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Abstract

Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae)
studied so far share the same chromosome number of 2n =40. However, there are differences in the morphology of the
macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only
in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if
cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this
group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes
among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to
metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs
5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric
chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus
albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this
lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z
chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and
lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.

Introduction

Varanids, also known as monitor lizards, are squamate
reptiles belonging to the suborder Anguimorpha, which
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together with iguanians and snakes forms the clade Tox-
icofera (Vidal and Hedges 2005). The family Varanidae
comprises a single extant genus, Varanus, which split from
the sister group, the family Lanthanotidae, ~70 MYA (Lin
and Wiens 2017). Currently, 80 extant species of varanids
are described (Uetz and HoSek 2017) and karyotypes have
been reported for 24 Varanus species (Table 1). All these
species have a diploid chromosome number of 2n =40,
consisting of 16 macrochromosomes and 24 micro-
chromosomes. This consistency in chromosome number
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Table 1 Basic cytogenetic data in Varanidae

Clade Species Subspecies Reference 2n Karyotype Sex chromosomes
niloticus clade V. albigularis King and King (1975)"! 40 40: 16(8,8) 24  ZW
albigularis Present study 3n=60% 60: 24(12,12) 36
V. exanthematicus De Smet (1981)" 40 40: 16(8,8) 24
Srikulnath et al. (2013) 40 40: 16(10,6) 24
Present study 40 40: 16(10,6) 24
V. griseus griseus King and King (1975) 40 40: 16(16,0) 24
De Smet (1981)° 40 40: 16(14,2) 24
V. niloticus niloticus King and King (1975) 40 40: 16(8,8) 24 W
Porter et al. (1994) 40 40: 16(8,8) 24
indicus clade V. indicus indicus King and King (1975) 40 40: 16(14,2) 24
V. beccarii Present study 40 40: 16(14,2) 24 ZW
V. boehmei Present study 40 40: 16(14,2) 24
V. macraei Present study 40 40: 16(14,2) 24 ZW
V. prasinus Present study 40 40: 16(14,2) 24 ZW
salvator clade V. bengalensis Dutt (1968)Jr 40 40: 16(8,8) 24
bengalensis Singh et al. (1970), Singh (1974) 40 40: 16(14,2) 24
De Smet (1981)° 40 40: 16(16,0) 24
Patawang et al. (2017a, 2017b) 40 40: 16(14,2) 24 ZW
V. flavescens Singh et al. (1970), Singh (1974) 40 40:16(14,2) 24
V. nebulosus King and King (1975)" 40 40: 16(14,2) 24
V. rudicollis Gorman and Gress (1970) 40 40: 16(14,2) 24
Present study 40 40: 16(14,2) 24
V. salvator salvator King and King (1975) 40 40: 16(14,2) 24
De Smet (1981)" 40 40: 16(16,0) 24
macromaculatus ~ Srikulnath et al. (2013) 40 40: 16(14,2) 24
Present study 40 40: 16(14,2) 24  ZW
varius clade V. varius King and King (1975) 40 40: 16(14,2) 24 ZW
V. komodoensis Johnson Pokorna et al. (2016) 40 40: 16(14,2) 24 ZW
gouldii clade V. giganteus King and King (1975) 40 40: 16(10,6) 24
V. gouldii Matthey (1931)" 40 40: 16(8,8) 24
gouldii King and King (1975) 40 40: 16(10,6) 24
Sfavirufus King and King (1975) 40 40: 16(10,6) 24
Matsubara et al. (2014) 40 40: 16(10,6) 24 ZW
V. mertensi King and King (1975) 40 40: 16(10,6) 24
Present study 40 40: 16(10,6) 24 ZW
V. panoptes horni Present study 40 40: 16(10,6) 24
V. rosenbergi King and King (1975)" 40 40: 16(10,6) 24
Matsubara et al. (2014) 40 40: 16(10,6) 24 ZW
V. spenceri King and King (1975) 40 40: 16(10,6) 24
tristis clade V. glauerti Present study 40 40: 16(14,2) 24 ZW
V. scalaris King and King (1975) 40 40: 16(14,2) 24
V. semiremex King and King (1975) 40 40: 16(14,2) 24
V. timorensis similis King and King (1975) 40 40: 16(14,2) 24
V. tristis orientalis King and King (1975) 40 40: 16(14,2) 24
acanthurus clade V. acanthurus King et al. (1982) 40 40: 16(14,2) 24  ZW
Matsubara et al. (2014) 40 40: 16(14,2) 24 ZW
Present study 40 40: 16(14,2) 24  ZW
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Table 1 (continued)

