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Abstract
Phenotypic correlations among partners for traits such as longevity or late-onset disease have been found to be comparable to
phenotypic correlations in first-degree relatives. How these correlations arise in late life is poorly understood. Here we
introduce a novel paradigm to establish the presence of indirect assortment on factors correlated across generations, by
examining correlations between parents of couples, i.e., in-laws. Using correlations in additive genetic values we further
corroborate the presence of indirect assortment on heritable factors. Specifically, using couples from the UK Biobank cohort,
we show that longevity and disease history of the parents of White British couples are correlated, with correlations of up to
0.09. The correlations in parental longevity are replicated in the FamiLinx cohort, a larger and geographically more diverse
historical ancestry dataset spanning a broader time frame. These correlations in parental longevity significantly (pval <
0.0093 for all pairs of parents) exceed what would be expected due to variations in lifespan based on year and location of
birth. For cardiovascular diseases, in particular hypertension, we find significant correlations (r= 0.028, pval= 0.005) in
genetic values among partners, supporting a model where partners assort for risk factors to some extent genetically correlated
with cardiovascular disease. Partitioning the relative importance of indirect assortative mating and shared common
environment will require large, well-characterized longitudinal cohorts aimed at understanding phenotypic correlations
among none-blood relatives. Identifying the factors that mediate indirect assortment on longevity and human disease risk
will help to unravel factors affecting human disease and ultimately longevity.

Introduction

Partner correlations for a variety of phenotypes have been
reported when examining environmental and genetic con-
tributions to complex traits (Anonymous 1903; Hippisley-
Cox et al. 2002; Silventoinen et al. 2003; Zietsch et al.
2011; Tenesa et al. 2015; Conley et al. 2016; Hugh-Jones
et al. 2016; Muñoz et al. 2016; Nordsletten et al. 2016;
Stulp et al. 2016; Xia et al. 2016). These correlations
between nominally unrelated individuals are substantial,

with magnitude comparable to correlations between first-
degree blood relatives, for instance, between parents and
children (Muñoz et al. 2016; Xia et al. 2016). Such effects
can be interpreted as phenotypic convergence among part-
ners due to the environmental factors that partners share
during their co-habitation. In the case of late-onset diseases
and longevity, which are not directly observable or present
at the time of mate choice, this would arguably be the
simpler explanation. Alternatively, partner correlations for
late-onset disease and longevity could arise due to indirect
assortative mating. That is, direct assortative mating for
traits, characteristics or social factors that are risk factors of
disease and potentially observable at the time partners met
(for instance, behavioural risk factors of disease such as
smoking) would lead to indirect assortative mating for other
focal traits, such as longevity or late-onset disease. Here we
take direct assortative mating to refer, in general, to non-
random mate choice based on expressed phenotypes. In
particular, we do not distinguish between mate choice that
leads to positive or negative phenotypic correlations, the
latter often being referred to as dissortative mating. The
distinction between the causes that underpin partner effects
has implications for the study of human behaviour,
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epidemiology and population genetics. It provides infor-
mation about human mate choice behaviour and informs
about the importance of environmental risk factors shared
by couples in the household. The importance to population
genetics arises, because assortative mating for heritable
traits induces a correlation of genetic values among part-
ners, whereas assortment on environmental factors (e.g.,
social homogamy) and environmental effects shared by
partners do not. The correlation of the genetic values of the
partners in turn affects the amount of genetic variance of the
trait assorted on. As a consequence, estimates of heritability
reported in the literature that do not account for assortment
overestimate the heritability for that trait in a random mat-
ing population due to the covariance among alleles at dif-
ferent loci (Falconer and Mackay 1996) (Fig. 1a,
Supplementary Methods). Furthermore, assortative mating
for a trait would also induce an increase in heritability for
genetically correlated traits (Gianola 1982) (Fig. 1b) and a
change in the genetic correlation between the assortment
and focal traits (Fig. 1c). This is the case even if these focal
traits do not directly underlie mate choice or do not manifest
at the time of mate choice. For instance, assortment for
body mass index (BMI) would induce an indirect increase
in the genetic variance of cardiovascular disease, because
there is a positive genetic correlation between these two
traits (Bulik-Sullivan et al. 2015) and an increase in their
genetic correlation with respect to what would be expected
under random mating.

Establishing assortative mating directly requires knowl-
edge of the phenotype at the time of mate choice. Even for
phenotypes that are observable at mate choice, such as

height, such data are rare. For phenotypes such as longevity
or disease risk, which only manifest long after mate choice,
such data can obviously not be collected. Recent work,
starting with Tenesa et al. (2015), has therefore con-
centrated on using genotype information to establish
assortment (Robinson et al. 2017). As genetic values (i.e.,
polygenic scores) are fixed at birth, correlations between
partners in such values provides direct evidence for
assortment. However, this approach is limited by how well
genetic values predict phenotype, i.e., the heritability, and
the precision with which genetic values can be estimated.
The heritabilities of longevity and many late-onset diseases
are medium to low (Canela-Xandri et al. 2018), with esti-
mates for single-nucleotide polymorphism (SNP) herit-
ability of longevity ranging from 0.12 to 0.3 (Kaplanis et al.
2018). Furthermore, numbers of disease cases, for many
diseases that are rare in the general population, and indi-
viduals with lifespan information are small in large, pro-
spectively collected and genotyped cohorts such as UK
Biobank, limiting the precision of estimates of genetic
values.

