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Events responsible for cardiovascular mortality and morbidity are predominantly

caused by rupture of “vulnerable” atherosclerotic lesions. Vascular smooth muscle

cells (VSMCs) play a key role in atherogenesis and have historically been considered

beneficial for plaque stability. VSMCs constitute the main cellular component of the

protective fibrous cap within lesions and are responsible for synthesising strength‐

giving extracellular matrix components. However, lineage‐tracing experiments in

mouse models of atherosclerosis have shown that, in addition to the fibrous cap,

VSMCs also give rise to many of the cell types found within the plaque core. In

particular, VSMCs generate a substantial fraction of lipid‐laden foam cells, and

VSMC‐derived cells expressing markers of macrophages, osteochondrocyte, and

mesenchymal stem cells have been observed within lesions. Here, we review recent

studies that have changed our perspective on VSMC function in atherosclerosis and

discuss how VSMCs could be targeted to increase plaque stability.

1 | INTRODUCTION

Atherosclerosis, the leading cause of death worldwide, is a chronic and

progressive inflammatory disease of large‐ to medium‐sized blood

vessels (Libby, Ridker, & Hansson, 2011; Tabas, Garcia‐Cardena, &

Owens, 2015; http://www.who.int/mediacentre/factsheets/fs310/

en/). Atherosclerotic plaques consist of lipids and extracellular matrix

(ECM) and involve several cell types, including bone marrow‐derived

cells, vascular smooth muscle cells (VSMCs), and endothelial cells.

The process of atherogenesis is complex and can be characterised by

the following main stages (recently reviewed by Basatemur et al.

(2019)). Firstly, endothelial cell damage and dysfunction stimulates

the accumulation and oxidation of LDL within the vessel wall.

Oxidised LDL (oxLDL) attracts monocytes from the blood into the

subendothelial intima where they transform into macrophages, which

ingest lipoproteins to become foam cells. The subsequent production

of inflammatory mediators and cytokines stimulates VSMCs to migrate

from the media to the intima where they proliferate and secrete ECM

proteins. Importantly, VSMC accumulation in the intimal space

(referred to as diffuse intimal thickening) occurs at sites of aberrant

flow in humans already in utero and is thought to predispose for

plaque development (Basatemur et al., 2019). In progressing plaques,

macrophages and VSMCs undergoing cell death release lipids, which

accumulate within the centre of the plaque to form the necrotic core.

VSMCs are thought to migrate and proliferate to encage the necrotic

core and create a fibrous cap that stabilises the plaque. Thinning of the

fibrous cap in advanced plaques increases the risk of rupture, which

triggers thrombus formation and subsequent clinical complications

including heart attack and stroke (Libby et al., 2011; Tabas et al.,

2015). In non‐lethal cases, VSMCs are thought to accumulate at the

rupture site and secrete strength‐giving ECM proteins to restore the

integrity of the plaque surface (Bentzon, Otsuka, Virmani, & Falk,

2014; Bentzon, Sondergaard, Kassem, & Falk, 2007; Davies, Bland,

Hangartner, Angelini, & Thomas, 1989). However, this healing process

may also have adverse effects such as constrictive remodelling of the

vascular wall (Bentzon et al., 2014; Burke et al., 2001). It is therefore
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of considerable therapeutic importance to understand the mecha-

nisms that regulate plaque stability.

Post‐mortem and clinical imaging studies have shown that vulner-

able atherosclerotic plaque typically displays a thin fibrous cap, often

containing micro‐calcifications, covering a lipid‐rich necrotic core,

which is infiltrated by large numbers of bone marrow‐derived cells

(Bennett, Sinha, & Owens, 2016; Durham, Speer, Scatena, Giachelli,

& Shanahan, 2018; Shankman et al., 2015; Figure 1a). In contrast,

stable lesions are thought to have a thick collagen‐rich fibrous cap

covering a plaque core, which contains a high ratio of αSMA‐positive

to CD68‐positive cells and possibly macro‐calcified deposits (Bennett

et al., 2016; Durham et al., 2018; Shankman et al., 2015). The many

cell types contributing to atherosclerotic lesions each influence plaque

stability. However, an increasing body of evidence, including many

genetic lineage‐tracing studies, has demonstrated that VSMCs play a

substantial role in atherogenesis. This review discusses newly

discovered aspects of VSMC biology, which could be targeted to

detect, prevent, or treat vulnerable atherosclerotic plaques.

