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Abstract
Quantitative trait loci (QTL) with small effects, which are pervasive in quantitative phenotypic variation, are difficult to
detect in genome-wide association studies (GWAS). To improve their detection, we propose to use a local score approach
that accounts for the surrounding signal due to linkage disequilibrium, by accumulating association signals from contiguous
single markers. Simulations revealed that, in a GWAS context with high marker density, the local score approach
outperforms single SNP p-value-based tests for detecting minor QTL (heritability of 5–10%) and is competitive with regard
to alternative methods, which also aggregate p-values. Using more than five million SNPs, this approach was applied to
identify loci involved in Quantitative Disease Resistance (QDR) to different isolates of the plant root rot pathogen
Aphanomyces euteiches, from a GWAS performed on a collection of 174 accessions of the model legume Medicago
truncatula. We refined the position of a previously reported major locus, underlying MYB/NB-ARC/tyrosine kinase
candidate genes conferring resistance to two closely related A. euteiches isolates belonging to pea pathotype I. We also
discovered a diversity of minor resistance QTL, not detected using p-value-based tests, some of which being putatively
shared in response to pea (pathotype I and III) and/or alfalfa (race 1 and 2) isolates. Candidate genes underlying these QTL
suggest pathogen effector recognition and plant proteasome as key functions associated with M. truncatula resistance to A.
euteiches. GWAS on any organism can benefit from the local score approach to uncover many weak-effect QTL.

Introduction

After a decade of genome-wide association studies
(GWAS), our understanding of the genetic bases of quan-
titative phenotypic variation in organisms has dramatically
increased, the most advanced knowledge being acquired in
humans (Timpson et al. 2018; Visscher et al. 2017) and in
the workhorse plant models such as Arabidopsis thaliana,
rice, and maize (Atwell et al. 2010; Bergelson and Roux
2010; Brachi et al. 2011; Han and Huang 2013; Yu and
Buckler 2006; Yu et al. 2008). A large number of causal
variants (mainly single nucleotide polymorphisms—SNPs)
with meaningful effects have been finely mapped in an
increasing number of species. However, for complex
quantitative traits, the sum of the effects (or contribution) of
the variants detected at a given genome-wide significance
level in a GWAS generally do not match with heritability
estimates; this was referred to as “missing heritability”
(Manolio et al. 2009). The complexity of the genetics
underlying complex traits such as allelic heterogeneity,
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genetic heterogeneity, and epistatic interactions between
causal variants and epigenetic variation, which have been
shown to be important for quantitative traits expression,
could explain missing heritability (Brachi et al. 2011; Platt
et al. 2010; Slatkin 2009). Various studies have also
reported that rare variants with large effects that are not
discovered or genotyped due to low sample sizes also
contribute to missing heritability (Bandyopadhyay et al.
2017; Marouli et al. 2017; Zuk et al. 2014). Indeed, if
undetected rare variants locate physically close to common
variants that are genotyped, their effect can be detected,
although necessarily underestimated due to incomplete
linkage disequilibrium (LD) (Dickson et al. 2010; Marouli
et al. 2017; Wang et al. 2010). Recently, however, the study
of whole genome sequence data in a large human sample
has shown that a significant part of the missing heritability
in complex traits could be accounted for by rare variants
particularly in genomic regions of low LD, where these
variants are imperfectly tagged by common SNPs
(Wainschtein et al. 2019).

As proposed earlier by R. A. Fisher in his “infinitesimal
model” (Fisher 1918), another explanation of the lack of
detection of causal variants in GWAS may lie in the fact
that most complex quantitative traits are influenced by a
substantial number of common variants with relatively
small effects (Barton et al. 2017). As a consequence, they
seldom pass the genome-wide significance thresholds in the
frame of single-locus association tests (Shi et al. 2016;
Yang et al. 2010), which have been reported typically to be
near 10−8 for single tests, assuming a Bonferroni control for
classical 5–20% genome-wide false-positive probability.
The development of mixed linear models (MLMs)
accounting for heterogeneous relatedness and population
structure in a population sample have proven very efficient
to reduce the false-positive rate and increase power to detect
causal variants at the genome-wide level (Kang et al. 2010;
Kang et al. 2008; Yu et al. 2006). However, a lack of
genome-wide power was reported (i.e., <20%, assuming a
p-value threshold of 10−5) when testing small-effect causal
SNPs (i.e., explaining 5–10% of the phenotypic variation),
with sample sizes of 34–38 for mouse, 95 for A. thaliana
and 277 for maize data (Kang et al. 2008). Thus, assuming
higher p-value thresholds (i.e., 10−5 or 10−6) may still not
be adequate for detection.

In this study, we propose a method to solve the issue of
detecting small-effect variants, namely the local score
approach, which takes advantage of the cumulative asso-
ciation signals (i.e., the p-values) through LD between
SNPs in a short genomic region containing a causal variant
with small-to-moderate effect. The local score approach was
recently applied for processing the statistical signature of
positive selection in genome scans (Fariello et al. 2017).
P-values generated by a sequence of single-marker

statistical tests along the chromosome are turned into scores
and the local score is defined as the maximum of a Lindley
process over the sequence of scores (Mercier and Daudin
2001). The local score points a region that begins on the
first non-zero score of a mountain and ends at the point
where the maximum of the mountain is reached. The local
score approach was compared with window-based approa-
ches (Johansson et al. 2010; Myles et al. 2008) in a genome
scan context and simulations showed consistently higher
detection power with this approach (Fariello et al. 2017).
Some studies have also suggested the use of such kind of
approach in a GWAS context, especially when p-values are
not too small and marker density is high (Guedj et al. 2006;
Teyssèdre et al. 2012; Wiuf et al. 2016). Here we propose to
extend the use of the local score in post-processing of the
p-values of the MLM for association (Kang et al. 2010;
Kang et al. 2008). We used simulations to evaluate the
power of the local score approach to detect statistical sig-
natures of association for quantitative trait loci (QTL) with
small to large heritability, in a GWAS context with high
marker density and moderate sample size (n= 200). We
show that the power of the local score approach to detect
small-effect QTL largely outperforms p-value-based tests
and is competitive with regard to alternative methods,
which also aggregate p-values (Guedj et al. 2006; Wiuf
et al. 2016).

