ovMD can be expressed in terms of local overlaps ovMD,k between model 

and the k-th component of the data-GMM ϕD,k:

ovMD = ∑
k = 1

ND
ovMD, k = ∑

k = 1

ND ∫ dxϕM(x)ϕD, k(x) (10)

Each local overlap measures the agreement of the model with the part of the experimental 

density map represented by a component of the data-GMM. Because ϕM is also a GMM, we 

can write the local overlap as the sum of overlaps for the individual components:

ovMD, k = ∑
j
∫ dxϕM, j(x)ϕD, k(x) (11)

where the overlap between two Gaussians ϕM,j and ϕD,k and is given by:

∫ dxϕM, j(x)ϕD, k(x) =
ωM, jωD, k

(2π)3/2 ΣM, j + ΣD, k
1/2exp

− 1
2 xM, j − xD, k

T ΣM, j + ΣD, k
−1 xM, j − xD, k

(12)

We treat the ND individual components of the data-GMM as independent pieces of 

information and express the data likelihood in terms of local overlaps ovMD,k, using a log-

normal noise model:

p ϕD M = ∏
k = 1

ND 1
2πovDD, kσk

⋅ exp −0.5log2 ovDD, k
ovMD, k

/σk
2 (13)

where σk is the unknown tolerance associated with the k-th component of the data-GMM 

and is ovDD,k is the overlap of the k-th component with the entire data-GMM. It should be 
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noted that a GMM represents the experimental data with less correlated components 

compared to the voxel representation. However, we expect a residual correlation among 

GMM components, which we explicitly neglect when writing Eq. 13.

Marginal likelihood.—For simplicity, in the following we assume that different parts of 

the map have the same tolerance σ and we marginalize this variable using an uninformative 

Jeffreys prior p(σ) = 1/σ. The resulting marginal data likelihood can be written as:

p ϕD M =
2

− 3
2 +

ND
2 Γ

ND
2 ∏k = 1

ND log2 ovMD, k
ovDD, k

−ND/2

π
ND/2

∏k = 1
ND ovDD, k

(14)

Alternatively, one can assume a variable level of noise in the map and marginalize each σk 

using a Jeffreys prior. The marginal likelihood in Eq. 14 is maximized when the local 

overlap ovMD,k reproduces the overlap ovDD,k for all data-GMM components (Fig. S2).

Bayesian scoring function.—Omitting constant quantities, the final Bayesian scoring 

function for a fit of a model to a cryo-EM map can be written as:

S(X) = kBT ⋅ −log[p(X)] +
ND
2 log ∑

k = 1

ND
log2 ovMD, k

ovDD, k
(15)

where p(X) is the structural prior and depends on the resolution of the model. In our coarse-

grained representation, p(X) is the sum of an excluded volume potential to avoid steric 

clashes and a sequence connectivity restraint.

Importantly, the number of components ND of the data-GMM determines the overall weight 

of the cryo-EM restraint by increasing the number of log-harmonic functions. On the other 

hand, the weight is less sensitive to the number of components of the model-GMM. As a 

consequence, the data-GMM has to be rigorously fit to the experimental density map with 

the divide-and-conquer approach, while there are no strict guidelines for the maximum 

number of components of the model-GMM. Here, we followed a parsimonious approach and 

we empirically chose the number of components in the model-GMM to match the number of 

Gaussians per unit of mass in the data-GMM. With high-resolution density maps and 

atomistic models, we expect to use one component of the model-GMM per heavy atom of 

the system.

Benchmark of the divide-and-conquer fit of the data-GMM

We assessed the accuracy of our divide-and-conquer approach to computing a data-GMM by 

using 20 experimental density maps of protein complexes at different resolutions, ranging 

from 3.6 to 25 Å (Table 1). We used the divide-and-conquer approach described above to 
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obtain GMMs of each map with a number of Gaussians varying from 16 to 16384. At each 

step of the divide-and-conquer each sub-map was fit using a GMM with 4 components.