2 | PHENOTYPIC MODULATION OF VSMCs

In the healthy blood vessel, VSMCs exhibit a low rate of proliferation

and low synthetic activity and express a unique set of contractile pro-

teins, essential for the contraction and relaxation of the vascular wall

(Bennett et al., 2016). As reviewed by Owens, Kumar, and Wamhoff

(2004), many VSMC‐specific genes that encode contractile

proteins, including αSMA/ACTA2, Calponin1/CNN1, SM22α/TAGLN,

and SMMHC/MYH11, are controlled by CC(A/T‐rich)6GG (CArG) cis‐

regulatory elements in their promoter, which are bound by the widely

expressed transcription factor, serum response factor (SRF). To

achieve cell‐type‐specific expression of CArG‐dependent contractile

FIGURE 1 Stable versus vulnerable atherosclerotic plaque and vascular smooth muscle cell (VSMC)‐derived plaque cell phenotypes. (a) A
simplified scheme showing a stable lesion with a thick collagen‐rich (extracellular matrix [ECM]) fibrous cap covering a plaque core (yellow
area), which contains a high ratio of αSMA‐positive (αSMA+) cells compared with cells expressing macrophage‐associated markers (MPh‐marker +)
and macro‐calcified deposits. In contrast, vulnerable plaques have a thin fibrous cap, which often contains micro‐calcified deposits, fewer cells, and
less ECM. The lipid‐rich core (yellow area) of vulnerable lesions includes numerous foam cells as well as a high ratio of cells expressing
macrophage‐associated markers compared with αSMA‐positive cells. Please note that details such as endothelial cells, adventitial cells, and
internal and external elastic lamina are not displayed. (b) Contractile VSMCs can alter their phenotype to a more active “synthetic” state in which
they up‐regulate selective gene sets important for vascular remodelling, including cytokines, chemokines, proteases, and adhesion proteins. Within
plaques, VSMCs also give rise to foam cells or express markers traditionally associated with other cell types, such as macrophages, mesenchymal
stem cells (MSCs), or osteochondrocytes. The relative contribution of VSMC‐derived plaque cell phenotypes in stable versus vulnerable plaque
remains unknown
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VSMC genes, SRF associates with myocardin, which is only expressed

in the vasculature by VSMCs (Wang et al., 2001).

Despite being a highly differentiated and specialised cell type,

VSMCs retain remarkable plasticity and can alter their quiescent

“contractile” phenotype to a more active “synthetic” state (Figure 1b;

Chamley‐Campbell, Campbell, & Ross, 1979; Alexander & Owens,

2012). Synthetic VSMCs can re‐acquiremany characteristics of the con-

tractile phenotype, suggesting that the phenotypic switch is reversible

(Aikawa et al., 1997; Christen et al., 2001;Manderson,Mosse, Safstrom,

Young, & Campbell, 1989; Sottiurai et al., 1989; Thyberg, Blomgren,

Hedin, & Dryjski, 1995; Thyberg, Blomgren, Roy, Tran, & Hedin,

1997). The synthetic VSMC phenotype is characterised by loss of

contractile marker expression and up‐regulation of selective gene sets,

including pro‐inflammatory cytokines and MMPs, leading to increased

cell migration, proliferation, and secretion of pro‐inflammatory

cytokines (Alexander & Owens, 2012; Clarke, Talib, Figg, & Bennett,

2010; Owens et al., 2004). Such phenotypic switching is required

to maintain vascular homeostasis and regulate vascular response

to injury and inflammation but can become dysregulated in disease.

3 | ORIGIN OF VSMC‐LIKE CELLS WITHIN
ATHEROSCLEROTIC PLAQUES

VSMCs down‐regulate contractile VSMCs genes in response to injury

and inflammation, which may be linked to the reduced expression of

myocardin, a key regulator of the contractile VSMC state, during

plaque development (Ackers‐Johnson et al., 2015). Furthermore,

contractile VSMC markers can be induced in other cell types (Gomez

& Owens, 2012). For example, myofibroblasts express αSMA (Darby,

Skalli, & Gabbiani, 1990), and adventitial cells have been reported to

express contractile VSMC markers in vitro (Hu et al., 2004). This

promiscuous expression of proposed lineage‐specific cell markers has

prompted heated debate regarding the origin of VSMC‐like cells

within atherosclerotic plaque.

Originally, VSMC‐like cells within plaque were suggested to be of

myeloid origin (Sata et al., 2002). However, these claims have later

been refuted with the emergence of genetic lineage‐tracing studies.

For example, Iwata et al. (2010) transplanted bone marrow cells from

mice expressing LacZ under the control of the Myh11 promoter into

Apoe−/− mice and showed that while bone marrow‐derived cells

contribute to atherogenesis, they do not differentiate into Myh11‐

expressing cells. Several groups have suggested that adventitial cells

generate contractile marker‐expressing plaque cells (Chen et al.,

2013; Hu et al., 2004). In 2016, Kramann et al. demonstrated that

adventitial Gli1+ MSC‐like cells can generate αSMA‐positive cells and

proposed that migration of these cells into atherosclerotic lesions

contributes to plaque calcification. A subpopulation of progenitor cells

within healthy blood vessels that express the transcription factor

TCF21 have also been described (Nurnberg et al., 2015). The authors

of this study observed that cells in the media and adventitia, which

are TCF21 positive prior to injury, give rise to VSMC marker‐positive

cells within the fibrous cap (Nurnberg et al., 2015). It has also been

hypothesised that progenitor cells within the medial layer are respon-

sible for the VSMC‐like cells observed within plaque. For example,

Myh11‐negative cells within the media were found to express

multipotency‐associated factors, including Sox17, Sox10, and S100b

when cultured (Tang et al., 2012). In this study, the authors used the

VSMC‐specific Myh11 promoter to express a constitutively active

Cre recombinase (Myh11–Cre) combined with a Rosa26–loxP–GFP

recombination reporter and found an absence of GFP‐positive cells

but the presence of S100b‐positive cells within the neointima follow-

ing wire endothelial denudation injury to conclude that the identified

cells are involved in disease‐associated cell accumulation (Tang et al.,

2012). However, this observation was at odds with lineage‐tracing

studies using temporally inducible recombinases (Nemenoff et al.,

2011), which are key for analysis of cell fate, and the conclusions

made by Tang et al. were subsequently challenged in a paper co‐

authored by a number of experts in the field (Nguyen et al., 2013).