We apply the local score approach to a GWAS of
Quantitative Disease Resistance (QDR) of the model
legume Medicago truncatula to Aphanomyces euteiches, a
major pathogen of grain and forage legumes such as pea or
alfalfa. Plant QDR is a quantitative phenotypic trait poten-
tially shaped by a mix of a few QTL with large effects and a
variety of QTL with small-to-intermediate effects (Pilet-
Nayel et al. 2017; Roux et al. 2014). Indeed, in M. trun-
catula, previous linkage-mapping analyses of QDR to the
predominant pea-infecting isolates of A. euteiches (ATCC
201684 and RB84) identified the major locus prAe1/AER1
(Djébali et al. 2009; Pilet-Nayel et al. 2009). More recently,
a GWAS approach in a collection of 174 M. truncatula
accessions infected with the ATCC 201684 isolate, identi-
fied candidate genes underlying this major locus (Bon-
homme et al. 2014). In addition, linkage-mapping analyses
of QDR to other A. euteiches isolates (i.e., Ae109, MF-1,
and NC-1) infecting pea and/or alfalfa identified numerous
minor QTL (Hamon et al. 2010). Minor QTLs are com-
monly identified in linkage-mapping analyses of QDR in
plants. However, only genes underlying major QDR loci
(i.e., with >20% heritability) have been identified so far by
GWAS (Roux et al. 2014). In this study, narrow-sense
heritability for M. truncatula QDR to different A. euteiches
isolates ranged from 0.1 to 0.8, thus making it an interesting
trait for testing the local score approach. Using this
approach, we confirmed major QTL, refined their mapping,
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but also identified a set of new minor QTL explaining QDR
to multiple A. euteiches isolates that could otherwise not be
detected using “classical” single-marker p-values of asso-
ciation. Candidate genes underlying these QTL suggest key
roles for pathogen effector recognition and plant protea-
some in the molecular mechanisms leading to M. truncatula
resistance to A. euteiches. The translation of such kind of
approach to crop species could help to improve plant
breeding efficiency by adding newly detected minor QTL in
marker-assisted selection programs.

Materials and methods

QTL simulations

As the power of the local score approach has only been
tested in the context of genome scans for selection sig-
natures (Fariello et al. 2017), we investigated its detection
power in a GWAS context by simulating QTL of various
effect sizes, located on a chromosomal sequence, using the
QMSIM software (Sargolzaei and Schenkel 2009). One QTL
was simulated as one SNP (causal variant) on a chromo-
some of 100,000 SNPs, each randomly placed. A historical
population of 10,000 diploid individuals was first generated,
in which all SNPs (including the QTL) had equal allele
frequencies (i.e., 0.5) and were in complete LD in the first
generation, meaning that only two chromosomal haplotypes
in equal frequencies were present in the first generation.
Then, evolution through random mating and mutation-drift
equilibrium was simulated over 1000 non-overlapping
generations composed of equal numbers of males and
females. To ensure a fixed number of SNPs as well as QTL
segregation in the simulation outcome, a recurrent mutation
rate per SNP was set up at 2.5 × 10−5 (following suggestion
by QMSIM user manual), assuming that recurrent mutation at
SNP markers do not contribute significantly to the erosion
of LD (Ardlie et al. 2002). The number of mutations per
individual was sampled from a Poisson distribution with
mean u (u= 2*number of loci*mutation rate) and then each
mutation was assigned to a random locus on the chromo-
some. Recombination was fixed at one crossover per Mor-
gan per generation and a chromosome of 100 cM was
simulated. Assuming 1 cM equals 1 Mbp or 0.25Mbp as in
humans and A. thaliana, respectively (Nordborg et al.
2002), SNP density was on average one SNP per 250 bp to
one SNP per kbp, and on average one recombination
occurred on one chromosome at each generation. Finally,
we sampled 200 individuals for subsequent association
mapping and local score analyses, in order to correspond to
a reasonable sampling for GWAS. Different QTL allele
effects were simulated, each sampled from a normal dis-
tribution, and, assuming a phenotypic variance of 100, were

scaled in the last historical generation to ensure the desired
QTL heritability (see QMSIM user manual). One thousand
simulations were performed for each QTL heritability value
(0%, 5%, 10%, 20%, or 40%).

Association mapping and local score analysis of
simulated data

Simulated genotypic and phenotypic data were analyzed
using a MLM implemented in the EMMA eXpedited (EMMAX)
software (Kang et al. 2010). The MLM is used to estimate
and then test for the significance of the allelic effect at each
SNP, taking into account the genetic relationships between
individuals to reduce the false-positive rate. Briefly, the
MLM approach implemented in EMMAX proceeds in three
steps. First, a kinship matrix K of pairwise genetic simila-
rities (Identity By State) between individuals is calculated
using the genotypic data (at the 100,000 SNPs generated at
each simulation). Second, a variance component procedure
is used to estimate σ2a and σ2e by restricted maximum
likelihood from the relationship equation Var(Y)= σ2aK+
σ2eI, with Var(Y) the phenotypic variance of the trait, σ2a
and σ2e the genetic and residual variances, and I an identity
matrix. Finally, for each of the 100,000 markers an F-test is
used to test the significance of βk, the allelic effect estimated
in the following model: yi= β0+ βkXik+ ηi, with Xik the
allele found in individual i for the marker k, and ηi a
combination of the random genetic and residual effects,
with Var(η) proportional to Var(Y) (Kang et al. 2010). For
each simulation, EMMAX generated a sequence of 100,000
p-values estimated from the F-test performed at each SNP.
This association mapping method is hereafter referred to as
p-value-based tests.

To find clusters of SNPs that are almost significant, we
tested methods based on the local score theory, designed to
cumulate local association signals based on p-values. The
aim of the local score is to find segments of the genome that
have a higher density of SNPs with medium to high signal,
compared with the rest of the genome. This property is
really useful, as the patterns of LD change through the
genome and the local score does not rely on a fixed window
size (Fig. 1), contrary to sliding windows approaches where
the length of the window is fixed accounting for a general
feature, such as the average LD decay for instance (e.g.,
10 kbp windows).