Here we propose a related alternative approach. We
examine correlations between the parents of partners. That
is, between the father of one spouse and the father of the
partner. We present data showing that there is indirect
assortment for both longevity and risk of disease. Specifi-
cally, we find that humans choose partners with similar
parental history of disease and parental longevity. As part-
ner choice most likely happens before the parental onset of
most of these diseases or parental death, these are unlikely
to be the traits on which such choice is made. Furthermore,

Fig. 1 Effects of indirect assortative mating on heritability and cor-
relations based on the model of (Gianola 1982) (see Supplementary
Methods). We consider a pair of traits. One trait that is the target of
assortment, e.g., BMI, and a genetically correlated focal trait, e.g.,
hypertension disease liability. Both traits are taken to have herit-
abilities of 0.3 in a random mating population. We illustrate relative
changes in three genetic parameters as functions of the strength of
assortative mating (ρcouple) and genetic correlation in a random mating
population between the traits (ρg). Specifically, a changes in herit-
ability of the assortment trait, b changes in heritability of the focal trait

and c changes in genetic correlation between the traits. In all three
panels, we plot the ratios of the parameter under assortment to random
mating. We assume a population at equilibrium after assortative
mating (which happens only after a few generations of assortment)
relative to a random mating population. In b and c, colours indicate the
ratios of h2 or ρg in the two populations. Specifically, red colours
indicate areas where assortative mating leads to increased heritability
in the focal trait and increased absolute genetic correlations, i.e., the
ratio of h2 or ρg after assortative mating to that in a random mating
population is greater than one
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as these traits are correlated across generations, indirect
assortment is the most parsimonious model. Finally, we
demonstrate assortment directly, showing that the genetic
values (i.e., genomic best linear unbiased predictors
(GBLUPs)) for hypertension are correlated among partners.
Given that assortment for hypertension itself is unlikely, we
hypothesize that this correlation in genetic values arises
through assortment for one or more traits that influence
mate choice and which are genetically correlated with
hypertension.

Materials and methods

The general framework of this study is outlined in Fig. 2.
We investigated partner correlations (ρy

couple) in longevity
(see Partner Correlations for Longevity). To dissect the
source of these correlations and, in particular, to establish
whether they arise due to indirect assortment, we followed
several approaches. First, we considered correlations in
longevity between parents of focal partners (ρy

♀inlaws and
ρy

♂inlaws) (see Parental Correlations of Longevity). That is,
ρy

♂inlaws is the correlation between the two fathers of a
husband and wife pair. Then, we considered to what extend
potential targets of assortment, such as BMI or socio-
economic status, which are correlated across generations,
explained any observed parental correlations (see Effect of
environmental factors on parental correlations in longevity).
Finally, we evaluated correlations between genetic values
(GBLUPs) of the focal partners (ρg

couple) to demonstrate

assortment directly (see Partner correlations of genetic
values of parental longevity).

We hypothesized that indirect assortative mating for
longevity could be driven by assortative mating for disease
risk factors. We therefore also examined indirect assortment
on disease risk, following the same approaches as for
longevity (see Parental correlations in disease history).

The majority of analyses were performed using data from
the UK Biobank cohort, but where possible results were
replicated using the FamiLinx cohort (Kaplanis et al. 2018).

Couples in the UK Biobank cohort

Identification of heterosexual couples in the UK Biobank
has been previously reported (Tenesa et al. 2015). Specifi-
cally, using household sharing information we identified a
set of 105,380 households with exactly two members in the
cohort. Of these, 90,297 satisfied all of the following cri-
teria: (a) individuals reported different ages for one or both
parents; (b) individuals had an age difference of < 10 years;
(c) individuals were of opposite gender; (d) both individuals
reported to live only with their partner or partner and chil-
dren. We restricted our analysis to a subset of 79,094
couples for which both partners self-reported to be of
White-British ethnicity.

Couples in the FamiLinx cohort

The FamiLinx cohort (Kaplanis et al. 2018), consisting of
86,124,644 individuals, is based on publicly accessible
genealogy data ranging back up to the early fifteenth cen-
tury and covering individuals born across the world,
although individuals of European and North American birth
dominate. In our analysis we restricted ourselves to a subset
of individuals with full information regarding year of birth
and death, latitude and longitude of the birth location. We
removed individuals with a birth location along the zero
meridian, as visual inspection suggested a majority of these
to be coding errors. We furthermore removed individuals
with lifespans below 30 years or above 130 years. Fur-
thermore, following previous analysis (Kaplanis et al.
2018), we removed those individuals born before 1600 due
to the sparsity and lower reliability of data before that date,
and those individuals born after 1910 due to the bias
towards individuals with reduced lifespan after that date.
Finally, also following previous analysis (Kaplanis et al.
2018), we removed individuals who died during the
American Civil War (year of death 1861–1865), the first
World War (year of death 1914–1918) and the second
World War (year of death 1939–1945) due to the excess
number of early death in these periods. This resulted in a
dataset of 3,445,971 individuals. Considering individuals

Fig. 2 Schematic outline of the study. We consider couples and their
parents. We compute phenotypic correlations between couples
(ρy

couple) for longevity and disease status. Such correlations could be
explained by the couple sharing a nuclear environment, e.g., shared
exposures in the shared home or shared diet. To exclude the possibility
of convergence based on shared nuclear environment, we examined
parental correlations, i.e., correlations between the fathers (ρy

♂inlaws)
and mothers (ρy

♀inlaws) of the partners. Such correlations cannot arise
due to the nuclear couple environment, but require non-random mating
and across-generation correlations. The across-generation correlations
could arise due to heritable genetic effects or culturally transmitted
environmental effects. We therefore also examined correlations in
genetic values (ρg

couple), which provide evidence for non-random
mating with respect to heritable factors
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with common offspring, we identified a set of 239,541
couples.