In 2013, Gomez et al. combined a tamoxifen‐inducible recombinase

driven by the VSMC‐specific Myh11 promoter (Myh11–CreERt2) with

the Rosa26–STOP–flox–YFP reporter (Figure 2a) for lineage tracing of

VSMCs in the Apoe−/− mouse model of atherosclerosis (Gomez et al.,

2013). In such experiments, animals are treated with tamoxifen to

induce recombination‐mediated expression of YFP‐reporter in healthy

VSMCs before being fed a high‐fat diet. SinceYFP reporter expression

is stably maintained, independent of Myh11 expression, this model

allows tracing the fate of mature VSMC during atherosclerosis

(Figure 2a). This study demonstrated that a large proportion of cells

within the plaque is VSMC‐derived and that most plaque cells of VSMC

origin do not express the classical contractile marker αSMA (Gomez

et al., 2013). Since then, several other genetic fate mapping studies

have confirmed this using transgenic mice with similar tamoxifen‐

regulated, VSMC‐specific recombinase, and Cre‐dependent reporter

genes to label mature VSMCs (Albarran‐Juarez, Kaur, Grimm,

Offermanns, & Wettschureck, 2016; Chappell et al., 2016; Feil et al.,

2014; Gomez et al., 2013; Jacobsen et al., 2017; Misra et al., 2018;

Shankman et al., 2015). More recently, VSMC lineage tracing using

multicolour reporters (Figure 2b) has definitively shown that athero-

sclerotic lesions are oligoclonal in terms of VSMC‐derived cells

(Chappell et al., 2016; Feil et al., 2014; Jacobsen et al., 2017; Misra

et al., 2018). Therefore, VSMC accumulation within plaque arises from

proliferation of a very small number of mature yet plastic Myh11‐

expressing VSMCs (Chappell et al., 2016; Feil et al., 2014; Jacobsen

et al., 2017; Misra et al., 2018). It is tempting to extrapolate this

oligoclonal nature of atherogenesis to human lesions, especially when

considering studies on X‐chromosome inactivation patterns that sug-

gest clonal cell expansion in human plaque (Benditt & Benditt, 1973).

4 | VSMC BEHAVIOUR WITHIN
ATHEROSCLEROTIC PLAQUE

Genetic lineage‐tracing studies have shown that VSMCs modulate

their phenotype in response to signals within the surrounding milieu

(Chappell et al., 2016; Feil et al., 2014; Gomez et al., 2013; Jacobsen
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et al., 2017; Misra et al., 2018 ; Shankman et al., 2015). With the pro-

gression of atherosclerosis, VSMCs down‐regulate contractile pro-

teins, adopt a more proliferative state, become more migratory, and

respond to inflammatory signals (Allahverdian, Chaabane, Boukais,

Francis, & Bochaton‐Piallat, 2018; Bennett et al., 2016).

In addition to adopting a “synthetic” state, VSMCs within athero-

sclerotic lesions can also alter their gene expression profile to resemble

various other cell types (Figure 1b). For example, VSMC‐derived plaque

cells have been reported to express markers that are traditionally asso-

ciated with macrophages (LAMP2/MAC3, LGALS3/MAC2, and CD68;

Chappell et al., 2016; Dobnikar et al., 2018; Feil et al., 2014; Misra

et al., 2018; Shankman et al., 2015), mesenchymal stem cells (Sca1;

Dobnikar et al., 2018; Shankman et al., 2015), and myofibroblasts

(Acta2 and Pdgfrb; Misra et al., 2018; Shankman et al., 2015). A number

of studies also suggest that VSMCs can acquire an osteochondrocytic

transcriptional repertoire (Alp, Bglap, Opn, Runx2, and Bmp2) as

reviewed by Durham et al. (2018). These phenotypically distinct cells

of VSMC origin might influence multiple processes underlying athero-

sclerotic plaque stability, including lesion growth, lipid retention,

inflammation, and ECM composition (Allahverdian et al., 2018; Bennett

et al., 2016; Durham et al., 2018; Johnson, 2017). Therefore, it has

been proposed that VSMC‐derived cells can both improve plaque sta-

bility and exacerbate plaque rupture (Allahverdian et al., 2018; Bennett

et al., 2016; Durham et al., 2018; Johnson, 2017).