We evaluated and compared three methods to p-value-
based tests using the simulated data: the local score (Fariello
et al. 2017), LHiSA (Local High-scoring Segment for Asso-
ciation; Guedj et al. 2006) and LandScape (Wiuf et al. 2016).
In the local score approach (Fariello et al. 2017), individual
scores Xi are assigned to each marker position. Over a SNP
sequence of length M, given a sequence of scores
X= (X1, …, Xm, …, XM), the local score is defined as
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H ¼ max1�i�j�M
Pj

i
Xk. Finding the segment that accumu-

lates the highest signal is equivalent to finding the maximum
of a Lindley process defined as: h= (h0, …, hm,…, hM), with
h0= 0 and hm=max(0, hm− 1+ Xm) (see Fig. 1). Provided
the expectation E(X) is negative and X has at least some
positive values, the Lindley process will include at least one
mountain above 0. It would not be possible to use the p-
values as a score directly, because the expectation would
never be negative and in addition we want that stretches of
small p-values show higher scores than for higher p-values,
so if pi is the p-value of the i-th locus, then the score is taken
as Xi=−log10(pi)− ξ. The proposed values for ξ are as
follows: 1, 2, 3, or 4, depending on the range of the p-values.
For ξ= 2, only p-values under 10−2 will contribute posi-
tively to the score and p-values above will substract from the
signal. In the LandScape method, a proposed score is Zk=
log10(zγ/pi)=− log10(pi)+ log10(zγ). They propose that zγ is
a quantile of the distribution of the pi. If the pi are p-values,
they are supposed to have a uniform distribution, so a 0.01
quantile is 0.01 and log10(0.01)=− 2. It is therefore
equivalent to the ξ parameter in (Fariello et al. 2017). Then,
finding high-scoring segments can be done by calculating
Ak=max(0, Ak− 1+ Zk). In the LHiSa approach the

individual scores Xi are the same as in (Fariello et al. 2017)
and ξ is the 0.05 quantile of the distribution of the scores.

There are mainly two differences between these
approaches. The first one is that in the local score approach
implemented in Fariello et al. (2017) we looked for seg-
ments of the genome whose score exceeds a certain
threshold, whereas the aim of LHiSA is to identify the best k
high-scoring segments (by removing iteratively the highest-
scoring segment, once detected using Hi=max(0, Hi− 1+
Xi)), and to give their respective scores H(1), H(2),…, H(k). In
Fariello et al. (2017) we prove that if there are more than
one high-scoring segments that exceed the threshold, there
is no need for computing a new threshold for each high-
scoring segment. The LandScape method calls these seg-
ments independent segments and in addition considers
dependent segments, which are high-scoring segments
hidden within the signal of the high-scoring ones. In gen-
eral, if there are dependent segments, using a higher ξ-value
might transform an independent and a dependent segment
into two independent ones. The other difference is the way
that each method proposes to compute the threshold for a
given score. When the LHiSA method was proposed, there
were not very much datasets of genomic sequence data, so

Fig. 1 Illustration of the local score approach based on p-values of a
GWAS on a chromosome segment containing a QTL with 10% her-
itability. Top figure: Manhattan plot of the scores −log10(p-value)− ξ
(with ξ= 3; black dots) and the local score (i.e., the Lindley process,
from left to right as indicated by the solid red curve, and from right to
left as indicated by the dotted red curve) for 393 SNP markers on a
chromosome segment containing a QTL (vertical green line). The
horizontal green segment indicates the interval detected with the local
score calculated in either direction, which contains the simulated QTL.
The black and red horizontal dotted lines indicate the significance level
for the scores (3.3; that is −log10(0.05/100,000)− 3) and for the

Lindley process (7.25), respectively. Bottom figure: linkage dis-
equilibrium plot of the 393 SNP markers (r2 measure). The triangles
indicate different blocks of LD on this chromosome segment (with
pairwise SNP r2-values > 0.90), among which two large blocks of
~10 kbp. The LD plot was performed using the software HAPLOVIEW

(Barrett et al. 2005). These figures show that although two major LD
blocks are present on this chromosome segment, only the LD block
that cumulates the smallest p-values in cluster (i.e., the one containing
the QTL) is detected by the local score approach, contrary to single-
marker tests
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the marker density was quite low in general. They recall that
if the Xi are independent and identically distributed, the
distribution of H can be well approximated by a Gumbel
distribution, based on the extreme values theory (Iglehart
1972; Karlin and Dembo 1992). In Wiuf et al. (2016), the
computation of the threshold based on these ideas is called
A0. When the sequence of scores is not independent, which
is the case with high marker density, both of them propose
to use permutations to obtain an empirical null distribution
for no association with the trait. However, we previously
showed empirically that if the number of SNPs is high and
the p-values used to construct the score are uniformly dis-
tributed, and the autocorrelation is almost constant along the
chromosome, then the local score follows a Gumbel dis-
tribution under the null, with parameters depending on the
length and autocorrelation of the chromosome (Fariello
et al. 2017). We provide formulas for computing the para-
meters of the Gumbel law for ξ-values of 1, 2, 3, and 4.
Hence, performing computationally intensive permutations
can be avoided. R scripts used to compute the local score
and significance thresholds are available at https://forge-
dga.jouy.inra.fr/projects/local-score/.

We provide a general view of the behavior of the local
score (using ξ= 3), given a set of p-values in a GWAS
context, in Fig. 1. We show the results of the simulation of a
chromosome segment containing different SNP markers
including a SNP QTL with 10% heritability, followed by
GWAS, local score, and LD analyses. This figure shows
that only the LD block containing the QTL, cumulating the
smallest p-values in cluster, is detected as significant by the
local score, contrary to p-value-based tests that tend to show
a weaker association signal on a larger interval containing
two LD blocks (including the LD block containing the
QTL), and which would be considered as not significant,
even using windowed statistics. The statistical properties of
the local score in comparison with p-value-based tests and
other local score approaches are evaluated in the subsection
“Multiple false positives control and QTL detection power
of local score methods in a GWAS context” of the Results
and Discussion section.