Definition of birth location

Both the UK Biobank and FamiLinx contain information
about the birth locations of individuals, which we used to
adjust for any potential geographical differences in long-
evity. However, in both cohorts the provided information is
at a scale too fine to allow for effective stratification based
on birth location. We therefore defined a birth location at a
coarser scale in both cohorts.

The UK Biobank contains information about the coor-
dinates of the birth location with a resolution of 1 km. We
identified a subset of individuals with miscoded coordinates
corresponding to birth in the Atlantic Ocean identified
through visual inspection and set their birth location as
missing. We used a 15 km grid to define birth location. That
is, we assigned all individuals who share birth coordinates
when divided by 15 km and rounded to an integer to the
same birth location.

In the FamiLinx cohort, we defined a 1° latitude and
longitude grid to derive birth location.

Genotypes and estimation of genetic values in UK
Biobank

To perform genetic analyses we identified a set of quality-
controlled, genotypically White-British individuals from the
UK Biobank. Using appropriate subsets of these individuals
as described for specific analyses, we jointly estimated SNP
heritabilities and SNP effects following the mixed model
approach using the DISSECT tool (Canela-Xandri et al.
2015). We used the estimated SNP effects to compute
genetic values (i.e., GBLUPs). All models included the
leading 20 genomic principal components as fixed effects.

The set of individuals available for genetic analyses was
identified as follows. We used the data for the individuals
genotyped in phase 1 of the UK Biobank genotyping pro-
gramme. A total of 49,979 individuals were genotyped
using the Affymetrix UK BiLEVE Axiom array and
102,750 individuals using the Affymetrix UK Biobank
Axiom array. Details regarding genotyping procedure and
genotype-calling protocols are provided elsewhere (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id= 155580). We
performed quality control using the entire set of genotyped
individuals before extracting the White-British cohort used
in our analyses. From the overlapping genetic markers
between the two arrays, we excluded those which were
multi-allelic, their overall missingness rate exceeded 2% or
which exhibited a strong platform specific missingness bias
(Fisher’s exact test, pval < 10−100). We also excluded

individuals if they exhibited excess heterozygosity, as
identified by UK Biobank internal quality control (QC)
procedures (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id
= 155580), if their missingness rate exceeded 5% or if their
self-reported sex did not match genetic sex estimated from
X chromosome inbreeding coefficients. These criteria
resulted in a reduced dataset of 151,532 individuals. To
define the genotypically White-British subset, we per-
formed a Principal Components Analysis of all individuals
passing genotypic QC using a linkage disequilibrium
pruned set of 99,101 autosomal markers (http://biobank.
ctsu.ox.ac.uk/crystal/refer.cgi?id= 149744), which passed
our SNP QC protocol. The genotypically White-British
individuals were defined as those for whom the projections
onto the leading 20 genomic principal components fell
within three SDs of the mean and who self-reported their
ethnicity as White-British. We furthermore pruned the set of
genotypically White-British individuals removing one
individual from pairs with relatedness above 0.0625 (cor-
responding to second degree cousins), to obtain a dataset of
unrelated genotypically White-British individuals. Finally,
in our genetic models we only used genetic variants that had
passed QC, that did not exhibit departure from
Hardy–Weinberg equilibrium (pval < 10−50) in the unre-
lated genotypically White-British cohort and which had a
minor allele frequency > 5%.

Partner correlations for longevity

We estimated partner correlations of longevity, defined as
the age in years at death using data from the two cohorts:
the UK Biobank and Familinx. We also computed corre-
lations of longevity adjusted for cohort effects. Specifically,
we computed adjusted longevity as the difference between
an individual’s lifespan and the mean lifespan of the stratum
defined by the individual’s sex, birth year and birth location
(see Definition of birth location), excluding all strata with
fewer than 10 individuals.

As the majority of UK Biobank participants are alive, we
used the biological mothers and fathers of participants.
Specifically, we identified self-reported White-British indi-
viduals with both parents deceased (using data fields
UKBID 21000, 1797 and 1835) and non-missing birth
location (see Definition of birth location). This yielded
252,899 pairs of parents for which we computed Pearson’s
correlations between longevity extracted from data fields
UKBID 1807 and 3526. The UK Biobank does not directly
contain information regarding the years or location of birth
of parents of participants. As such, we used the participant’s
place and year of birth (UKBID 34) as proxy measures of
the parent’s place and year of birth. For a subset of parents,
specifically parents who are still alive at recruitment of the
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participant, we can infer the parents’ year of birth from the
date of recruitment and the parents’ age. The subset of
parents who are still alive is relatively small, only 22% of
fathers and 39% mothers, respectively, and is com-
plementary to the set of parents used in the analysis, who
were required to be deceased. Although we can therefore
not use the data in our analysis, it allows us to evaluate the
effect of using a proxy measure. The correlation between
the year of birth of the offspring and their parent is rela-
tively high with ρ= 0.78.

In the FamiLinx cohort, we used all 239,541 couples
identified as described above (see Couples in the FamiLinx
cohort). We computed longevity as the difference of year of
death and year of birth.

Parental correlations of longevity

We computed Pearson’s correlations of longevity and
adjusted longevity for parents of partners. That is, we
computed, e.g., the correlation between the longevity of the
two fathers of the male and female partners in a couple. We
considered the three combinations of parents, i.e., the two
fathers or the two mothers of the partners and the father of
one partner and the mother of the other partner, separately.
Both longevity and adjusted longevity were computed as for
the analysis of partner correlations (see Partner correlations
for longevity).