Clade Species Subspecies Reference 2n Karyotype Sex chromosomes
V. gilleni King and King (1975) 40 40: 16(14,2) 24
V. storri King and King (1975) 40 40: 16(14,2) 24

Karyotypes are described as follows: diploid chromosome number: number of macrochromosomes (number of bi-armed macrochromosomes,

number of uniarmed macrochromosomes) number of microchromosomes

*I Referred as V. exanthematicus albigularis therein
*2 Referred as V. bengalensis nebulosus therein

*3 Referred as V. gouldii rosenbergi therein

f Karyotypes described in these references were not considered in the ancestral state reconstruction

¥ Likely a case of spontaneous triploidy

and type suggests that the genome organisation might be
highly conserved across the whole family. However, the
morphology of certain chromosomes shows some varia-
bility among varanid species. As microchromosomes are
hardly distinguishable by morphology, they were not
included in these comparisons. The largest two pairs of
macrochromosomes are metacentric and the pairs 3 and 4
are medium-sized bi-armed chromosomes in all species
studied so far. Some variability exists in the morphology of
the macrochromosomal pairs 5-8. In most species (Table 1),
pair 5 is acrocentric and pairs 6, 7, and 8 are bi-armed
chromosomes. Although this karyotype was considered to
be ancestral for varanids (King and King 1975; Chaipra-
sertsri et al. 2013; Srikulnath et al. 2013), as yet there has
been no robust phylogenetic reconstruction of the ancestral
morphology of the varanid macrochromosomes.

Squamate reptiles do have, however, well-known varia-
bility in sex determination systems, from environmental to
genotypic sex determination. Genotypic sex determination
involves sex chromosomes at various stage of differentia-
tion, comprising male (XX/XY) or female (ZZ/ZW) het-
erogamety (Valenzuela et al. 2003; Janzen and Krenz 2004;
Sarre et al. 2004; Valenzuela and Lance 2004; Pokorna and
Kratochvil 2009; Johnson Pokorna and Kratochvil 2016).
Among varanids, sex chromosomes have been reported for
only eight species (Table 1). All these species have female
heterogamety with differentiated ZZ/ZW sex chromosomes,
where the W is distinguishable by its highly heterochro-
matic region. In some species the W chromosome is dis-
tinctively larger than the other microchromosomes (King
and King 1975; Matsubara et al. 2014). Differences in
accumulations of microsatellite motifs on the W chromo-
some were reported among three species studied by Mat-
subara et al. (2014). Chromosome Z was not yet identified
in any varanid species and data on homology of sex chro-
mosomes among varanids are lacking.

Recently, Tannucci et al. (2019) produced a set of chro-
mosome painting probes from a female V. komodoensis by
flow sorting. In this study, we hybridized this set of probes

Table 2 List of individuals analyzed

Clade Species Number and sex of
individuals

niloticus V. albigularis albigularis 1unknown sex

V. exanthematicus 18
indicus V. beccarii 18, 19

V. boehmei 18

V. macraei 18, 19

V. prasinus 18, 19
salvator V. rudicollis 18

V. salvator 18, 29
gouldii V. mertensi 18, 1

V. panoptes horni 13
tristis V. glauerti 18, 19
acanthurus V. acanthurus 18, 49

to a number of varanid species to (i) test if cryptic inter-
chromosomal rearrangements of larger chromosomal blocks
occurred during the karyotype evolution of this group, (ii)
contribute to the reconstruction of the varanid ancestral
karyotype, and (iii) test homology of sex chromosomes
among varanids.