Plant material and A. euteiches isolates

In this study, a collection of 174 M. truncatula accessions
(extracted from http://www.medicagohapmap.org), repre-
sentative of the overall genetic diversity of M. truncatula
and belonging to the core collection CC192 (Ronfort et al.
2006), was used for phenotyping experiments (see Sup-
plementary Table S1 in Burgarella et al. (2016)). The col-
lection has already been used for GWAS of different traits
(Bonhomme et al. 2014; Burgarella et al. 2016; Kang et al.
2015; Le Signor et al. 2017; Rey et al. 2017; Stanton-
Geddes et al. 2013; Yoder et al. 2014). For QDR tests, five

A. euteiches isolates from different geographical areas with
different pathogenicity traits on pea and alfalfa were used.
The pea-infecting isolates ATCC 201684 from Denmark
and RB84 from France belong to pathotype I, and the
Ae109 isolate to pathotype III, according to pathogenicity
tests performed with pea differential genotypes (Wicker
et al. 2003; Wicker and Rouxel 2001). ATCC 201684—
previously studied by Bonhomme et al. (2014)—and RB84
belong to the main virulence group present in France,
whichinfects a wide range of legume species. RB84 has
been reported to be pathogenic on pea, alfalfa, M. trunca-
tula, bean, faba bean, lentil, clover, and vetch (Moussart
et al. 2008), whereas Ae109, isolated in Wisconsin (USA),
was reported to be pathogenic to pea and alfalfa (Malvick
et al. 1998). The alfalfa isolates MF-1 and NC-1, sampled in
Wisconsin and North Carolina (USA), belong to race 1 (R1)
and race 2 (R2) of A. euteiches, respectively (Malvick and
Grau 2001). These two isolates have a narrow host range, as
they were reported to be pathogenic on alfalfa, but not on
pea, bean nor red-clover (Malvick et al. 1998), but they can
also infect M. truncatula. The four isolates RB84, Ae109,
MF-1, and NC-1 were used in a previous linkage-mapping
analysis of QDR to A. euteiches in M. truncatula (Hamon
et al. 2010).

Inoculation, phenotyping, and statistical modeling
of QDR

Disease resistance tests were conducted in a growth
chamber at 25 °C for a 16 h day and 23 °C for an 8 h night
using the protocol described by Pilet-Nayel et al. (2009).
For each A. euteiches isolate, the experiment was con-
ducted using complete block design with four blocks per
accession, each block testing all the 174 accessions at the
same time with one pot of five plants per accession grown
in a moistened vermiculite substrate. Zoospores were
produced from each isolate for inoculations of 10-day-old
plants with 5 ml of inoculum per plant adjusted to
2000 spores/ml and 100 spores/ml, for pea and alfalfa
isolates, respectively, as described previously (Hamon
et al. 2010). QDR was determined by a disease severity
index, the Root Rot Index (RRI) scoring individual plants
14 days after inoculation on a 0–5 disease scoring scale,
where 0 is an asymptomatic plant and 5 is dead plant
(Pilet-Nayel et al. 2009).

To account for putative block effects on the disease
severity, RRI adjusted means were calculated for each M.
truncatula accession by fitting the following linear model
with fixed effects, taking into account a block design: yijk=
accessioni+ blockj+ εijk, where yijk is the RRI for the k-th
plant in the j-th block of the i-th accession, and εijk is the
residual. These adjusted means for each accessions were
used for GWAS.
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Association mapping and local score analyses of
QDR

GWAS was performed on RRI-adjusted means obtained
with isolates RB84, Ae109, MF-1, and NC-1 using the
MLM approach implemented in the software EMMAX (Kang
et al. 2010). EMMAX computes the relationship between
every pair of individuals from SNP data (called “kinship
matrix”) and uses this kinship matrix to control for relat-
edness in the MLM of association. In this study, we used
the Mt4.0 Medicago genome and SNP version to perform
GWAS (see http://www.medicagohapmap.org/). We also
re-analyzed phenotypic data from a previous GWAS that
used the Mt3.5 genome version, which consisted of the RRI
score and the PC1 (first principal component from a prin-
cipal component analysis) parameter summarizing 11
in vitro measures, obtained following infection with A.
euteiches ATCC 201684 (Bonhomme et al. 2014). A set of
5,328,852 genome-wide SNPs was selected with a minor
allele frequency of 5% and at least 90% of the 174 acces-
sions scored across the M. truncatula collection, to be used
for calculating a kinship matrix of pairwise genetic simila-
rities and to perform GWAS. Narrow-sense heritabilities
(i.e., portion of the total phenotypic variation attributable to
additive genetic effect, h2ss) of the RRI-adjusted means
obtained with isolates ATCC 201684, RB84, Ae109, MF-1,
and NC-1 were calculated from estimates of σ2a and σ2e by
restricted maximum likelihood accounting for the kinship
matrix used in the MLM, using the TASSEL software
(Bradbury et al. 2007). As suggested by the simulation
results in this study (see Results and Discussion section), to
identify significant associations we used a relaxed
chromosome-wide significance threshold α= 20% for p-
value-based tests and for the local score approach (i.e., the
probability to get at least one false-positive peak on the
chromosome is 20%). For p-value-based tests we applied a
Bonferroni correction for the number of blocks of SNPs in
LD previously estimated in M. truncatula genome, leading
to a p-value threshold of 4 × 10−6 (Bonhomme et al. 2014).
For the calculation of the local score, a conservative value
of ξ= 2 was chosen, in order to efficiently control for
multiple false-positive peaks along a chromosome. Finally,
to estimate chromosome-specific significance threshold
values for the local score applied to M. truncatula data, we
took into account the autocorrelation (ρ, ranging from 0.16
to 0.18) of p-values along each chromosome of length L to
estimate the coefficients aL,ρ and bL,ρ of the Gumbel law
used to model maxima of stochastic processes (see Mate-
rials and Methods) and hence to get the significance
threshold value for each chromosome we used equation 4
following Fariello et al. (2017), namely thresholdL,ρ,α= (log
(−log(α))− aL,ρ)/bL,ρ. R functions to calculate the local
score and associated significance thresholds on real data

assuming ξ= 1, 2, 3, or 4 are available at https://forge-dga.
jouy.inra.fr/projects/local-score/.

Results and discussion

Multiple false positives control and QTL detection
power of local score methods in a GWAS context

In order to investigate whether our simulations produced a
LD decay consistent with standards observed in real data
(i.e., Human-like or Arabidopsis-like chromosomes), r2

between pairs of SNPs was calculated over different dis-
tances (Fig. S1). Assuming 1 cM equals 0.25Mbp in A.
thaliana (Nordborg et al. 2002), the one-half LD decay was
~27–37 kbp, in accordance with several estimates ranging
from 10 to 50 kbp in this species (Kim et al. 2007; Nord-
borg et al. 2002; Nordborg et al. 2005; Plagnol et al. 2006).
LD in the human genome is known to be highly variable
and to show block-like structures. Still, using the standard
assumption of 1 cM, which equals 1 Mbp in human
(Nordborg et al. 2002), in our simulations the one-half LD
decay was ~7–9 kbp, which is in line with influential esti-
mates of useful LD ranging from 3 to 10 kbp (Kruglyak
1999; Pritchard and Przeworski 2001; Shifman et al. 2003).
Hence, the simulated LD decay was consistent with the
average LD decay found at the chromosome scale in real
data. We could thus evaluate different methods to be
applied at the chromosome level in a GWAS context, for
statistical detection of QTL.