Of the 79,094 couples identified in the UK Biobank (see
Couples in the UK Biobank) 40,504 had both mothers and
60,978 both fathers deceased, whereas there were 104,922
father–mother pairs. Among the 3,445,971 individuals
retained for analysis in the FamiLinx cohort (see Couples in
the FamiLinx cohort), we identified 97,223 sets of fathers,
66,077 sets of mothers and 143,896 father–mother pairs.

We computed expected distributions of parental corre-
lations due to geographical and temporal mating structure in
the population based on permutations. Specifically, we
generated fictitious sets of couples, which matched the
observed mating structure for birth years and birth loca-
tions, and computed the parental correlations in longevity
for these fictitious couples. To generate the fictitious cou-
ples we stratified couples based on the birth year and birth
locations of both partners and permuted male partners
within each stratum. To allow for effective permutations we
only included couples in strata of size larger than 10 in the
analysis. For each permutation, we computed Pearson’s
correlations of parental longevity as a test statistic.
Empirical p-values were then computed as the fraction of
statistics exceeding the statistic computed without permu-
tation, based on 10,000 permutations.

Effect of environmental factors on parental
correlations in longevity

We evaluated partner correlations for a range of potential
assortment factors and evaluated their contribution to any
observed correlations in parental longevity.

Specifically, we extracted Townsend Deprivation Index
(UKBID 189), height (UKBID 50), waist-to-hip ratio
(computed from UKBID 48 and 49), BMI (UKBID 21001)
and smoking history in pack years (UKBID 20161) for all
individuals in the 79,094 couples identified in the UK
Biobank. The Townsend Deprivation Index is an area
measure of socio-economical deprivation. We computed
Pearson’s correlations between the male and female partners
for all pairs of these variables as well as birth year.

We then computed linear regression models, regressing
parental longevity on birth year, birth location, as well as
Townsend Deprivation Index and height, waist-to-hip ratio,
BMI and smoking history in pack years, and the squares of
these factors, of their children. Birth year and birth location
were coded as categorical variables, whereas all other fac-
tors and their squares were included as continuous vari-
ables. Using the fitted models, we computed residuals and
correlations between couples using these residuals. Com-
paring these, we quantified the change in correlations due to
inclusion of individual covariates in the models.

Partner correlations of genetic values of parental
longevity

As the majority of individuals in the UK Biobank are still
alive, we cannot estimate genetic values for longevity
directly. We therefore again use information about the
lifespans of parents of participants and estimate genetic
values (GBLUPs) for parental longevity as a proxy for
genetic values of an individual's longevity.

Of the UK Biobank individuals retained for genetic
analysis (see Genotypes and estimation of genetic values in
UK Biobank), subsets of 79,216 and 64,002 had respec-
tively deceased fathers and mothers. Using these indivi-
duals, we estimated SNP heritabilities and genetic variant
effects for parental longevity based on common variants,
i.e., variants with minor allele frequency above 5%. Of the
79,094 couples identified in the UK Biobank (see Couples
in the UK Biobank cohort) a subset of 10,160 couples
consisted of individuals retained for genetic analysis. For
these couples, using the estimated genetic variant effects,
we computed genetic values (Canela-Xandri et al. 2015,
2016) for parental longevity and computed their Pearson’s
correlation.
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Disease history in the UK biobank

Participants in the UK Biobank provide information about
the family history for 12 diseases for both biological parents
(UKBID 20107 and 20110). Considering the 79,094 cou-
ples identified in the UK Biobank (see Couples in the UK
Biobank cohort), disease history for both biological parents
of each partner was reported by 58,043 couples for heart
disease, stroke, chronic bronchitis, high blood pressure,
diabetes and Alzheimer’s disease, and by 57,644 couples in
the case of lung cancer, bowel cancer, Parkinson’s disease
and depression. For the latter subset, information regarding
disease history for the relevant parent for breast and prostate
cancer was available for each partner.

The twelve disease for which family history was pro-
vided do not directly match disease reported in the self-
reported medical history of participants (UKBID 20002).
To identify self-reported controls, the methodology of
Muñoz et al. (2016) was utilized, to match diseases to those
reported for family history.

Parental correlations in disease history

Following the methods for parental correlations for long-
evity (see Parental correlations of longevity), we computed
correlations of disease history between the fathers and
mothers of couples in the UK Biobank. We also computed
correlations for each disease using only couples where both
partners are self-reported controls for the relevant disease.

As disease history or status for an individual is a binary
trait, Pearson’s correlations are not a suitable measure of
correlation. Instead we computed polychoric correlations
(Drasgow 1986) using the R package polycor (Fox 2010).
In addition, we assessed dependence between partner’s
family histories using a x2 test and by computing empirical
mutual information (Cover and Thomas 2012). For mutual
information we computed an empirical p-value for depar-
ture from independence using permutations. That is, we
computed empirical mutual information for 1000 datasets in
which family history for the male partners had been per-
muted and compared them with the empirical mutual
information on the observed data.

As for longevity, we evaluated the expected effect of
assortment due to place and year of birth using permuta-
tions. Permutations were performed as for longevity, using
the x2 statistics, rather than Pearson’s correlation, as test
statistic.