5 | TARGETING A VSMC PROGENITOR

The existence of specialised VSMCs “response” population could

explain the selective clonal VSMC expansion within plaque observed

FIGURE 2 Genetic lineage labelling of vascular smooth muscle cells (VSMCs). (a) Diagram of the Myh11–CreERt2 transgene and the ROSA26–
YFP reporter allele. Tamoxifen‐induced recombination at the ROSA26–YFP locus results in the expression of YFP protein, which is stably
propagated within progeny after high‐fat diet (HFD)‐induced atherogenesis independent of Myh11 expression levels (b) Schematic of the
ROSA26–Confetti reporter allele. Tamoxifen‐induced recombination at the ROSA26–Confetti locus results in stochastic expression of one of four
fluorescent proteins (nuclear GFP, YFP, RFP, or membrane‐associated CFP), which are stably propagated within progeny after HFD‐induced
atherogenesis. Confocal images show non‐labelled and Myh11‐lineage Confetti‐labelled VSMCs in carotid arteries before and after HFD‐induced
atherogenesis. Scale bars are 100 μm
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in mouse models of atherosclerosis (Chappell et al., 2016; Feil et al.,

2014; Jacobsen et al., 2017; Misra et al., 2018). Several studies have

reported subpopulations of VSMCs, which express multipotency‐

associated genes (Cherepanova et al., 2016; Dobnikar et al., 2018;

Sainz et al., 2006; Shankman et al., 2015). These observations have

led to discussions regarding the similarities between atherosclerosis

and cancer (DiRenzo, Owens, & Leeper, 2017). Like emerging pro‐

efferocytic therapies that appear to target the root of cancer, selective

elimination of hyper‐proliferative VSMC subpopulations has been pro-

posed as a strategy to limiting atherosclerotic plaque growth (DiRenzo

et al., 2017). However, studies have shown that plaque size is not a

suitable surrogate for plaque stability. Rather than lesion size, the lipid

content of the necrotic core, the thickness of the fibrous cap, the com-

position of the ECM, and the presence of calcification appear to pro-

vide a clearer indication of plaque vulnerability (Baylis, Gomez, &

Owens, 2017). Targeting other aspects of VSMC‐progenitor function,

such as migration, transdifferentiation, or synthetic activity, might

therefore be a more feasible approach to treat vulnerable plaque.

The nature of VSMC‐progenitor populations and the mechanisms

regulating their behaviour in atherogenesis is currently being investi-

gated. Cherepanova et al. (2016) found that VSMCs express the

pluripotency factor Oct4/Pou5f1. The authors show that Oct4 expres-

sion in VSMCs promotes migration and investment of VSMCs into the

fibrous cap and improves lesion stability (Cherepanova et al., 2016).

Therefore, it may be beneficial to encourage the survival or prolifera-

tion of Oct4‐positive VSMC‐derived cells or force expression of Oct4

in VSMCs to treat vulnerable plaque. Furthermore, a rare population

of VSMCs express the multipotent progenitor marker stem cell anti-

gen 1 (Sca1/Ly6a; Dobnikar et al., 2018; Sainz et al., 2006). Single cell

transcriptomics showed that Sca1 expression in VSMCs correlates

negatively with expression of contractile VSMC genes and is associ-

ated with up‐regulation of genes that are induced by VSMCs in

response to inflammation and growth factors (Dobnikar et al., 2018).

As the proportion of VSMCs expressing Sca1 is up‐regulated upon

exposure to stimuli known to induce phenotypic switching (Dobnikar

et al., 2018), it is tempting to hypothesise that Sca1 expression might

mark a primed VSMC state that can readily respond to environmental

cues (Dobnikar et al., 2018). In support of this hypothesis, Majesky

et al. (2017) used lineage tracing to show that differentiated VSMCs

generate a subpopulation of Sca1‐positive cells in the adventitia,

which could transdifferentiate into several cell types in vitro, including

macrophages. The generation of VSMC‐derived Sca1‐positive cells

was dependent on the induction of the pluripotency factor KLF4

(Majesky et al., 2017), which has previously been implicated in the reg-

ulation of VSMC plasticity.

KLF4 negatively regulates VSMC contractility by interacting with

SRF to repress myocardin‐induced activation of contractile VSMC

genes (He et al., 2015; Liu et al., 2005; Liu, Sinha, & Owens, 2003).

In addition, KLF4 has been shown to repress contractile VSMC gene

expression by binding to the TGF‐β control element within their pro-

moter, blocking the recruitment of activating complexes (Liu et al.,

2003; Guo & Chen, 2012). Interestingly, VSMC‐specific conditional

knockout of Klf4 in a mouse model of atherosclerosis partially

suppressed macrophage‐like cell conversions and significantly reduced

VSMC proliferation and apoptosis resulting in a thicker fibrous cap

(Shankman et al., 2015). These results therefore suggest that KLF4

could be targeted to block VSMC transdifferentiation to a

macrophage‐like state and possibly inhibit VSMCs‐derived foam cell

accumulation.

6 | TARGETING VSMC CONTRIBUTION TO
THE FIBROUS CAP

It has long been recognised that atherosclerotic plaque stability

depends on the thickness and composition of the fibrous cap and

the lineage‐tracing studies described above have shown that the

fibrous cap predominately contains cells derived from VSMCs. These

VSMC‐derived cap cells are thought to be the primary source of colla-

gen within the fibrous cap, providing mechanical tensile strength and

resistance to rupture (Adiguzel, Ahmad, Franco, & Bendeck, 2009).