Material and methods
Studied species

The molecular phylogenetic study by Vidal et al. (2012)
split the genus Varanus into seven distinct clades: niloticus,
indicus, salvator, varius, gouldii, tristis, and acanthurus.
This division is generally well supported also by more
recent phylogenetic analyses (Zheng and Wiens 2016; Lin
and Wiens 2017). We worked on 12 species of monitor
lizards with a key phylogenetic position, representing all
seven major varanid clades (Table 2). Males and females
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were analyzed in seven of these species, whereas only males
in the remaining species. The sex of the individuals was
identified based on breeding history, sexual behavior, or
morphology. Blood samples were obtained from animals
originating from the pet trade, private breeders or Czech
zoological gardens (Zoo Praha, Zoo Plzeil) under the
supervision and with the approval of the Ethics Committee
of the Faculty of Science, Charles University in Prague
followed by the Committee for Animal Welfare of the
Ministry of Agriculture of the Czech Republic (permission
No. 35484/2015-14).

Chromosomal preparations, staining, and
karyotyping

Metaphase chromosome spreads were prepared from whole
blood cell cultures, following the protocol described in
Pokornd et al. (2010) with slight modifications. Chromo-
somal preparations were stained with conventional Giemsa
solution. C-banding staining was performed following
Sumner (1972) as described in Pokornd et al. (2014).
Chromosomes were arranged according to their size. When
results from chromosome painting were available, kar-
yotypes of the analyzed species were arranged based on
homology with the karyotype of V. komodoensis (Iannucci
et al. 2019). Karyotypes were arranged using the software
Ikaros (MetaSystems).

Chromosome-specific probes

Preparation and labeling of V. komodoensis (VKO)
chromosome-specific painting probes are described in detail
in Iannucci et al. (2019). Briefly, chromosomes obtained by
fibroblast cultivation were sorted using a Mo-Flo® (Beck-
man Coulter) cell sorter. Genetic material was then ampli-
fied and labeled by degenerate oligonucleotide primed PCR.
Each V. komodoensis paint for macrochromosomes is spe-
cific for one single pair of chromosomes, except for VKO6/
7 and VKOS8/7, which contain one specific chromosome
pair each (pair 6 and pair 8, respectively), plus a third pair
that overlaps between the two of them (pair 7). The W and
Z chromosomes are contained in probes VKO11/12/W and
VKO17/18/Z, respectively, together with two pairs of other
microchromosomes each (Fig. 1).

Cross-species chromosome painting

V. komodoensis paints for macrochromosomes and sex
chromosomes were hybridized onto chromosomes of male
individuals of V. exanthematicus, V. prasinus, V. rudi-
collis, V. salvator, V. mertensi, V. panoptes horni, V.
glauerti, and V. acanthurus and of individual of unknown
sex of V. albigularis albigularis. VKO11/12/W and

SPRINGER NATURE

VKO17/18/Z were hybridized also to female individuals
of V. prasinus, V. salvator, V. mertensi, V. glauerti, and V.
acanthurus. Fluorescence in situ hybridization (FISH)
experiments were performed as described in Iannucci
et al. (2019). Images were captured using a Provis AX70
(Olympus) fluorescence microscope equipped with a
DP30BW digital camera (Olympus). DP manager imaging
software (Olympus) was used to capture gray scale images
and to superimpose the source images with colors to
visualize the results of FISH.