We performed an additional permutation analysis to
assess the impact of using the offspring’s year of birth as a
proxy for the parents’ year of birth. Unlike in the analysis of
longevity, where all parents are deceased, a subset of par-
ents with family history is still alive. For these parents we
can compute the year of birth. On the subset of parents with

available year of birth, we permuted UK Biobank couples
within the years of birth of their parents. That is, the off-
spring within the years of birth of the parents. We did not
permute within both birth year and birth location strata due
to the smaller sample size.

Partner correlations of genetic values of disease
history

We computed correlations for genetic values of parental
disease history and self-reported disease status. For own
disease status, we restricted the analysis to diseases with
prevalence in the sample above 5% and excluding prostate
and breast cancers.

For family disease history traits, we fitted models with
only genomic principal components and models that also
included the participant’s birth year and birth location as
categorical and the parents’ age as continuous covariates.
The parent’s age was computed as either the age at death
(UKBID 1807 and 3526), if the parent was deceased, or age
at assessment (UKBID 2946 and 1845) otherwise. Models
used to estimate genetic values for self-reported disease also
included the participant’s sex, age and Townsend Depri-
vation Index as fixed effects.

We fitted models using all individuals available for
genetic analysis (see Genotypes and estimation of
genetic values in UK Biobank), who reported family his-
tory. We transformed heritabilities that were estimated on
the observed scale, i.e., modelling disease status directly, to
the liability scale using the sample-specific prevalence (Lee
et al. 2011). Using SNP effects estimated on all individuals,
we computed genetic values for the 10,160 couples that
comprised individuals retained for genetic analysis (see
Genotypes and estimation of genetic values in UK Biobank)
and computed their Pearson’s correlations. We combined
paternal and maternal estimates using the Olkin-Pratt fixed
effect approach (Schulze 2004).

Results

Partner correlations in longevity

We found that the lifespan of the biological mothers and
fathers of all self-reported White-British individuals in the
UK Biobank with both parents deceased was correlated and
significantly different from 0 (ρy

couple= 0.11, 95% con-
fidence interval (CI) 0.107–0.114, pval < 10−188). The cor-
relation was only slightly reduced (ρy-adj

couple= 0.10, 95%
CI 0.091–0.108, pval < 10−188) and remained significantly
different from 0 when adjusting for the participants’ year of
birth as a proxy of the parent’s year of birth, which itself was
unavailable. This finding reproduced in the FamiLinx
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cohort. Specifically, although partner correlations for long-
evity in the FamiLinx cohort were significantly higher
(ρy

couple= 0.18, 95% CI 0.176–0.183, pval < 10−188), corre-
lations for lifespans adjusted for an individual’s year and
place of birth were comparable to those in the UK
Biobank cohort (ρy-adj

couple= 0.125, 95% CI 0.121–0.129,
pval < 10−188).

Parental correlations of longevity

We found significant correlations for the lifespans of
both mothers (ρy

♀inlaws= 0.049, 95% CI 0.038–0.062, pval
= 10−15) and fathers (ρy

♂inlaws= 0.032, 95% CI
0.022–0.042, pval= 10−10) of couples in the UK Biobank.
This finding reproduced in the FamiLinx cohort.
Although we again observed higher correlations in lifespans
of mothers (ρy

♀inlaws= 0.061, 95% CI 0.053–0.068,
pval= 10−55) and fathers (ρy

♂inlaws= 0.071, 95% CI
0.064–0.077, pval= 10−107) of couples compared with the
UK Biobank, correlations between adjusted lifespans were
again comparable to those in the UK Biobank (ρy-adj

♀inlaws

= 0.02, 95% CI 0.012–0.030, pval= 10−7 and ρy-adj
♂inlaws

= 0.03, 95% CI 0.023–0.038, pval= 10−17 for mothers and
fathers, respectively). Considering father–mother pairs,
we observed reduced correlations in the UK Biobank
(ρy

♂/♀inlaws= 0.014, 95% CI= 0.005–0.024, pval= 0.003),
which however were still significant. In the Familinx cohort,
on the other hand, correlations for father–mother pairs were
comparable to those between fathers and mothers,
and significant (ρy

♂/♀inlaws= 0.055, 95% CI 0.049–0.060,
pval= 10−15 and ρy-adj

♂/♀inlaws= 0.055, 95% CI
0.049–0.060, pval= 10−15 for observed and adjusted life-
span, respectively). We did not consider father–mother
correlations in the UK Biobank cohort further and discuss
the likely reasons for the observed discrepancy below (see
Discussion).

We compared the observed parental correlations with the
distribution of correlations for fictitious sets of couples with
matched mating structure for year and location of birth. The
expected correlation due to mating structure, i.e., the mean
correlation across fictitious sets of couples, were small and
not significantly different from 0 in the UK Biobank (ρmean

= 0.02, SD 0.006 and ρmean= 0.01, SD 0.005 for mothers
and fathers, respectively). Expected correlations were larger
and significantly different from 0 in the FamiLinx cohort
(ρmean= 0.03, SE 0.007, ρmean= 0.03, SD 0.005 and ρmean

= 0.02, SD 0.004 for mother, father, and mother–father
pairs, respectively). The observed correlations lie in the
extreme tails of the distributions of correlations between
parents’ lifespans (Supplementary Figure S1). The empiri-
cal p-values for the observed correlations are 0.0002 and <
0.0001 for mothers of couples in UK Biobank and
FamiLinx, respectively, and 0.0093 and < 0.0001 for the

fathers of couples in UK Biobank and FamiLinx, respec-
tively. For father–mother pairs of couples in the FamiLinx
cohort, the empirical p-value for the observed correlation is
< 0.0001.