Benchmark of the modeling protocol

Data generation.—We benchmarked our modeling protocol using 21 protein/DNA 

complexes consisting of 2 to 7 subunits (Velazquez-Muriel et al., 2012) (Table 2 and Fig. 4). 

For each of these complexes, we generated a simulated cryo-EM density map, using the 

structures extracted from the PDB. We used one Gaussian for every 1.090 kDa of assembly 

mass, which corresponded approximately to the mass of 10 residues and resulted in a 

resolution of approximately 10 Å, as obtained by extrapolation from the stretched-

exponential regression (Fig. 3B). For example, the human transferrin receptor complex 

(PDB code 1SUV) (Cheng et al., 2004) consists of 6 subunits and has a molecular mass of 

290 kDa. Therefore, the simulated map was determined using 262 Gaussians. The simulated 

GMMs were generated from the reference structures using the program gmconvert 
(Kawabata, 2008).

Subunits representation and forward model.—Molecules (protein and DNA chains) 

were represented by a set of spherical beads, each with the volume of the corresponding 

residue. When available, the positions of beads were obtained from the PDB structures and 

constrained into one or more rigid bodies. Missing regions were constructed as strings of 

flexible coarse-grained beads. When molecules were intertwined or if a molecule was 

composed of structurally independent domains, we defined several rigid bodies, one for each 

domain. Furthermore, in some cases, two domains belonging to distinct molecules were 

merged into the same rigid body, such as the DNA double-strands in 3V6D and 2Y7H or the 

helical bundle of 3PUV. The model-GMM was computed as follows. First, for each rigid 

body defined above, we computed a GMM based on the corresponding atomic coordinates 

using the implementation of the expectation-maximization algorithm available in the scikit-
learn python library (Pedregosa et al., 2011). The number of Gaussians of a model-GMM 

was determined by dividing the molecular weight of the corresponding rigid body by the 

average weight of a 10-residue peptide (1.09kDa). The center and covariance matrix rotation 

of each Gaussian were constrained into the corresponding rigid body. Second, each flexible 

bead was treated as an individual spherical Gaussian.

Model sampling.—The initial positions and orientations of rigid bodies and flexible beads 

were randomized. The generation of structural models was performed using MC coupled 

with replica exchange (Swendsen and Wang, 1986). 48 replicas were used to cover a 

temperature range between 1 and 2.5 score units (SU). Intermediate temperatures followed a 

geometrical progression. Each MC step consisted of: A) a series of random transformations 

of the positions of the flexible beads and the rigid bodies, B) rigid body transformation of 

the whole system, and C) rigid-body swapping moves. In (A), each individual flexible bead 

and rigid body was translated in a random direction by up to 4 Å, and each individual rigid 

body was rotated around its center of mass by up to 0.04 radians about a randomly oriented 

axis. In (B), a rigid-body transformation was applied to the whole system. In (C) we 

swapped the position and orientation of two rigid-bodies, randomly chosen among those 

with similar shape, to allow efficient sampling of alternative conformations equally 
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consistent with the data. The shape similarity was assessed by computing the rmsd of the 

inertia moments of the two rigid-bodies. Each MC step was accepted or rejected according 

to the Metropolis criterion.

Our scoring function becomes more rugged at higher resolutions. In fact, as discussed above, 

the number of components for the data-GMM (ND) increases with the resolution, and at the 

same time their variance decreases to better describe high-frequency features. As a 

consequence, the log-square score term (Eq. 15) becomes more peaked, thus increasing the 

frustration of the total score. To alleviate this issue, we implemented an iterative sampling 

procedure (Fig. S3). The idea is to progressively increase using all fits obtained at different 

stages of the divide-and-conquer procedure, from the minimum (ie, 4) to the ND of the 

optimal data-GMM. In each iteration, we: 1) sampled the models at a given ND;2) generated 

a pool of initial models (seeds) for the next iteration; and 3) incremented ND. During step 

(1), we produced an ensemble of 12,000 models using the MC and replica exchange protocol 

described above. After extracting the 100 best scoring models of the resulting ensemble, we 

identified a subset of models as structurally diverse as possible, using rmsd criterion. The 

number of models in the subset was constrained to the number of replicas (ie, 48). In the 

first iteration (ND =4), the score-landscape is shallow, which allows the system to explore a 

large variety of conformations. As ND increases, the structural variability among seeds is 

reduced.