Based on the simulated data assuming either “no QTL
effect” or the different QTL heritability values (5%, 10%,
20%, or 40%) at a single SNP position, we evaluated QTL
detection power and the probabilities of multiple false
positives along the chromosome, while controlling for dif-
ferent chromosome-wide significance thresholds (i.e., 0.2,
0.1, 0.05, 0.01, and 0.001), for the four methods: p-value-
based tests, the local score, LHiSA, and LandScape. To do
this, we used the empirical distributions of the maximum
along the chromosome of −log10(p), h (Fariello et al. 2017),
H (Guedj et al. 2006), and Ak, (Wiuf et al. 2016), respec-
tively, in the simulations with no QTL effect.

By controlling for the family-wise error rate (FWER)
along the simulated chromosome, which we called here
“chromosome-wide FWER,” we could calculate the pro-
portion of simulations of the null hypothesis of “no QTL
effect” in which one false-positive peak or more than one
false-positive peak occurred on the chromosome. A com-
parison for the different methods is shown in Fig. 2. From
this figure, one can see that p-value-based tests as well as
the local score with ξ= 4 make poor control of multiple
false-positive peaks along the simulated chromosome,
whereas the best control is done by the local score with ξ=
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2, followed by LandScape. In practice, ξ must be chosen
between the average and the maximum of the set of −log10
(pi) (Fariello et al. 2017). In these simulations of the null
hypothesis, the average and the maximum of the set of
−log10(pi) was 0.414 and 3.82, on average across
1000 simulations, respectively. A value of ξ= 4 is out of
range, thus not advisable, and we showed that this is
because it makes poor control of multiple false-positive
peaks. As also shown for selection scans (Fariello et al.
2017), we show here that the local score is equivalent to the
single-marker approach (i.e., p-value-based tests) for large
values of ξ, as the only scores that remain positive are those
corresponding to very low p-values, so the detected regions
would contain just one or a few SNPs.

A comparative power analyses was carried out between
the four methods. The power of each statistic (−log10(p), h,
H, and Ak) was determined as the proportion of the simu-
lations with “QTL effect” for which the statistics at the QTL
position (or on an interval including the QTL position) was
greater than a given quantile of the distribution under the
“no QTL effect.” The results for low QTL heritability
values of minor QTL explaining 5–10% of the phenotypic
variation are shown in Fig. 3. Detection power was calcu-
lated while controlling for different chromosome-wide
FWER, at the QTL position but also in windows of ±5,
±10, ±50, and ±100 kbp centered on the QTL position. This
way of computing power penalizes the local score

approaches with regard to single-marker tests, because if a
significant segment reaches its maximum out of the con-
sidered window, the segment could be considered as not
significant, thus will not count for the power computation.

From this figure, one can see a general trend for methods
based on aggregation of p-values (i.e., local score, LHiSA,
and LandScape) to show more detection power of minor
QTL than p-value-based tests, for FWER ranging from 5 to
20%. This illustrates the ability of such methods to capture
efficiently the LD surrounding the QTL position through
autocorrelation of p-values and therefore the local associa-
tion signal. However, a clear limit to the detection of minor
QTL (QTL heritability of 5%) occurs. For instance, for a
relaxed chromosome-wide FWER of 20%, power ranges
approximately from 5% to 15% maximum, depending on the
method, but it largely outperforms the power of p-value-
based tests, which is 3% maximum. The other trend is that
the local score approach tends to show (i) higher power than
either LandScape (although it depends on the chosen ξ-
value) or to a lesser extent LHiSA, and (ii) increased power
for large ξ-values. In addition, the power of approaches
based on the local score does not increase dramatically when
considering increased interval sizes on either side of the
position tested. This emphasizes again the ability of these
statistics to capture local LD surrounding the position tested.
Finally, the detection power for major QTL (i.e., explaining
20–40% of the phenotypic variation) is illustrated in Fig. S2.
This analysis clearly shows that p-value-based tests largely
outperforms the local score, LHiSA, and LandScape to
detect major QTL in a GWAS, notably for low
chromosome-wide FWER. However, it should be noted that
under the hypothesis of the presence of a QTL with inter-
mediate effect (i.e., heritability of 20%), the local score is
competitive with regard to the single-marker approach (i.e.,
p-value-based tests) provided large values of ξ are used. In
other words, it can be argued that the local score with a large
ξ-value could be used to finely map such type of QTL once
they have been detected using p-value-based tests with low
chromosome-wide FWER. For the detection of major QTL
(i.e., heritability of 40%), p-value-based tests are unequaled
by any method that aggregates p-values (Fig. S2).

In summary, we recommend the use of the local score
approach when the objective is to detect minor QTL (i.e.,
heritability from 5% to 10%), because, as it accounts for all
the variants in the QTL region accumulating the information
and accounting for LD, its power outperforms p-value-
based tests. With the goal to increase chances to map minor
QTL as precisely as possible in the context of GWAS with
high marker density while decreasing efficiently the prob-
ability of multiple false-positive peaks along a chromo-
some, ξ-values of 2 to 3 seem to be a good compromise
especially for chromosome-wide FWER ≥5%. Although the
local score might not be required for efficient detection of

Fig. 2 Proportion of unique or multiple false-positive peaks across the
simulated chromosome, detected with p-value-based tests (EMMAX

method) and methods based on aggregation of p-values (Local Score,
LHiSA, and LandScape). The empirical distributions of the maximum
along the chromosome of −log10(p), Ak, H, and h, based on
1000 simulations of the null hypothesis of “no QTL effect,” were used
to control the chromosome-wide FWER, by setting significance
thresholds at the 80%, 90%, 95%, or 99% quantiles. Hence, the cor-
responding proportions of simulations showing at least one false
positive was 20%, 10%, 5%, or 1%, respectively. Among these, we
distinguished the proportion of simulations showing either unique or
multiple false positive peaks across the simulated chromosome
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major QTL, we suggest as a general recommendation to
apply this approach without a priori knowledge of the
genetic architecture of the trait, but using larger ξ-values
(i.e., ≥3) to allow fine mapping of major QTL once they
have been detected.