Year and birth place, socio-economic status (as measured
by Townsend Deprivation Index), height, waist-to-hip ratio,
BMI and smoking history measured in pack years (as
proxies of a putative behavioural factor associated with
disease and longevity), showed significant partner correla-
tions in the UK Biobank (Supplementary Table S1).
Adjusting parental lifespans for any of these factors reduced
the observed correlations. Birth year and location were the
most important factors, reducing the observed correlations
for both maternal and paternal longevity by around 55%.
Socio-economic status and the other factors had a lesser but
still important effect on the correlation of lifespan of par-
ents, reducing such correlation an additional ~15%.

Significant SNP heritabilities were observed for mother’s
(h2= 0.03, 95% CI 0.02–0.04) and father’s (h2= 0.04, 95%
CI 0.03–0.05) longevity (Supplemental Table S3). These
SNP heritabilities for a parental phenotype are under certain
assumptions expected to be half the SNP heritability of the
phenotype measured in the individual. Correlations between
partners in genetic values of parental longevity were not
found to be significantly different from 0 (ρg

couple=− 0.007,
95% CI − 0.026 to 0.013, pval= 0.5 and ρg

couple= 0.01,
95% CI − 0.009 to 0.030, pval= 0.3 for paternal and
maternal longevity, respectively).

Table 1 Polychroic correlations for family history of fathers and
mothers of couples in the UK Biobank

Father (ρy
♂inlaws) Mother (ρy

♀inlaws)

ρchor SE P ρchor SE P

Heart disease 0.04 0.006 6 × 10−11 0.07 0.007 9 × 10−23

Stroke 0.02 0.009 0.003 0.06 0.009 2 × 10−11

Lung cancer 0.04 0.012 1 × 10−4 0.08 0.018 1 × 10−5

Bowel cancer 0.04 0.015 0.009 −0.01 0.017 0.747

Breast cancer – – – 0.01 0.012 0.325

Chronic
bronchitis

0.06 0.01 2 × 10−9 0.06 0.015 7 × 10−5

High blood
pressure

0.09 0.007 1 × 10−35 0.08 0.006 7 × 10−38

Diabetes 0.02 0.012 0.067 0.04 0.011 0.001

Alzheimer’s 0.07 0.017 2 × 10−5 0.08 0.011 3 × 10−13

Parkinson’s 0.02 0.027 0.267 0.04 0.034 0.13

Depression 0.03 0.022 0.103 0.04 0.014 0.005

Prostate cancer 0.04 0.013 0.004 – – –

ρchor polychoric correlation. P= p-value for ρchor= 0
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Parental correlations of disease history

We found significant (P < 0.05) polychoric correlations,
which were consistent for both fathers and mothers, for half
of the 12 examined diseases: heart disease, stroke, lung
cancer, chronic bronchitis, hypertension, and Alzheimer’s
disease (Table 1, Supplementary Table S4). Only stroke in
fathers failed significance after Bonferroni correction (P <
0.05/22). Of these, the largest correlation was for
paternal hypertension (ρy

♂inlaws= 0.09, 95% CI 0.08–0.11,
pval= 10−35) and the smallest for paternal stroke (ρy

♂inlaws

= 0.02, 95% CI 0.01–0.04, pval= 0.003). The history of
prostate cancer among fathers of couples was also sig-
nificantly correlated (ρy

♂inlaws= 0.04, 95% CI 0.01–0.06,
pval= 0.004). Among mothers, the correlations for lung
cancer (ρy

♀inlaws:= 0.08, 95% CI 0.04–0.11, pval= 10−5),
hypertension (ρy

♀inlaws= 0.08, 95% CI 0.07–0.10, pval < 10
−37) and Alzheimer’s (ρy

♀inlaws= 0.08, 95% CI 0.06–0.10,
pval < 10−12) were the largest, whereas the correlations for
heart disease were only marginally smaller (ρy

♀inlaws= 0.07,
95% CI 0.06–0.09, pval < 10−22). The analysis using only
couples of self-reported controls was largely in agreement
with the analysis using all couples (Supplementary
Table S5).

We compared the observed parental associations to the
distribution of associations for fictitious sets of couples with
matched mating structure for year and location of birth
(Supplementary Table S6). Results using a mating structure
based on the parent’s year of birth, available in only a
subset of parents, were consistent with the results obtained
when using the participant’s year of birth as a proxy mea-
sure (Supplementary Table S7).

We found modest but significant SNP heritabilities for a
majority of the considered parental family histories (Sup-
plementary Table S8). Correlations between genetic values
of partners were significant (P < 0.05) for maternal and
paternal history of hypertension, as well as maternal heart
disease, stroke and chronic bronchitis (Table 2). However,
only maternal chronic bronchitis and hypertension remained
significant after Bonferroni correction (P < 0.05/22).
Although hypertension in fathers did not reach the stringent
Bonferroni correction threshold, the size of the correlation
was similar to that of maternal hypertension. Furthermore,
hypertension remained significant in the meta-analysis of
paternal and maternal correlations (Table 2).

Although correlations between genetic values were
reduced, when adjusting for an individual’s birth year, birth
location and the parent’s age, they remained significant (P
< 0.05) for maternal and paternal hypertension, and mater-
nal chronic bronchitis and stroke (Supplementary Table S9).

Despite the smaller numbers of cases, when using own
disease status rather then parental disease history, we again
found the correlations of genetic values of partners for

hypertension to be significant and of similar size to the
parental hypertension (ρg

couple= 0.03, 95% CI 0.01 –0.05,
pval= 0.005).