Consistent with these findings, in vitro studies demonstrated that

cultured VSMCs produce collagens in response to pro‐inflammatory

stimuli such as IL‐1β (Adiguzel et al., 2009; Amento, Ehsani, Palmer,

& Libby, 1991). Therefore, promoting VSMC collagen production

may reduce cardiovascular events caused by plaque rupture. Knockout

of Col15a specifically in VSMCs has been reported to reduce prolifer-

ation and result in smaller lesions, which lack a VSMC and ECM‐rich

fibrous cap (Durgin et al., 2017). However, this study investigated

plaque development rather than the regression or stability of

established plaque. More research is required to investigate whether

expression of specific ECM proteins by VSMCs similarly affects stabil-

ity in established or healing plaque.

VSMCs also secrete proteases that degrade components of the

ECM, including MMPs (Johnson, 2017). MMP2 is constitutively

expressed in VSMCs (Newby, 2005), and several other MMPs exhibit

enhanced expression within VSMCs in diseased blood vessels

(Choudhary et al., 2006). VSMCs from human atherosclerotic plaque

shoulder regions and areas of foam cell accumulation display increased

MMP3, MMP9, and MMP12 activity compared with their medial

counterparts (Galis, Sukhova, Lark, & Libby, 1994; Muller et al.,

2014). This increased protease activity corresponds to regions con-

taining higher levels of pro‐inflammatory cytokines released from

necrotic VSMCs and macrophages (Galis, Sukhova, et al., 1994; Muller

et al., 2014). Indeed, pro‐inflammatory cytokine‐induced expression of

MMP genes has be observed in vitro (Galis et al., 1994).

MMPs play complex roles in late stage plaque and, as reviewed by

Johnson, can both stabilise plaques and promote rupture (Johnson,

2017). MMPs affect plaque stability directly by degrading major com-

ponents of the ECM, thereby weakening cap stability. For example, a

selective MMP12 inhibitor has been shown to slow atherosclerotic

plaque rupture in Apoe−/− mice (Johnson et al., 2011). However, matrix

degradation also has indirect effects via modulating the migration and

proliferation of VSMCs and infiltration of inflammatory cells into

tissue, which incidentally affect the stability of atherosclerotic plaque

(Johnson, 2017). Indeed, MMP activity is thought to stabilise
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atherosclerotic plaques by increasing contractile VSMC migration and

proliferation. For instance, loss of either Mmp2 or Mmp9 in Apoe‐

deficient animals reduces lesion stability, with plaques containing

fewer VSMCs than macrophages compared with Apoe single knockout

control animals (Johnson, George, Newby, & Jackson, 2005; Kuzuya

et al., 2006). Due to the dual effect of MMPs on plaque stability and

rupture, the development of broad spectrum MMP inhibitors to treat

vascular disease has been problematic (Galis & Khatri, 2002; Newby,

2012). Given the effect of selective MMP12 inhibition, specific

targeting of the activity or expression of individual proteases might

be a more viable approach (Johnson, 2017) to stabilise established or

healing plaque.

7 | TARGETING VSMC‐DERIVED
MACROPHAGE‐LIKE AND FOAM CELLS

VSMC‐derived cells not only influence the structural integrity of the

fibrous cap but also substantially contribute to the generation of the

plaque core. Genetic lineage‐tracing studies have shown that a large

proportion of VSMC‐derived cells within the plaque express macro-

phage markers including CD68 (54%), Mac2 (62%), and Mac3

(Albarran‐Juarez et al., 2016; Chappell et al., 2016; Feil et al., 2014;

Shankman et al., 2015). Like macrophages, some VSMC‐derived

plaque cells actively participate in lipid ingestion and processing.

Indeed, 81% of VSMC‐derived cells in atherosclerotic plaque take up

oxLDL to form foam cells (Feil et al., 2014), and up to 75% of all foam

cells within lesions of Apoe−/− animals are VSMC derived (Wang et al.,

2019). Furthermore, cholesterol loading of VSMCs in vitro induces

macrophage‐related gene expression (e.g., Cd68 and Lgals3/Mac2;

Rong, Shapiro, Trogan, & Fisher, 2003), and VSMC treatment with

oxLDL up‐regulates the expression of ACAT1, an intracellular enzyme

that breaks down excess free cholesterol to facilitate storage in cyto-

plasmic lipid droplets (Yin et al., 2014). Although this process helps

clearing atherogenic lipoprotein complexes from the vessel wall,

excessive oxLDL uptake has deleterious effects (Maguire, Pearce, &

Xiao, 2018). Lipid‐rich foam cells secrete a variety of pro‐inflammatory

mediators, elicit pro‐apoptotic pathways, and attenuate clearance of

dying cells leading to increased growth and destabilisation of the

necrotic core (Maguire et al., 2018).

Importantly, transdifferentiation of VSMCs to a macrophage‐like

state has also been observed in human atherosclerotic lesions

(Allahverdian, Chehroudi, McManus, Abraham, & Francis, 2014;

Chappell et al., 2016; Feil et al., 2014; Shankman et al., 2015). In

human coronary artery plaques, 18% of CD68+ cells were marked by

dimethylation of histone H3 at lysine 4 (H3K4me2) within the

MYH11 promoter (Shankman et al., 2015), an epigenetic mark retained

by VSMCs even after loss of the contractile state (Gomez et al., 2013).