Finally, to assess sampling exhaustiveness, at the end of each iterative modeling run we 

analyzed the agreement of the best scoring models with the cryo-EM map by computing the 

cross correlation between the model-GMM and data-GMM. If the resulting cross 

correlations were below 0.7, we started another iteration run. The threshold of 0.7 was 

chosen by experience, as we noticed that lower cross correlation coefficients usually indicate 

poor agreement of the model with the cryo-EM data with clearly misplaced subunits. This 

procedure was applied to all cases for which the simple replica exchange above did not yield 

satisfying results (PDB codes 1MDA, 1SUV, 1TYQ, and 3PUV in the synthetic benchmark 

and the application to the RNA polymerase II and exosome complexes).

Analysis.—All models produced by the modeling protocol described above were ranked by 

score, and the 1000 best scoring models were considered for further analysis. The accuracy 

of the fit was assessed by computing a series of structural metrics, namely the rmsd, p(10), 

the correlation coefficient between the model- and data- GMMs, as well as the average 

placement score of the best scoring model. These metrics are defined in the next paragraph.

Structural metrics.—To compare two models, we used several metrics, including the 

rmsd of residue positions, p(10), the Average Placement Score (APS), and the data-model 

correlation coefficient CC. The rmsd of residue positions was defined as the rmsd between 

the positions of corresponding centers of the coarse-grained spheres in two structures, 

without structural alignment. When multiple copies of the same protein were present, the 

rmsd was defined as the minimum rmsd across all possible assignments of the identical 

components. p(10) was defined as the percentage of residues whose deviation between the 

two structures is lower than 10 Å. The Placement Score of the model is a two-number 

metrics that measures the translation and the rotation needed to optimally align each subunit 
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of the model to a reference. The APS is average of the Placement Score calculated over all 

subunits and weighted by the number of residues. The data-model correlation coefficient 

(CC) was defined by Eq. 9 and quantifies the agreement of the model with the data.

Clustering.—For each complex, the 1000 best scoring models selected for analysis were 

clustered using a hierarchical clustering approach (Johnson, 1967). Initially, all 1000 models 

were placed in a list ℒ of models not yet clustered. Then, we applied the following iterative 

procedure:

1. The best scoring model m0 from the list ℒ was selected to define a new cluster 

Ck and removed from ℒ.

2. All models mi from ℒ with rmsd from m0 lower than 10 Å were defined as 

members of the cluster Ck and removed from ℒ.

3. We iterated step 1 and 2 until all models were clustered into spheres of radius 

equal to 10 Å.

At the end of this iterative procedure, we merged all those pairs of clusters that contained at 

least two elements within 10 Å one from each other. By construction, the first cluster 

produced by the algorithm (labelled as C1) contained the best scoring model.

Modeling of the GroEL/ES complex

We modeled the architecture of the 21-subunit GroEL/ES ADP-bound complex using cryo-

EM data at 23.5 Å resolution (EMDB code 1046) (Fig. 5). The GroEL/ES complex consists 

of 2 sequences, the chaperonin GroEL and the cochaperonin GroES, with a stoichiometry 

14:7. The 14 copies of GroEL have two distinct structures, named GroEL-cis and GroEL-

trans. The 7 GroES, 7 GroEL-cis, and 7 GroES-trans are arranged in a C7 symmetry, each 

one occupying one centro-symmetric ring (Fig. 5). The optimal data-GMM contained 256 

components (Fig. S4A). We followed the modeling protocol and the model representation 

used for the benchmark with synthetic cryo-EM maps (Fig. S4B). The coordinates of the 

beads used to represent our system were obtained from PDB code 1AON (Armache et al., 

2005). Each protein was constrained into a rigid-body based on the crystallographic 

structure, and a C7 symmetry constraint is applied. The number of residues per coarse-

grained bead was set to 20, and the number of residues per component of the model-GMM 

was set to 10. The quality of the resulting models was assessed using the same structural 

metrics as in the benchmark with synthetic data, using the structure of PDB code 1AON as 

reference.