Discussion

Partner correlations for age at death have been demonstrated
going back to early work on assortative mating (Anon-
ymous 1903). We were able to reproduce these results in
two independent cohorts of unprecedented sample size. The
partner correlations we observed were significantly lower
than the correlation of 0.23 reported a century ago for a
much smaller sample from the UK (Anonymous 1903), but
similar to more recent estimates of 0.12 in a Canadian
population (Philippe 1978). The sample of partners from the
UK Biobank used here was censored, consisting of parents
of participants and necessarily excluding all parents who
were still alive. However, the close agreement between
estimates in the independent FamiLinx cohort and previous
estimates does not suggest that this introduced substantial
bias. The results suggest that partner correlations for life-
span, after adjusting for mating structure due to year and

Table 2 Within couple correlations of genetic values (ρg
couple) for

family history and self-reported disease in genotyped couples in the
UK Biobank

Parental family
historya

Selfb

ρ P ρ 95% CI P

Hypertension 0.03 8 × 10−6 0.028 0.009 to 0.048 0.005

Chronic
bronchitis

0.019 0.07 0.011 −0.008 to
0.031

0.26

Heart disease 0.016 9 × 10−3 − 0.015 −0.034 to
0.005

0.14

Stroke 0.013 0.12 0.004 −0.016 to
0.023

0.7

Diabetes 0.009 0.09 0.024 0.004–0.043 0.02

Prostate cancer 0.009 0.34 – –

Lung cancer 0.005 0.32 – –

Alzheimer’s 0.004 0.27 – –

Severe
depression

0.003 0.41 0.017 −0.002 to
0.036

0.09

Parkinson’s −0.001 0.42 – –

Breast cancer −0.004 0.68 – –

Bowel cancer −0.008 0.14 – –

aMeta-analysis of paternal and maternal results, with the exception of
prostate cancer and breast cancer, which are paternal and maternal
results, respectively, separate results for all disease can be found in
Supplementary Table S10,
bContains only results for self-reported non-sex-specific disease with
UK Biobank prevalence >5%, ρ= Pearson’s correlation between
genetic values in couples, P= p-value for ρ= 0
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place of birth, are in the region of 0.1–0.12. Estimates of
heritability for longevity in the FamiLinx cohort imply a
phenotypic correlation between first-degree relatives of 0.06
(Kaplanis et al. 2018), whereas previous estimates of her-
itability suggest higher correlations of 0.13 (Herskind et al.
1996). Our estimates of SNP heritability for longevity of an
individual’s parents suggest a phenotypic correlation
between first-degree relatives of 0.03 or 0.04. Unlike pre-
vious estimates, our estimates are based on samples of
unrelated individuals, largely precluding inflation due to
shared environment that may have affected previous esti-
mates. On the other hand, we only estimate the variance
explained by common SNPs and therefore likely under-
estimate the heritable component of longevity. However,
even allowing for the whole range of estimates, partner
effects seem to be comparable in magnitude, or even
exceed, genetic effects on longevity.

Various possible explanations exist for the observed
partner correlations. The year of death of partners could
potentially be correlated due to effects directly related to the
partner’s death (i.e., a partner’s death has a causal link with
the other partner’s death). This together with the assortment
by birth year, as we observed in the UK Biobank, would
lead to partner correlations for lifespan. More generally,
convergence due to shared environmental factors represents
in the absence of other data the most plausible explanation
for the observed partner correlations. That is, partners share
one or more environmental risk factors, e.g., a diet, which
affects life expectancy. Such shared environment can be
restricted to the partners. More broadly, correlations may
reflect mating structure within a broader shared environ-
ment. For example, partners may mate preferably in the
same socio-economical stratum. This may, depending on
interpretation, be considered a form of assortative mating.
In particular, one’s broader environment may have genetic
underpinnings. For example, one’s socio-economic status
may be influenced by heritable traits such as educational
attainment (Belsky et al. 2018) and their combined effect
may reduce social mobility.

By comparison with partner correlations, the estimates of
correlations between parental longevity we report are sub-
stantially smaller. Indeed, they are arguably small enough to
be considered practically insignificant. However, we do not
argue for their significance based on their magnitude. As a
matter of fact, taking into account the low heritability of
longevity, they are expected to be small. Instead, their
relevance lies in the information their presence provides
about the larger partner correlations. They provide evidence
that observed partner correlations arise due to a form of
assortment. Specifically, they provide evidence that mating
is not random with respect to factors, which persist across
generations. As the parents of partners do not share the
narrow environment of the couple, our results provide

evidence that the observed correlations, at least partly, arise
due to mating structure related to factors correlated across
generations. Correlations across generations can arise due to
several distinct pathways, which cannot be differentiated by
considering correlations of parents of couples. On the one
hand, genetic effects lead to across generation correlations.
These can take the form of direct effects, i.e., classical
heritability, or indirect parent offspring effects as recently
described (Kong et al. 2018). On the other hand, cross-
generational correlations can also arise due to non-genetic
transmission, i.e., cultural heritability. For example, low
social mobility in a society will lead to parent offspring
correlations in socio-economic status.

Similar to partner correlations, parental correlations are
expected to be partly explained by differences in life
expectancy across history and geography. We have
demonstrated that a mating structure based on these factors
alone is unlikely to explain the observed correlations.
Identification of the specific factors contributing to the
observed partner correlations represents an important
question for future research. We have examined the con-
tribution of a small number of baseline factors, each of them
heritable (Canela-Xandri et al. 2018), including known
targets of assortment such as height and factors reflecting
social mating structure like the Townsend Deprivation
Index. All of the examined factors explain parts of the
observed correlation and it does not appear a single factor
will be able to explain partner correlations in longevity.
However, our results suggest that these factors and socio-
economic status are correlated across generations, as the
children’s phenotypes and socio-economic status explain
some of the correlation in longevity of their respective
parents.