Interestingly, a large proportion of plaque cells marked by the VSMC

lineage label (mouse) or αSMA (human) showed evidence of lipid

ingestion (Feil et al., 2014). Moreover, Allahverdian et al. (2014) found

that 50% of foam cell populations in human atherosclerotic lesions

express αSMA but not CD45, suggesting that they are generated from

VSMCs, although the origin of these cells remains to be verified.

These αSMA‐positive foam cells exhibit lower levels of the choles-

terol exporter ABCA1 compared with CD45‐positive cells in late

stage plaque (Allahverdian et al., 2014). With these observations in

mind, it is tempting to speculate that VSMC‐derived foam cells con-

tribute significantly to lipid retention within the necrotic core in

human lesions.

Perhaps blocking VSMC transdifferentiation to a macrophage‐like

state would slow foam cell accumulation. However, it is important to

remember that macrophages are also a very heterogeneous cell type

and contribute to numerous processes in addition to foam cell

formation (Gibson, Domingues, & Vieira, 2018). For example, M2

macrophage subpopulations are known to stimulate remodelling and

anti‐inflammatory responses and hence promote plaque stability

(Gibson et al., 2018; Maguire et al., 2018). It will be important to test

whether VSMCs expressing macrophage markers also adopt such

athero‐protective properties in order to understand how these cells

affect plaque stability.

8 | TARGETING VSMC‐DERIVED
OSTEOCHONDROGENIC CELLS

As reviewed by Durham et al. (2018), arterial calcification is caused in

part by transdifferentiation of VSMCs within the vessel wall. Inflam-

mation, apoptosis, and oxidative stress are all thought to drive VSMC

differentiation to an osteochondrogenic state and stimulate calcifica-

tion (Durham et al., 2018). Lineage tracing of SM22α‐expressing cells

(Tagln–Cre) in the Apoe−/− murine model of atherosclerosis revealed

that ~80% of osteochondrogenic‐like (Runx2/Cbfa1+) cells and 98%

of chondrocyte‐like (Sox9 + Col2a1+) cells within plaque are VSMC‐

derived cells that have lost contractile VSMC marker gene expression

(Naik et al., 2012). The location of these osteochondrogenic/chondro-

cyte‐like VSMC‐derived cells was consistent with areas of calcification

within the fibrous cap and core observed in human lesions (Hutcheson

et al., 2016; Otsuka, Sakakura, Yahagi, Joner, & Virmani, 2014). In sup-

port of these findings, single‐cell RNA sequencing of VSMC lineage

cells (Myh11–CreERt2) from atherosclerotic plaque in Apoe−/− mice

found that a subset of VSMC lineage cells express chondrocytic genes

(Sox9, Ibsp, and Chad), consistent with a calcifying phenotype

(Dobnikar et al., 2018). Together, these observations suggest a

positive role for VSMCs in promoting vascular calcification. Indeed,

deficiency of pro‐osteogenic transcription factors Msx1 and Msx2 in

VSMCs within atherosclerotic Ldlr−/− mice reduced vascular calcifica-

tion (Cheng et al., 2014). Moreover, VSMC‐specific deletion of Runx2

attenuated vascular osteochondrogenesis and calcification without

influencing lipid metabolism, monocyte/macrophage recruitment, or

atherosclerotic lesion size (Lin et al., 2016). This finding implies that

the factors regulating vascular calcification are distinct from those that

govern lipid storage.

Like many processes underlying atherogenesis, the effects of

calcification on plaque stability are context dependent. Whereas

micro‐calcifications, particularly of the fibrous cap, are associated with
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greater risk of plaque rupture (Kelly‐Arnold et al., 2013), macro‐

calcification is widely considered to increase plaque stability (Imoto

et al., 2005; Lin et al., 2006; Wong, Thavornpattanapong, Cheung,

Sun, & Tu, 2012). Macrophage‐derived pro‐inflammatory cytokines

such asTNF‐α, IL‐1β, IL‐6, and oncostatin M have been shown to pro-

mote VSMC calcification (Ceneri et al., 2017; Parhami, Basseri, Hwang,

Tintut, & Demer, 2002; Shioi et al., 2002; Tintut et al., 2002). Further-

more, molecular imaging studies have identified a link between the

presence of inflammation and calcification (Aikawa et al., 2007; Dweck

et al., 2016). It has therefore been hypothesised that VSMCs undergo

early stages of osteogenic differentiation in inflammatory plaques

(Shanahan, 2007; New & Aikawa, 2011; Pugliese, Iacobini, Blasetti

Fantauzzi, & Menini, 2015). Moreover, inflammatory signals that

induce VSMC apoptosis promote matrix calcification, primarily through

the release of the calcifying membrane‐bound matrix vesicles, which

act as nucleation sites of calcification (Kapustin et al., 2011; Proudfoot

et al., 2000). Together, these processes are thought to produce micro‐

calcified deposits detrimental to the structural integrity of the plaque

(Pugliese et al., 2015; Shanahan, 2007; Shioi & Ikari, 2018). However,

on the resolution of inflammation, macroscopic calcium deposition is

proposed to be facilitated through induction of osteoblastic differenti-

ation and maturation of VSMCs (Pugliese et al., 2015; Shanahan, 2007;

Shioi & Ikari, 2018). Macro‐calcification is associated with organised

structures similar to that observed in authentic bone tissue and is

therefore thought to stabilise atherosclerotic lesions (Shanahan,

2007; Pugliese et al., 2015; Shioi & Ikari, 2018).