M. truncatula QDR varies in response to the
inoculated A. euteiches isolate

Frequency distributions of the RRI adjusted means obtained
for the 174 M. truncatula accessions in response to five A.
euteiches isolates (ATCC 201684, RB84, Ae109, MF-1,
and NC-1), plus the distributions of the PC1 parameters in
response to ATCC 201684 previously described (Bon-
homme et al. 2014), are shown in Fig. 4. For the pea isolates
ATCC 201684 and RB84 from pathotype I, RRIs were
similarly distributed, following a bimodal curve with a
mean (±SD) of 2.21 (±0.8) and 2.26 (±1), respectively, with
11% and 14% of very resistant accessions showing RRI
values lower than 1 (Fig. 4, Supplementary File S1). The
distribution of the PC1 parameter (i.e., in vitro responses to
isolate ATCC 201684) also showed a bimodal distribution

and 15% of very resistant accessions showed PC1 values
higher than 4. In contrast, the frequency distribution of RRI
obtained with the pea isolate Ae109 from pathotype III
showed a unimodal distribution with mean 2.15 (±0.39). No
highly resistant accession with RRI values lower than 1 was
detected, but 32% of accessions were partially resistant with
RRI values <2. Likewise, the responses of the accessions to
alfalfa isolates MF-1 and NC-1 also showed unimodal
distributions with means of 2.72 (±0.32) and 2.57 (±0.36),
respectively, and only a few (2–6%) partially resistant
accessions were identified with RRI values <2 (Fig. 4).
Bimodal vs. unimodal distributions of RRI scores for
resistance to RB84 vs. Ae109, MF-1, and NC-1 of A.
euteiches in a RIL population of M. truncatula were also
previously reported (Hamon et al. 2010). Narrow-sense
heritability (h2ss) of QDR to isolates ATCC 201684 and
RB84 in this M. truncatula collection was very high (h2ss of
RRI= 0.72 and 0.78, respectively). It was lower in response
to the Ae109, MF-1, and NC-1 (h2ss of RRI= 0.38, 0.10,
and 0.22, respectively) in accordance with smaller pheno-
typic variances of RRI observed for accessions of M.
truncatula infected with these three isolates (Fig. 4). Hence,

Fig. 3 Minor QTL detection power by p-value-based tests (EMMAX

method) and methods based on aggregation of p-values (Local Score,
LHiSA, and LandScape). Two different QTL heritability values, 0.05
(top row) and 0.1 (bottom row), were each simulated 1000 times (see
the simulation settings in the Materials and Methods section “QTL
simulations”). The detection power was calculated as the proportion of
simulations in which the simulated QTL was detected at a given
chromosome-wide FWER set up using simulations of the “no QTL
hypothesis.” Power estimation at the QTL position used the value of
each statistic (−log10(p), Ak, and h) at the simulated QTL position,
whereas estimations on windows of ±5, ±10, or ±50 kbp on both sides
of the QTL position used the maximum of each statistic in the window.
As LHiSA does not provide a marker-based statistic, rather the score H

of the highest-scoring segment, power was calculated as the proportion
of simulations in which the highest-scoring segment contained the
QTL position and had an H-value superior to the significance
threshold. In addition, as the highest-scoring segment had variable size
across simulations, LHiSA power curves were compared with power
curves of the other methods on windows thatwere the closest to the
mean interval size given by LHiSA; i.e., 13,593 and 28,598 bp, for
QTL heritability values of 0.05 and 0.1, respectively. This method
penalizes the other local score methods, as we considered that the QTL
was detected if the maximum in the considered window is higher than
the detecting thresholds. Situations where the local score is higher than
the threshold but is outside the window are not considered as cases of
QTL detection, even if the QTL falls in the segment
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QDR phenotypic distributions as well as high heritability
values suggest that the genetic architecture of QDR of M.
truncatula is dominated by a few QDR loci with major
effects in response to ATCC 201684 and RB84. On the
other hand, the genetic architecture of QDR of M. trunca-
tula seems to be governed by small-effect QDR loci in
response to isolates Ae109, MF-1, and NC-1, which were
reported to be pathogenic to a narrower host range, i.e.,
alfalfa and/or pea (Malvick et al. 1998). The isolates Ae109,
MF-1, and NC-1, originating from alfalfa production fields
in the central United States (Malvick et al. 2009), showed to
be more adapted to M. truncatula, which is closely related
to alfalfa, than the ATCC 201684 and RB84 isolates ori-
ginating from pea growing areas in Europe.

GWAS and local score analyses of an integrative
parameter of QDR

The PC1 parameter (h2ss= 0.72) integrates both plant
symptoms and developmental variation of the root system in
response to A. euteiches ATCC 201684 (Bonhomme et al.
2014). Unlike in the previous study, we conducted here a
GWAS of the PC1 parameter using (i) SNPs mapped onto
the latest (Mt4.0) version of the M. truncatula genome, (ii)
the MLM approach implemented in the software EMMAX—as
for the analyses of simulated data—and (iii) a kinship matrix
estimated on the basis of the genome-wide SNP dataset used
for GWAS (i.e., 5,328,852 SNPs with a minor allele

frequency of 5%), which clearly implies population structure
and heterogeneous relatedness in the M. truncatula collec-
tion (see Fig. S3). GWAS and local score analysis of the
PC1 parameter revealed a strong association peak at the top
of chromosome 3, ranging from position 2.913 to 2.924Mb
over ~10 kbp, with a peak corresponding to p-values ~ 10−35

(Fig. 5a). Inspection of this region indicates the presence of
three closely spaced genes encoding a MYB transcription
factor, an NB-ARC (a Resistance Gene Analog), and a
tyrosine kinase protein encoding gene (Fig. 5b, Supple-
mentary Table S1). The local score (using ξ= 2) reached
very high values in this region (up to 1179), also indicating
an extremely significant association signal. A close look at
the p-values in this short genomic region does not clearly
pinpoint one of these three genes as the best candidate, as
they are very close to each other (Fig. 5b). In the previous
GWAS of the PC1 parameter, only one significant SNP
located next to the MYB transcription factor was detected in
this region (Bonhomme et al. 2014), but the SNP dataset
used, similar to the one used in this study, was mapped onto
the former version of the M. truncatula genome (Mt3.5),
which lacked robust coverage, gene annotation, and SNP
data in this genomic region at that time (Bonhomme et al.
2014). However, the other main QDR locus found in the
previous GWAS, the F-box protein coding gene
Medtr3g011020, is still detected in this study with the new
genome version but less significantly (p-values ~ 10−8) than
the MYB/NB-ARC/tyrosine kinase locus (Fig. S4).