Integrative modeling of the RNA polymerase II complex

We modeled the architecture of the 12-subunit RNA polymerase II using cryo-EM data at 

20.9 Å resolution (EMDB code 1883) (Czeko et al., 2011) and two datasets of 108 (Chen et 

al., 2010) and 157 (Robinson et al., 2015) cross-links (107 inter- and 158 intra-molecular) 

(Fig. 6 and Fig. S5). The RNA polymerase II complex consists of 12 subunits, named Rpb1 

to Rpb12. The optimal data-GMM contained 64 components (Fig. 6A). We followed the 

modeling protocol and the model representation used for the benchmark with synthetic cryo-

EM maps (Fig. S6). The coordinates of the beads used to represent our system were obtained 
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from PDB code 1WCM (Armache et al., 2005). Based on a prior domain analysis of Rpb1 

and Rpb2, we constrained the coordinates of these two large subunits into four rigid-bodies 

corresponding to: 1) residues 1141–1274 of Rpb1, 2) residues 1275–1733 of Rpb1, 3) 

residues 1–1102 of Rpb2, and 4) residues 1–1140 of Rpb1 together with residues 1103–1224 

of Rpb2. The number of residues per coarse-grained bead was set to 20, and the number of 

residues per component of the model-GMM was set to 10. The quality of the resulting 

models was assessed using the same structural metrics as in the benchmark with synthetic 

data, using the structure of PDB code 1WCM as reference. The XL-MS data was encoded 

using a previously developed Bayesian scoring function (Shi et al., 2015).

Integrative modeling of the exosome complex

We modeled the architecture of the 10-subunit yeast exosome complex using cryo-EM data 

at 11.5 Å resolution (EMDB code 3367) (Liu et al., 2016) and a dataset of 98 cross-links (26 

inter- and 72 intra-molecular) (Shi et al., 2015) (Fig. 7 and Fig. S7). The exosome complex 

consists of a core complex of 9 proteins (Csl4, Mtr3, Rrp4, Rrp40, Rrp42, Rrp43, Rrp45, 

Rrp46, and Ski6), and an RNase protein (Dis3). The top of the core complex recruits RNAs 

that are then transferred to Dis3 through a central channel in the core complex. The optimal 

data-GMM contained 784 components (Fig. 7A). We followed the modeling protocol and 

the model representation (Fig. S8) used for the benchmark with synthetic cryo-EM maps, 

with few variations. We split the largest subunit, Dis3, into three rigid-bodies, corresponding 

to residues 1–237, 238–471, and 472–1001, which is the domain organization of this subunit 

based on its structure in PDB code 4IFD (Fig. S7) (Makino et al., 2013). The quality of the 

resulting models was assessed using the same structural metrics as in the benchmark with 

synthetic data. The only difference was that the reference structure used to compute the 

accuracy (PDB code 5G06) was different from the structure used to initialize the positions of 

beads in rigid-bodies (PDB code 4IFD) (Liu et al., 2016). As for the modeling of RNA 

polymerase II, XL-MS data was encoded using a Bayesian scoring function (Shi et al., 

2015).

Quantification and statistical analysis

The analysis of the results was performed using the IMP.pmi module of the IMP software 

(Russel et al., 2012).

