Skip to main content
. 2019 Sep 11;8(9):1446. doi: 10.3390/jcm8091446

Table 5.

Accuracies of Vess-Net and existing methods for DRIVE dataset (unit: %).

Type Method Se Sp AUC Acc
Handcrafted local feature-based methods Akram et al. [23] - - 96.32 94.69
Fraz et al. [24] 74.0 98.0 - 94.8
Kar et al. [25] 75.48 97.92 - 96.16
Zhao et al. (without Retinex) [26] 76.0 96.8 86.4 94.6
Zhao et al. (with Retinex) [26] 78.2 97.9 88.6 95.7
Pandey et al. [27] 81.06 97.61 96.50 96.23
Neto et al. [28] 78.06 96.29 - 87.18
Sundaram et al. [29] 69.0 94.0 - 93.0
Zhao et al. [30] 74.2 98.2 86.2 95.4
Jiang et al. [31] 83.75 96.94 - 95.97
Rodrigues et al. [32] 71.65 98.01 - 94.65
Sazak et al. [33] 71.8 98.1 - 95.9
Chalakkal et al. [34] 76.53 97.35 - 95.42
Akyas et al. [36] 74.21 98.03 - 95.92
Learned/deep feature-based methods Zhang et al. (without post-processing) [37] 78.95 97.01 - 94.63
Zhang et al. (with post-processing) [37] 78.61 97.12 - 94.66
Tan et al. [38] 75.37 96.94 - -
Zhu et al. [39] 71.40 98.68 - 96.07
Wang et al. [40] 76.48 98.17 - 95.41
Tuba et al. [41] 67.49 97.73 - 95.38
Girard et al. [43] 78.4 98.1 97.2 95.7
Hu et al. [44] 77.72 97.93 97.59 95.33
Fu et al. [45] 76.03 - - 95.23
Soomro et al. [46] 74.6 91.7 83.1 94.6
Guo et al. [47] 78.90 98.03 98.02 95.60
Chudzik et al. [48] 78.81 97.41 96.46 -
Yan et al. [50] 76.31 98.20 97.50 95.38
Soomro et al. [51] 73.9 95.6 84.4 94.8
Jin et al. [52] 79.63 98.00 98.02 95.66
Leopold et al. [53] 69.63 95.73 82.68 91.06
Wang et al. [54] 79.86 97.36 97.40 95.11
Feng et al. [55] 76.25 98.09 96.78 95.28
Vess-Net (this work) 80.22 98.1 98.2 96.55