Fig. 4 Phenotypic distributions of the Root Rot Index (RRI) and/or the
PC1 scores across a collection of 174 M. truncatula accessions in
response to five different A. euteiches isolates. The distributions of

RRI and PC1 scores for the ATCC 201684 isolate were retrieved from
Bonhomme et al. (2014)
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The genome-wide local score analysis of the PC1 para-
meter also highlighted at least seven other significant QDR
loci, which were marginally significant (10−4 to 1.5 × 10−6)
according to p-value-based tests (Fig. 5c, Supplementary
Table S1). Among these QDR loci, one on chromosome
3 spanned a DEAD-box RNA helicase family protein
encoding gene, which was also detected in the previous
GWAS using the PC1 parameter (Bonhomme et al. 2014).
The main peak on chromosome 5 mapped upstream of an
ubiquitin-conjugating enzyme coding gene, whereas the
main peak on chromosome 8 mapped within a F-box/RNI/
FBD-like domain protein encoding gene (Fig. 5c, d). This
new GWAS of the PC1 parameter, powered by a local score
approach, allowed to detect, among other candidates, two

new QDR loci with molecular functions related to protea-
some, a biological pathway already pinpointed to play a
major role in QDR to A. euteiches (Bonhomme et al. 2014;
Djébali et al. 2009). None of these loci was detected by
using solely the p-value-based tests.

GWAS and local score analyses of QDR to five A.
euteiches isolates

GWAS and local score analyses were also conducted with
RRI-adjusted mean scores in response to the five different
A. euteiches isolates previously described. Assuming a
relaxed genome-wide significance threshold of 20% for p-
value-based tests (i.e., p-value ≤ 4 × 10−6), seven significant

Fig. 5 GWAS and local score analysis of M. truncatula PC1 parameter
(Bonhomme et al. 2014) for quantitative disease resistance to A.
euteiches isolate ATCC 201684. a Manhattan plot of the p-value-
based tests (EMMAX) performed on the PC1 parameter. The horizontal
dashed line indicates the significance threshold (4 × 10−6). b Magni-
fication of the highest significant peak at the top of chromosome 3 at
the MYB/NB-ARC/tyrosine kinase QDR locus. Gray segments indi-
cate the different gene models in the region. The solid red curve
indicates the Lindley process (local score method with ξ= 2) calcu-
lated from left to right and the two red dashed vertical lines indicate the
interval detected, with the curve right of the peak not taken into
account. The horizontal black and red dashed lines indicate the

significance threshold (FWER= 20%) for p-value-based tests
(4 × 10−6) and for the local score (13.92), respectively. c Manhattan
plot of the Lindley process (local score method with ξ= 2). The two
horizontal dashed lines indicate the minimum and maximum of the
eight chromosome-wide significance thresholds. Note that the range of
values on the y-axis is limited to 0–50 in order to highlight minor QDR
loci, whereas the main association peak on chromosome 3 shows very
high local score values (up to 1179: see Fig. 5b). d Magnification of
the highest significant peak on chromosome 8 at the F-box/RNI/FBD-
like domain protein. The legend is the same as in Fig. 5b, except that
curves and lines relative to the Lindley process are highlighted in
light blue
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QDR loci were identified, regardless of the A. euteiches
isolate to which they were associated. Among these loci, the
MYB/NB-ARC/tyrosine kinase major locus, already

identified by GWAS of the PC1 parameter, was also
detected in response to both A. euteiches isolates ATCC
201684 and RB84 (Fig. 6, Supplementary Table S1). This
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result highlights both (i) the robustness of different
experimental designs (in vitro vs. semi-natural conditions
for plant phenotyping) to detect major loci (Bonhomme
et al. 2014) and (ii) the identification of a major locus
controlling resistance to two A. euteiches pea isolates
belonging to the same pathotype. Also assuming a relaxed
genome-wide significance threshold of 20% for peak
detection using the local score approach, a total of 46 QDR
loci were identified. A proportion of 91% (i.e., 42/46) of
them showed p-value > 4 × 10−6, indicating that they could
be considered as marginally or not significant according to
p-value-based tests, but clearly significant with regard to
local score values (Fig. 6, Supplementary Table S1). This
result supports our simulations showing that the local score
approach is more powerful to detect minor QTL (i.e., with
less significant effect) than p-value-based tests. The genetic
bases of M. truncatula QDR to A. euteiches highly depend
on the origin of the different A. euteiches isolates and—
apart from the major locus MYB/NB-ARC/tyrosine kinase
identified with p-value-based tests in response to the pea
isolates ATCC 201684 and RB84—only the local score
analyses could highlight other common QDR loci in
response to the different isolates.

The genetic bases of M. truncatula QDR to A. euteiches
pea isolates was strongly dependent on the A. euteiches
pathotype (pathotype I for ATCC 201684 and RB84,
pathotype III for Ae109). Only one significant QDR locus
was detected in response to the three A. euteiches pea iso-
lates, the three association signals all pointing the same
~1 kbp region located ~4 kbp next to two genes among
which a serine/threonine–protein phosphatase BSL2-like on
chromosome 2 (Fig. 6, Supplementary Table S1). A reci-
procal best hit blast between M. truncatula and A. thaliana
genomes indicates that the identified serine/
threonine–protein phosphatase BSL2-like from M. trunca-
tula (Medtr2g087530) and a paralog of this gene

(Medtr4g050540) are the closest homologs of
BRI1 suppressor 1 (BSU1)-like 2 (AT1G08420) and BSU1-
like 3 in A. thaliana (AT2G27210). Interestingly, the
Solanum demissum BSL1 protein was reported to form a
complex with Phytophthora infestans RxLR effector Avr2
and with the NB-LRR immune receptor R2 to trigger dis-
ease resistance to the oomycete (Saunders et al. 2012). It
could be hypothesized that a similar mechanism takes place
in the disease resistance of M. truncatula to pea isolates of
A. euteiches, involving BSL2 and one of the NB-LRR
identified in this study. The NB-ARC gene of the major
QDR locus MYB/NB-ARC/tyrosine kinase in response to
ATCC 201684 and RB84 pea isolates (pathotype I) could
be such a candidate gene. This locus was not detected in
response to pea isolate Ae109 (pathotype III), but a small
peak occurred in this region at only 57 kbp away from the
MYB/NB-ARC/tyrosine kinase locus (see Fig. 6; local
score= 12.55, with the most significant SNP at position
2,970,777 with p-value= 7.7 × 10−5). This could represent
a borderline case of detection due to phenotypic inaccura-
cies that may occur when using scoring scales to assess
QDR and when the variation of phenotypes is tightened in a
collection.