We were not able to demonstrate correlations in genetic
values for longevity. Lack of such correlations would be
consistent with environmental assortment, i.e., mating
within a broader shared environment or cultural transmis-
sion of factors across generations. However, power to detect
correlations in genetic values is limited due to the low
number of couples available and the low heritability of the
trait (Supplementary Table S4). In particular, as a majority
of the cohort is still alive it was necessary to use parental
longevity to estimate genetic effects. Although this
approach has been successful in identifying genetic effects
for longevity in a GWAS setting (Joshi et al. 2016), the
reduction in heritability due to using a parents phenotype
severely impacts the precision with which genetic values
can be estimated. We would therefore suggest that these
results do not provide strong evidence against assortment on
heritable risk factors.

A majority of the reported estimates were consistent
across both cohorts and with previous estimates, where
these are available. A notable exception are the reduced
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correlations for parental longevity for father–mother pairs in
the UK Biobank cohort, when compared with the same
estimate in the FamiLinx cohort and correlations for same
sex parent pairs in both cohorts. We suggest that this is a
consequence of the limitations of the UK Biobank data.
Specifically, as noted previously, the UK Biobank cohort is
censored. Parents who are still alive are excluded. Such
censoring will bias observed correlations downwards
(Begier and Hamdan 1971). This is consistent with the
lower correlations observed in the UK Biobank compared
with the FamiLinx cohort, which does not suffer from such
censoring. This effect is exacerbated when censoring is
stronger on one of the two variables as it is the case for
father–mother correlations, due to higher life expectancies
for females.

We hypothesized that partner correlations in longevity
could be mediated through partner correlations in disease
risk. For a majority of the examined disease, partner
correlations had been previously reported (Muñoz et al.
2016). Our results for disease risk are in line with those
for longevity. That is, the observed partner correlations, at
least partly, arise due to assortment on factors correlated
across generation. Indeed, for a number of diseases, in
particular hypertension, we find direct evidence for
assortative mating. As the results for couples of self-
reported controls were in line with those using all couples,
we can exclude the possibility of direct assortment on
disease status. We therefore conclude that these correla-
tion is likely to be indirectly generated through genetic
correlation between the focal trait (e.g., hypertension) and
another, genetically correlated, trait or traits for which
assortment happens, e.g., BMI (Robinson et al. 2017). A
consequence of this model is that disease prevalence in
the population may potentially be increased through
indirect assortment for traits or risk factors correlated with
disease (Peyrot et al. 2016). Although we find direct
evidence for assortment on genetic risk factors for some
disease, parental correlations for other disease lack evi-
dence for assortment from correlations of genetic values.
Parental correlations for these diseases could arise due to
shared broad environment. In the particular case of late-
onset disease, e.g., Alzheimer’s, the observed correlations
could arise as a consequence of correlations in longevity.

The cohorts used in this study have several limitations.
For example, the already mentioned censoring of partners
who are still alive in the UK Biobank. Another limitation is
the lack of information about the year of birth of a majority
of parents in the UK Biobank. However, correlations
between the offspring’s and parent’s year of birth, where
both are available, as well as replication of results on the
parental disease history using the parents’ year of birth, both
suggest that adjusting for year of birth of the children is an

acceptable, albeit not perfect, proxy for year of birth of the
parents. In particular, results did not suggest that using the
offspring’s year of birth as a proxy introduced a substantial
bias. The FamiLinx cohort, on the other hand, has a gen-
ealogical structure, potential biasing observed correlations
upwards. However, the close agreement of estimates with
those obtained in the UK Biobank does not suggest this is
the case.

Taken together, the results suggest that the characteristics
that influence mate choice lead to detectable assortment for
familial disease and longevity. This assortment is only
partially explained by birth cohort and the few factors
chosen to reflect the social mating structure, suggesting a
contribution to assortment for parental disease history and
longevity of other traits, lifestyle choices or social factors
shared among parents and children. Although we have not
directly demonstrated that the underlying factors are trans-
ferred across generations, i.e., that the same behavioural or
social factors that drive parental disease risk are also the
factors underlying mate choice in the offspring, such a
model presents the most canonical explanation. Although
recent work has highlighted traits that are plausible candi-
dates for direct assortative mating, e.g., height (Tenesa et al.
2015; Robinson et al. 2017), our work suggests a network
of effects, whereby direct assortative mating on observable
factors leads to indirect assortment for a multitude of
genetically correlated traits. This highlights that assortative
mating can have effects far beyond the focal trait and
suggests widespread levels of pleiotropy. Understanding the
contributions that mate choice and cultural transmission of
behaviours and environments across generations make to
these correlations will present a major but exciting chal-
lenge of future research.

Data availability

Required data can be accessed through the UK Biobank
(http://www.ukbiobank.ac.uk/) and the FamiLinx website
(http://www.familinx.org/), respectively. For analyses
involving genotypes, we used the individuals genotyped in
phase 1 of the UK Biobank genotyping project, which were
released by the UK Biobank in June 2015. The genotype
data were downloaded on 5 June 2015. The DISSECT
software used to perform the analysis based on genetic
values is freely available from http://www.dissect.ed.ac.uk/.
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