Ancestral state reconstruction

The phylogeny of cytogenetic characters, i.e., differences in
the morphology of chromosome pairs 5-8, among varanids
was reconstructed by maximum parsimony (Fitch 1971;
Dobigny et al. 2004) using Mesquite v.3.51 (Maddison and
Maddison 2018). The analyses were based on the phylo-
genetic tree of Lin and Wiens (2017). However, we took
into account also the alternative topology of V. griseus,
which is sister to other species of the niloticus clade in Lin
and Wiens (2017), but sister to all species that do not belong
to the niloticus clade in Zheng and Wiens (2016). In species
where conflicting data were available, we included only the
best data with respect to species identification, description
of sampling locality, number of individuals studied, and
quality of karyotype pictures (Table 1).

Results
Karyotypes and sex chromosomes

Karyotypes of V. beccarii, V. boehmei, V. macraei, V.
prasinus, V. panoptes horni, and V. glauerti were described
for the first time in this study. The cytogenetic analyses
revealed that the 11 species analyzed all have a diploid
number of 2n = 40, consisting of 8 pairs of macrochromo-
somes and 12 pairs of microchromosomes (Fig. 2). The only
exception is V. albigularis albigularis, which was triploid
with 3n =60 chromosomes (Fig. 2a). Chromosome pairs
(triplets in the case of V. albigularis albigularis) 1, 2, 3, and
4 have the same morphology in all species. Pairs 1 and 2 are
large metacentric, whereas pairs 3 and 4 are medium-sized
(sub)metacentric chromosomes. Pair 5 is acrocentric in all
species except V. exanthematicus, where it is submeta-
centric. Pairs 6, 7, and 8 are (sub)metacentric in V. beccarii,
V. boehmei, V. macraei, V. prasinus, V. rudicollis, V. sal-
vator, V. glauerti, and V. acanthurus. Pairs 6 and 7 are
acrocentric, whereas pair 8 is metacentric in V. mertensi and
V. panoptes horni. V. exanthematicus has pairs 6, 7, and 8
acrocentric. V. albigularis albigularis triplets 6, 7, and 8 are
acrocentric as well. The morphology of the
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Fig. 1 Schematic representation of the results of the FISH experiments
with Varanus komodoensis chromosome paints. Results of female
individuals are shown only for those species in which both sexes were

microchromosomes is not identifiable because of their small
sizes (Fig. 2).

C-banding revealed variable heterochromatic patterns in
the pericentromeric and telomeric regions of several mac-
rochromosome and microchromosome pairs (Fig. 2). A
strongly heterochromatic microchromosome was detected
via C-banding in females of V. beccarii, V. macraei, V.
prasinus, V. mertensi, V. glauerti, and V. acanthurus. This
heterochromatic chromosome was absent in male meta-
phases, suggesting that it could represent the W chromo-
some (Fig. 2). C-banded karyotypes were similar in both

MMM%mmmmmmmmmmmm““mﬂg

zw

aped
sninyupnIo

[ wkos [—
[ vkos [ vkotiiaw
] vkoerr B vko17/18/z

studied. Phylogenetic relationships follow Lin and Wiens (2017). In V.
albigularis albigularis, the studied individual was likely an excep-
tional spontaneous triploid

sexes of V. salvator (Fig. 2k, 1). The larger unpaired
microchromosome in male and female karyotype in V.
acanthurus reported by Matsubara et al. (2014) and inter-
preted there as a likely polymorphism of an autosomal
microchromosome was not observed in our study.

Chromosome painting
Chromosome painting demonstrates a strong conservation
of macrochromosomes (Fig. 1; Suppl. Material 1). V.

komodoensis macrochromosome pairs 1, 2, 3, and 4 are
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Fig. 2 Giemsa stained karyotype (left) and C-banded metaphases (right) of analyzed species. The W chromosomes in female karyotype were
identified by sequential C-banding. The Z chromosomes are not assigned due to their similarity to other microchromosomes. Scale bars = 10 um