Consequently, it is not clear how simply preventing VSMC

conversion to an osteochondrocytic cell state will affect the risk of

plaque rupture. However, the presence of micro‐calcification can

instead be used to detect vulnerable plaques. Non‐invasive detection

of micro‐calcification, as opposed to macro‐calcification, within high‐

risk plaques is presently possible using 18F‐sodium fluoride PET (Irkle

et al., 2015). This clinical imaging platform could therefore be used

to test the efficacy of pharmacological therapies targeting vulnerable

plaque.

9 | TARGETING VSMC INFLAMMATORY
ACTIVATION

Many experimental and clinical studies have associated inflammation

with atherogenesis and increased risk of cardiovascular events (Libby,

2017). Indeed, C‐reactive protein blood concentration, an inflamma-

tory biomarker, improves the prediction of cardiovascular events

beyond traditional risk algorithms alone (Ridker, 2016).

Vascular inflammation involves bidirectional interaction between

resident vascular cells and inflammatory cells, which is governed in

part by pro‐inflammatory cytokines. Similar to other cell types within

the plaque, VSMCs can both produce pro‐inflammatory cytokines

and respond to those secreted from other cells by activating NF‐κB,

AP‐1, JAK–STAT, and SMAD signalling pathways (Schober, 2008;

Sprague & Khalil, 2009). IL‐1β, a key cytokine in vascular inflammation,

is known to induce VSMCs to switch from a contractile to a synthetic

phenotype, stimulating NF‐κB‐dependent transcription of cytokines

(e.g., IL‐6), chemokines (e.g., CCL2), and MMPs (Nagase, Visse, &

Murphy, 2006; Lim & Park, 2014). IL‐6 has been observed to up‐

regulate VSMC migration, proliferation, and vascular calcification

while attenuating VSMC contraction (Kurozumi et al., 2016; Lee

et al., 2016; Watanabe et al., 2004). Also, IL‐6 treatment of cultured

VSMCs activates the JAK–STAT pathway, which induces the expres-

sion of CCL2 (Watanabe et al., 2004). CCL2 plays a major role in the

recruitment of monocytes and T cells to the vessel wall and has been

shown to stimulate VSMC migration and proliferation (Schober, 2008;

Selzman et al., 2002).

Many inflammation‐responsive genes, including those induced by

IL‐1β, are under NF‐κB transcriptional control (Chistiakov,

Melnichenko, Grechko, Myasoedova, & Orekhov, 2018). Activated

NF‐κB transcription factors have been observed in VSMC‐like nuclei

within the intima of human atherosclerotic lesions (Bourcier, Sukhova,

& Libby, 1997). Furthermore, selective inhibition of NF‐κB in VSMCs

attenuated loss of the contractile state and reduced neointima forma-

tion after vascular injury (Yoshida, Yamashita, Horimai, & Hayashi,

2013), highlighting a key role of NF‐κB in regulating VSMC phenotype.

Many studies have also shown that NF‐κB plays a direct role in regu-

lating the expression of contractile VSMC genes. Activation of the

NF‐κB signalling pathway in VSMCs results in binding of the NF‐κB–

p65 subunit to the MYOCD promoter, decreasing the expression of

myocardin and myocardin‐dependent contractile genes (e.g., αSMA/

ACTA2, SM22α/TAGLN, and SMMHC/MYH11; Tang et al., 2008;

Yoshida et al., 2013; Singh & Zheng, 2014). Together, these studies

suggest that NF‐κB inhibition, which specifically affects VSMCs could

be a potential therapeutic target.

Alternatively, plaque stability could also be promoted by directly

inhibiting VSMC exposure to inflammatory cytokines. Promisingly,

the Canakinumab Anti‐Inflammatory Thrombosis Outcomes Study trial

showed that reducing inflammation by treatment with canakinumab,

an IL‐1β‐neutralising monoclonal antibody, significantly lowered the

rate of cardiovascular events compared with placebo (Ridker et al.,

2017). However, IL‐1β antibody treatment of Apoe‐deficient mice

where VSMCs were labelled by a tamoxifen‐inducible Myh11‐driven

Cre recombinase prior to inducing advanced atherosclerosis by a

high‐fat diet promoted multiple characteristics of unstable plaque

(Gomez, Baylis, Durgin, & Newman, 2018), such as a 40% decrease

in contractile VSMC content, a 30% decrease in collagen content,

and a 50% increase in M2 (Arg1+) macrophage content within the

fibrous cap (Gomez et al., 2018). This study also used VSMC‐specific

genetic deletion of Il1r1 combined with VSMC lineage tracing before

feeding mice a high‐fat diet to demonstrate that IL‐1β signalling is

required for VSMC investment into lesions and the fibrous cap

(Gomez et al., 2018).