Data and software availability

Our Bayesian approach for cryo-EM data is implemented in the Integrative Modeling 
Platform (IMP) (Russel et al., 2012), which is freely available at https://

integrativemodeling.org. In particular, the representations and degrees of freedom of each 

complex were encoded in a standard way using the IMP.pmi topology tables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Workflow for multi-scale modeling of cryo-EM data.
(1) The input information for the modeling protocol consists of: an experimental cryo-EM 

density map (left), the structures of the subunits (center), and the sequences of the subunits 

(right). (2A) The density map is fitted with a GMM (ie, the data-GMM) using our divide-

and-conquer approach. (2B) The atomistic coordinates of the subunits are suitably coarse-

grained into large beads. Regions without a known atomistic structure are represented by a 

string of large beads, each representing a set of residues. (2C) GMM for the subunits (ie, the 

model-GMMs) are also computed from the atomistic coordinates. (2D) The Bayesian 

scoring function encodes prior information about the system and measures the agreement 

between the data-GMM and the model-GMM. (3) Structural models are sampled by MC 

coupled with replica exchange, with or without the iterative sampling protocol. (4) The 

generated models are analysed.
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Figure 2: Divide-and-conquer approach for fitting cryo-EM density maps with a Gaussian 
mixture model (GMM).
(A) The input map is thresholded according to the recommended threshold. (B) The 

resulting map is initially fitted using a GMM with 2 components. (C) Each component of the 

GMM is used to partition the map into overlapping sub-maps. (D) Each sub-map is fitted 

using a GMM with 2 components, similarly to step B. (E) The sum of all the GMMs of the 

sub-maps results in a data-GMM that approximates the original map. The accuracy of 

approximation increases at every iteration. (F) The fitting procedure is iterated until the data-

GMM reaches an optimal accuracy. The green arrow indicates a branch that was stopped 

because the local CC was higher than 0.95.
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Figure 3: Benchmark of the divide-and-conquer fit of the data-GMM.
(A) The accuracy of the divide-and-conquer approach is measured using the correlation 

coefficient between the input map and the corresponding data-GMMs obtained at different 

iterations. The accuracy increases with the number of components in the mixture, and the 

saturation point (ie, the number of components beyond which the accuracy does not increase 

significantly) depends on the resolution of the experimental map (red and blue curves are 

low and high resolutions, respectively). (B) Relationship between map resolution and 

number of components of the data-GMM. For all the density maps of panel A, the 

experimental resolution is plotted as a function of the optimal number of components of the 

data-GMM normalized by the molecular weight of the complex (solid circles). The points 

are fitted using a power law (blue line). The orange and purple circles correspond to maps 

whose resolution was determined by the Fourier Shell Correlation 0.143 and 0.5, 

respectively. (B, inset) For each density map, the optimal number of components is 

computed as the minimal absolute relative deviation |Δr|/r between the data-GMM resolution 

and the density map resolution.
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Figure 4: Benchmark of the modeling protocol.
Examples of each of the three possible outcomes of the benchmark: positive (first column, 

PDB code 3NVQ), partial positive (second column, PDB code 3LU0), and negative (third 

column, PDB code 1TYQ). (A) Native structures and simulated 10 Å resolution cryo-EM 

density maps. (B) 50 best scoring models displayed with the simulated cryo-EM density 

maps. (C) Residue-wise accuracy of the best scoring models: residues whose positions 

deviate from the native structure less than 10 Å, between 10 and 20 Å, and above 20 Å are 

coloured in blue, green, and red, respectively. (D) Total score of all the sampled models as a 

function of the total rmsd from the native structure.
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Figure 5: Modeling of the GroEL/ES complex.
(A) Native structure of the GroEL/ES complex (PDB code 1AON). (B) Cryo-EM density 

map of GroEL/ES (EMDB 1046). (C) Residue indexes are color-coded using a rainbow 

palette, where the N-terminus is violet, the C-terminus is red, and intermediate residues are 

green and yellow. The three columns on the right are the representative structures of the 

three best-scoring clusters color coded using the rmsd from the native structure per residue 

(D), the per-residue precision (E), and the same color coding as in (C) to emphasize the 

orientation of the subunits. The color bar on the left refers to the panels (D) and (E).