conserved in both morphology and painting pattern in other
monitor lizards (e.g., Fig. 3a—c). Painting with VKOS5,
VKOG6/7, and VKOB8/7 gave the same results obtained for V.
komodoensis, i.e., VKOS painted chromosome 5, whereas
VKO6/7 and VKOS8/7 painted chromosomes 6 and 8,
respectively, and pair 7, confirming the conservation in
synteny for these four pairs of chromosomes despite their
morphological diversity (e.g., Fig. 3d—f). Triploidy of V.
albigularis was confirmed as all the paints painted triplets
instead of pairs of chromosomes (e.g., Fig. 3g, h).
Hybridization of VKOI11/12/W and VKO17/18/Z to
male individuals resulted in painting four and six micro-
chromosomes, respectively (e.g., Fig. 3i, k). VKO11/12/W
hybridized to female metaphases painted five micro-
chromosomes including the W (e.g., Fig. 3j). VKO17/18/Z
probe painted five microchromosomes, one of which is
probably the Z (e.g., Fig. 31). Identical results were obtained
for V. komodoensis by Iannucci et al. (2019). A comparison
of hybridization pattern of VKO11/12/W and VKO17/18/Z
in the same individual revealed that W chromosome is

SPRINGER NATURE

usually larger than Z chromosome in varanids (e.g., Fig.
3i-1).

Ancestral state reconstruction

The ancestral state reconstruction did not unequivocally
identify the ancestral pattern of the morphology for chro-
mosomes 5-8 in varanids (Fig. 4). The ancestral state of
chromosome pair 5, could be either submetacentric as in V.
griseus or acrocentric. In any case, the situation in V.
exanthematicus seems to be an apomorphy of this species.
Our analysis suggests that chromosome pair 5 was subject
to rearrangement from an acrocentric to a metacentric shape
in the ancestor of V. exanthematicus. The ancestral state of
chromosomes 6—8 for varanids could be submetacentric as
in V. griseus, acrocentric, or metacentric. It appears that
chromosomal rearrangements transformed chromosome pair
6 and 7 from the ancestral metacentrics in the common
ancestor of the gouldii group to acrocentrics. The alternative
topology of V. griseus suggested by Zheng and Wiens
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Fig. 2 (continued)

(2016) causes only a single change in interpretation of the
phylogenetic pattern. In this case, the acrocentric shape of
chromosome 5 is considered as ancestral for all varanids
and the submetacentric chromosome of V. griseus is an
apomorphy of this species.

Discussion
Karyotype evolution in monitor lizards

Our results strongly suggest that the chromosome number
of 2n =40 is ancestral for varanids (Fig. 4). However, the
lack of cytogenetic information on the accepted closest
varanid outgroup, the sister family Lanthanotidae (Pyron
et al. 2013; Zheng and Wiens 2016; Lin and Wiens 2017),
prevents us from arriving at final conclusions on the com-
position of the varanid ancestral karyotype. Recently, the
karyotype of the Gila monster, Heloderma suspectum, was
described by Johnson Pokornd et al. (2014). The karyotype
of this anguimorphan species has 2n = 36 chromosomes (14

macro- and 22 microchromosomes) and it is similar to
karyotypes found in more distant varanid outgroups such as
Iguania and snakes (Singh 1972; Altmanova et al. 2016;
Olmo and Signorino 2016). Some rearrangements must
have occurred along the evolutionary pathway from the last
common ancestor of the varanids and the Gila monster,
most likely in the lineage leading to the varanids. These
rearrangements probably involved microchromosomes
(Srikulnath et al. 2013).