Like IL‐1β, the role of many other cytokines in VSMC behaviour

remains unclear (Lim & Park, 2014). For example, Singh and Zheng

(2014) report dual regulation of myocardin expression by TNF‐α in

VSMCs. The authors show that, in cultured VSMCs, TNF‐α activates

the NF‐κB signalling pathway and decreases the expression of

myocardin and myocardin‐dependent genes by direct binding of

NF‐κB (p65) to the MYOCD promoter (Singh & Zheng, 2014). In
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contrast, TNF‐α treatment of cultured VSMCs overexpressing

myocardin significantly potentiates the expression of myocardin and

CArG box‐containing contractile VSMC genes by stabilising myocardin

mRNA via the NF‐κB and MAPK pathway (Singh & Zheng, 2014).

These findings suggests that the effect of TNF‐α on myocardin activ-

ity depends on the VSMC phenotypic state. Therefore, blocking

VSMC exposure to inflammatory stimuli or inhibiting the VSMC

response to such stimuli may promote plaque stability or rupture in

a context‐dependent manner.

10 | EPIGENETIC TARGETS

As discussed, much is known regarding the signals that regulate

VSMCs within atherosclerotic plaque. However, it is becoming

increasingly clear that it is also important to understand the molecular

mechanisms underlying VSMC behaviour at the epigenetic level.

Recent studies have demonstrated that histone modifications, DNA

methylation, and microRNAs all influence how VSMCs contribute to

plaque (Alexander & Owens, 2012).

Interestingly, VSMCs within atherosclerotic lesions exhibit

perturbed levels of histone methylation, including H3K27me3 (Greißel

et al., 2015; Wierda et al., 2015) and H3K9me2/3 (Chen et al., 2017;

Greißel et al., 2015). Additionally, VSMCs from diabetic patients dis-

play reduced levels of H3K9me2 compared with non‐diabetic controls,

which suggests that dysregulation of H3K9me2 might underlie the

vascular complications associated with diabetes (Chen et al., 2017;

Villeneuve et al., 2008). Several studies also demonstrate that DNA

methylation regulates VSMC behaviour in atherosclerotic plaque.

Hiltunen et al. (2002) were the first to report DNA hypomethylation

in advanced human atherosclerotic lesions. Azechi, Sato, Sudo, and

Wachi (2014) observed that inhibiting DNA methyltransferases with

5‐aza‐2′‐deoxycytidine potentiates inorganic phosphate‐induced

mineralisation in human aortic VSMCs, possibly through demethyla-

tion of the alkaline phosphatase promoter. However, it is important

to consider local as well as global levels of histone and DNA modifica-

tions. For example, the DNA demethylase TET2 positively regulates

the expression of SRF and contractile genes, including MYOCD and

MYH11, in human VSMCs (Liu et al., 2013). Furthermore, TET2

expression levels are inversely correlated with severity of atheroscle-

rosis in patients, and knock‐down of TET2 in mouse exacerbates

vascular response to injury (Liu et al., 2013). Targeting the enzymes

that regulate these de novo changes could be a promising strategy

to inhibit the expression of inflammation‐responsive VSMC genes

associated with plaque instability.

There is a growing body of evidence demonstrating that

microRNAs regulate VSMC phenotype (Lu, Thavarajah, Gu, Cai, & Xu,

2018). For example, cultured VSMCs have been shown to switch to a

macrophage‐like state after cholesterol loading by down‐regulating

the microRNA (miR)‐143/145–myocardin axis (Vengrenyuk et al.,

2015), a key pathway that is essential for maintaining the contractile

VSMC state. Maintaining the expression of myocardin or miR‐143/

145 prevented and reversed these phenotypic changes induced by

cholesterol loading (Vengrenyuk et al., 2015). Manipulation of miRNA

activity in vulnerable plaque could therefore be considered as a poten-

tial therapeutic strategy. As unstable plaque typically displays thin

fibrous caps with a high ratio of macrophage‐like to VSMC‐like cells

(Kolodgie et al., 2004), addition of miR‐143/145 mimics to block VSMC

transdifferentiation to a macrophage‐like state could perhaps be used

to stabilise plaque. Multiple miRNA‐based agents have now moved

into the clinic to treat a range of diseases (Rupaimoole & Slack,

2017), suggesting that this might be a feasible strategy.

11 | CONCLUSIONS

In recent years, our understanding of VSMCS within atherosclerotic

plaque has changed dramatically. Historically, VSMCs were thought

to be entirely beneficial by forming the fibrous cap, protecting the

plaque from rupture. However, numerous genetic lineage mapping

studies have definitively shown a wide‐ranging plasticity of VSMCs

and suggested that these cells can modulate their behaviour in

response to a variety of stimuli. Consequently, we now know that

VSMCs have complex roles within atherosclerotic lesions and may

act to both promote plaque stability and rupture depending on the

context. To develop efficient therapeutic strategies to limit cardiovas-

cular risk, additional knowledge about how specific VSMC‐derived cell

types function in mature plaque is therefore needed. Additionally,

mechanistic insight into the regulation of VSMC plasticity is required

to enable specific interventions. Additionally, many murine studies

focus on prevention of atherosclerosis in young healthy animals rather

than regression or treatment of established plaque. As discussed by

Baylis et al. (2017), there is therefore a need for implementing preclin-

ical murine models of regression or treatment of established plaque

that better mimic therapeutic intervention in humans to study VSMC

function.

11.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017).
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