Bonomi et al. Page 29

Structure. Author manuscript; available in PMC 2020 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Integrative modeling of the RNA polymerase II.

(A) Absolute relative deviation between data-GMM and experimental map resolutions Δr
r , 

plotted as a function of the number of components of the data-GMM. The minimum (blue 

arrow) corresponds to the optimal number of components used in the modeling (64 

Gaussians). (B) The experimental cryo-EM density map (transparent grey surface) is 

represented with the optimal data-GMM (colored ellipsoids). The color gradient (from green 

to red) is proportional to the weight ωD,i of the corresponding Gaussian. The length of the 

three axes and their orientation represent the 3-dimensional covariance matrix ΣD,i. (C) 

Representation of the best-scoring model. Coarse-grained subunits are represented by the 

strings of beads: the small beads and large beads represent 1- or 20-residue fragments, 

respectively. As for the data-GMM in panel B, the model-GMM is represented by ellipsoids. 

(D) All subunits of the model (red) and reference structure (PDB code 1WCM, blue) are 

represented along with the experimental cryo-EM map. For each panel, the name of the 
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subunit is indicated in bold, together with the placement score of that subunit. (E) Histogram 

of the distance between cross-linked residues. The histogram bins corresponding to satisfied 

and violated cross-links are represented in blue and red, respectively.
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Figure 7: Integrative modeling of the exosome complex.
We report the same information as in Fig. 6 for the case of the yeast exosome complex, with 

the following differences: (A) the optimal number of components used in the modeling is 

784; (D) the reference structure is taken from PDB code 5G06.
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Table 1:
Benchmark of the divide-and-conquer approach for GMM fitting.

For each of the system studied, we report: the EMDB accession code, the reference paper, the molecular 

weight of the complex, the resolution of the map, the method used to quantify the experimental resolution, the 

optimal number of components, the resolution of the optimal GMM, the CC between the experimental cryo-

EM map and the optimal GMM.

EMDB 
code reference Molecular 

weight [kDa]
resolution 

[Å]
resolution 

method

optimal 
number of 

components

GMM 
resolution 

[Å]
CC

1439 (Wang et al., 2007) 300 23.0 FSC 0.5 64 21.6 0.97

1438 (Wang et al., 2007) 400 19.0 FSC 0.5 184 19.5 0.97

1708 (Malet et al., 2010) 400 14.0 FSC 0.5 304 14.7 0.97

3368 (Liu et al., 2016) 350 13.0 FSC 0.143 256 10.8 0.93

3367 (Liu et al., 2016) 350 11.5 FSC 0.143 784 11.6 0.97

3371 (Liu et al., 2016) 350 11.0 FSC 0.143 844 10.5 0.96

3370 (Liu et al., 2016) 350 6.7 FSC 0.143 1023 6.5 0.92

3372 (Liu et al., 2016) 350 6.3 FSC 0.143 1023 5.7 0.90

3369 (Liu et al., 2016) 420 5.8 FSC 0.143 1024 6.2 0.85

3366 (Liu et al., 2016) 420 4.2 FSC 0.143 12219 3.9 0.95

6231 (Booth et al., 2014) 457 25.0 FSC 0.143 64 24.2 0.97

1753 (Vannini et al., 2010) 700 21.0 FSC 0.5 100 24.0 0.98

1883 (Czeko et al., 2011) 550 20.9 FSC 0.5 64 19.1 0.82

1711 (Julian et al., 2011) 380 13.0 FSC 0.5 640 13.9 0.98

3198 (Fernandez-Leiro et al., 
2015) 256 8.0 FSC 0.143 256 7.8 0.78

2923 (Martinez-Rucobo et al., 
2015) 540 7.2 FSC 0.143 1012 6.8 0.90

2784 (Plaschka et al., 2015) 570 6.6 FSC 0.143 1024 6.9 0.84

3056 (des Georges et al., 2015) 450 6.0 FSC 0.143 1024 6.2 0.83

3202 (Fernandez-Leiro et al., 
2015) 256 7.3 FSC 0.143 256 7.5 0.80

3219 (Bernecky et al., 2016) 590 3.6 FSC 0.143 14225 3.6 0.94
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Table 2:
Results of the benchmark of the modeling protocol.

