Skip to main content
. 2019 Sep 11;8(9):1446. doi: 10.3390/jcm8091446

Table 7.

Accuracies of Vess-Net and existing methods for STARE dataset (unit: %).

Type Method Se Sp AUC Acc
Handcrafted local feature-based methods Akram et al. [23] - - 97.06 95.02
Fraz et al. [24] 75.54 97.6 - 95.3
Kar et al. (normal cases) [25] 75.77 97.88 - 97.30
Kar et al. (abnormal cases) [25] 75.49 96.99 - 97.41
Zhao et al. (without Retinex) [26] 76.6 97.72 86.9 94.9
Zhao et al. (with Retinex) [26] 78.9 97.8 88.5 95.6
Pandey et al. [27] 83.19 96.23 95.47 94.44
Neto et al. [28] 83.44 94.43 - 88.94
Zhao et al. [30] 78.0 97.8 87.4 95.6
Jiang et al. [31] 77.67 97.05 - 95.79
Sazak et al. [33] 73.0 97.9 - 96.2
Learned/deep feature-based methods Zhang et al. (without post-processing) [37] 77.24 97.04 - 95.13
Zhang et al. (with post-processing) [37] 78.82 97.29 - 95.47
Wang et al. [40] 75.23 98.85 - 96.40
Hu et al. [44] 75.43 98.14 97.51 96.32
Fu et al. [45] 74.12 - - 95.85
Soomro et al. [46] 74.8 92.2 83.5 94.8
Chudzik et al. [48] 82.69 98.04 98.37 -
Hajabdollahi et at. (CNN) [49] 78.23 97.70 - 96.17
Hajabdollahi et at. (Quantized CNN) [49] 77.92 97.40 - 95.87
Hajabdollahi et at. (Pruned-quantized CNN) [49] 75.99 97.57 - 95.81
Yan et al. [50] 77.35 98.57 98.33 96.38
Soomro et al. [51] 74.8 96.2 85.5 94.7
Jin et al. [52] 75.95 98.78 98.32 96.41
Leopold et al. [53] 64.33 94.72 79.52 90.45
Wang et al. [54] 79.14 97.22 97.04 95.38
Feng et al. [55] 77.09 98.48 97.0 96.33
Vess-Net (this work) 85.26 97.91 98.83 96.97