QDR to pathotype I pea isolates of A. euteiches (i.e.,
ATCC 201684 and RB84) shared the most similar genetic
bases, with three additional common QDR loci identified
(Fig. 6, Supplementary Table S1), whose gene contents
suggest again a key role for proteasome functions in QDR
of M. truncatula to A. euteiches. Interestingly, the local
score analysis notably identified one additional highly sig-
nificant QDR locus on chromosome 4 (Medtr4g020590),
specific to the RB84 isolate, which contained a disease
resistance protein TIR-NBS-LRR, suggesting that the two
strains do not use exactly the same set of effectors to attack
their host (Fig. 6, Supplementary Table S1). Overall, these
results showed that QDR against A. euteiches pea isolates
involved common large-effect as well as small-effect loci,
but also additional QDR loci that are pathotype specific
(i.e., pathotype I vs. pathotype III) or even isolate-specific
within a given pathotype (i.e., ATCC 201684 vs. RB84).

In fact, very little correlation exists between QDR in
response to pea vs. alfalfa isolates. Indeed, only one puta-
tive common QDR locus was detected in response to one of
the pea (Ae109) and one of the alfalfa (MF-1) isolate, the
two association signals being 115 kbp distant, on chromo-
some 4 (Fig. 6, Table S1). Interestingly, previous works
have shown that the Ae109 and MF-1 A. euteiches isolates,
both sampled in Wisconsin (USA) where pea and alfalfa
were grown intensively, were genetically close (Malvick
et al. 1998), suggesting that they may have recently derived
from a common ancestral isolate and then evolved through
their adaptation to different hosts (pea and alfalfa). The
genetic bases of M. truncatula QDR to A. euteiches alfalfa

Fig. 6 GWAS and local score analysis of M. truncatula Root Rot
Index parameter for quantitative disease resistance to five A. euteiches
isolates. Each box represents the Manhattan plots of the p-value-based
tests (top) and the Lindley process (bottom) performed on M. trun-
catula RRI phenotypic parameter, in response to each of the five
different A. euteiches isolates. The horizontal dashed line in each
Manhattan plot of the p-value-based tests indicates the significance
threshold (4 × 10−6). The two horizontal dashed lines in each Man-
hattan plot of the Lindley process indicate the minimum and maximum
of the eight chromosome-wide significance thresholds. For the first
two Manhattan plots of the Lindley process (QDR to isolates ATCC
201684 and RB84), the range of values on the y-axis is limited to 0–70
in order to highlight small-effect QDR loci outside of chromosome 3,
on which the main association peak shows very high local score values
(600 and 463 for ATCC 201684 and RB84, respectively; see Sup-
plementary Table S1). Brown, green, and blue arrows highlight QDR
loci (mainly identified using the local score approach), which are
common to (i) A. euteiches pea isolates, (ii) A. euteiches alfalfa iso-
lates, and (iii) A. euteiches pea and alfalfa isolates
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isolates (MF-1 and NC-1) are also weakly correlated, as
only one putative QDR locus was detected in response to
both isolates, the two association signals being ~90 kbp
distant, on chromosome 3 (Fig. 6, Supplementary Table
S1).

Conclusions

This study provides new methodological and scientific
knowledge for dissecting genetic architecture of complex
traits, such as QDR to pathogens in plants. By simulations,
we showed that the local score approach is better than single
SNP p-value-based tests for detecting weak (h2ss= 5–10%)
marker–phenotype associations in GWAS with high marker
density. This approach is also competitive with regard to
alternative methods, which aggregate p-values, typically the
window-based methods. One feature is that the local score
is flexible with regard to the changing LD patterns along the
genome (see Fig. 1), contrary to fixed window lengths. In
addition, we show that the local score efficiently controls
for multiple false-positive peaks along chromosomes, pro-
vided that the value of its tuning parameter ξ is correctly set
up (typically 2 or 3). Although the local score approach
provides increased power relative to p-value-based tests or
alternative local score approaches, the power itself remains
low (up to 15%) to detect QTL with small heritability (i.e.,
<10%), but it can be applied to find statistical signals of
association along a segment, whatever the haplotype
structure surrounding the causal markers. Future works
should investigate the way to increase power while main-
taining efficient control of multiple false-positive peaks
along the chromosomes.

By applying the method to the GWAS of QDR to mul-
tiple A. euteiches isolates in M. truncatula, we refined the
position of a previously reported major locus (Bonhomme
et al. 2014), which conferred resistance to two A. euteiches
isolates from pea pathotype I. The major locus, underlying
MYB/NB-ARC/tyrosine kinase candidate genes, would be
involved in recognition or signaling pathway triggering
resistance to A. euteiches. We also discovered a diversity of
minor QTL—not detected using p-value-based tests—
associated with resistance to A. euteiches isolates from pea
pathotype I and III, and alfalfa race 1 and 2, some of which
being putatively common among isolates according to their
pathotypes and the legume hosts grown in their regions of
origin. These results raise new issues on adaptation of A.
euteiches populations to leguminous hosts and their genetic
resistance factors.

More broadly, our study suggests that the local score is a
promising approach to improve GWAS resolution and to
uncover genetic variants with weak effects that contribute to
the heritability of quantitative traits in model (e.g., human,

A. thaliana, M. truncatula) as well as in non-model and
domesticated species displaying variable levels of LD, and
in which high marker density is available.

Data archiving

Supplementary File S1 contains RRI-adjusted mean for
each accession, obtained following infection with A. eutei-
ches isolates ATCC 201684, RB84, Ae109, MF-1, and NC-
1, plus the PC1 values obtained following infection with
isolate ATCC 201684 (Bonhomme et al. 2014). These
values were used as phenotypic data in the GWAS of M.
truncatula QDR to A. euteiches. The M. truncatula SNP
dataset (hapmap format) used for GWAS can be found at
http://www.medicagohapmap.org/downloads/mt40.
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