For each of the system studied, we report: the PDB accession code, the reference paper, the number of 

subunits, the number of clusters, the average time needed to produce one model, the rank and rmsd of the 

model with minimum rmsd with respect to the reference structure (best rmsd model). We also report the 

following information about the best scoring model: rmsd, p(10), the data-model correlation coefficient (CC), 

and the average placement scores (APS) with respect to the reference structure.

best rmsd model best scoring model

PDB code reference # subunits # clusters time / 
frame [s] rank rmsd 

[Å]
rmsd 
[Å] p(10) CC APS [Å,°]

2UZX (Niemann et al., 2007) 2 1 1.6 551 1.1 1.5 1.00 0.90 0.7 2.9

3R5D (Schnell et al., 2012) 3 1 1.1 63 1.4 1.9 1.00 0.93 1.1 2.6

1CS4 (Tesmer et al., 2000) 3 1 0.7 159 2.6 3.5 1.00 0.79 0.8 1.1

2WVY (Zhu et al., 2010) 3 1 3.0 480 0.9 1.3 1.00 0.98 0.5 0.6

2DQJ (Shiroishi et al., 2007) 3 3 0.4 89 2.0 2.5 1.00 0.93 1.6 3.0

1VCB (Stebbins et al., 1999) 3 1 0.2 453 1.8 2.2 1.00 0.82 1.0 2.7

2GC7 unpublished 4 1 0.6 817 1.3 2.0 1.00 0.94 0.9 1.8

2BO9 (Pallares et al., 2005) 4 1 0.8 502 1.3 1.6 1.00 0.95 0.9 1.4

2BBK (Chen et al., 1998) 4 1 0.9 857 2.1 2.4 1.00 0.90 1.7 1.0

1GPQ (Abergel et al., 2007) 4 1 0.5 805 1.7 2.2 1.00 0.90 1.4 1.5

3V6D (Das et al., 2012) 4 2 1.0 686 1.6 2.1 1.00 0.92 1.0 5.2

3SFD (Zhou et al., 2011) 4 1 1.3 385 1.4 1.5 1.00 0.94 0.7 1.0

3PDU (Zhang et al., 2014) 4 1 1.3 802 1.3 1.6 1.00 0.93 1.3 0.9

3NVQ (Liu et al., 2010) 4 1 2.1 903 0.9 1.0 1.00 0.97 0.6 0.7

2Y7H (Kennaway et al., 2009) 5 1 1.9 465 1.7 2.2 1.00 0.88 1.9 1.5

1SUV (Cheng et al., 2004) 6 1 1.4 247 5.2 5.3 1.00 0.77 5.2 0.4

1Z5S (Reverter and Lima, 
2005) 4 1 0.3 892 8.7 9.0 0.86 0.87 1.8 32.1

3LU0 (Opalka et al., 2010) 5 2 5.1 800 9.0 9.3 0.85 0.74 4.3 5.7

1MDA (Chen et al., 1992) 6 2 1.8 4286 7.8 8.1 0.85 0.75 3.2 34.0

3PUV (Oldham and Chen, 
2011) 5 1 3.1 698 22.7 23.4 0.64 0.74 8.0 31.1

1TYQ (Nolen et al., 2004) 7 3 5.1 599 19.1 19.8 0.65 0.65 4.1 58.2
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Key resources table

RESOURCE SOURCE IDENTIFIER

Software and Algorithms

IMP (Russel et al., 2012) https://integrativemodeling.org

Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

Gmconvert (Kawabata, 2008) https://pdbj.org/gmfit/

EMAN2 (Tang et al., 2007) http://blake.bcm.tmc.edu/EMAN2/

xiNET (Combe et al., 2015) http://crosslinkviewer.org
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