The situation concerning the morphology of macro-
chromosomes 5-8 in the ancestral varanid karyotype is
more complicated. In their pioneering work, King and King
(1975) assumed that during evolution pericentric inversions
tended to change these chromosomes from predominantly
bi-armed to acrocentric. Therefore, they viewed the kar-
yotype of the salvator clade as ancestral for varanids.
However, this hypothesis does not correspond to the con-
clusions from current phylogenetic reconstructions (Pianka
and King 2004; Lin and Wiens 2017). The results of the
ancestral state reconstruction show that the ancestral situa-
tion for all varanids is not yet resolved (Fig. 4). It largely
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depends on the homology of the morphology of chromo-
some pairs 5-8 between V. griseus and the majority of
varanid species. Chromosome pairs 5-8 in V. griseus were
considered to be submetacentric with remarkably shorter p-
arms or even “subacrocentric” (King and King 1975),
whereas chromosomes 6-8 are metacentric and the chro-
mosome pair 5 is acrocentric in most of the other varanids.
One hypothesis is that the morphology of chromosomes 5—8
may be apomorphic in V. griseus. However, a detailed
comparison of gene order in V. griseus and other varanids
might be needed to test this hypothesis. Regardless of the
ancestral morphology of chromosomes 5-8, the patterns of
chromosome morphology observed across species suggest
that changes in macrochromosomes from acrocentrics to
metacentrics went in both directions (Fig. 4). Chromosome
painting data show that these changes between metacentric
and acrocentric chromosomes can be attributed solely to
intrachromosomal rearrangements involving pericen-
tromeric inversion or centromere repositioning, and not to
interchromosomal translocations.

Our results using chromosome painting do not support
some of the conclusions from the study by Srikulnath et al.
(2013) based on physical mapping of 17 functional genes in
V. salvator and V. exanthematicus. These authors suggested
that acrocentric chromosome pairs 6 and 8 of V. exanthe-
maticus were homologous to two metacentric pairs of V.
salvator and that a metacentric pair assigned as pair 7 in
Srikulnath et al. (2013) of V. exanthematicus was homo-
logous to the submetacentric pair 7 of V. salvator. Instead,

our chromosome painting results showed that metacentric
chromosome pairs 6, 7, and 8 of V. salvator are homo-
logous to three acrocentric pairs of V. exanthematicus.
Further, the acrocentric chromosome pair 5 of V. salvator is
homologous to a submetacentric pair of V. exanthematicus.
These results suggest that the acrocentric morphology of
chromosome pairs 6, 7, and 8 is a conserved feature in the
niloticus clade (Fig. 1).

In summary, unlike mammals, where high rates of
interchromosomal rearrangements were found (Ferguson-
Smith and Trifonov 2007), chromosome painting data on
varanids strongly support that similar to birds, squamate
reptiles have a rather high rate of intrachromosomal and a
low rate of interchromosomal rearrangements. This char-
acteristic is probably common for the whole sauropsid
group (Alfoldi et al. 2011; Pokornd et al. 2011a, 2012;
Skinner and Griffin 2012; Lithgow et al. 2014; Rovatsos
et al. 2014a; Johnson Pokorna et al. 2015). The same kar-
yotypic stability found in varanids was also described for
other squamate lineages such as oplurids (Altmanova et al.
2016), skinks (Giovannotti et al. 2010) and geckos (Shi-
baike et al. 2009; Trifonov et al. 2011; Johnson Pokorna
et al. 2015), even if Robertsonian rearrangements have been
documented in some of these groups (Pokornd et al. 2010).
On the other hand, a high karyotypic variability has been
registered for chameleons (Rovatsos et al. 2017). A broader
study involving comparative mapping or genome sequen-
cing of representative species of these groups is necessary to
determine whether any cryptic inter- or intrachromosomal
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rearrangements occurred in the lineages with conserved
karyotypes. It is not yet clear why some squamate lineages
have more variable karyotypes than others, which is a more
important and general question.

Sex chromosome evolution

Hybridization of probes containing Z chromosome of V.
komodoensis onto metaphases of male and female indivi-
duals in other species revealed that the Z chromosome is
conserved among all the species tested, supporting strong
homology of sex chromosomes among the varanid clades
indicus, salvator, gouldii, tristis, and acanthurus (Suppl.
Material 1). Thus, the origin of the sex chromosomes in
monitor lizards can be dated back at least to 27-31 MYA,
which is the estimated age of the split between the indicus
clade and the group containing the other mentioned varanid
clades (Zheng and Wiens 2016; Lin and Wiens 2017). We
did not have any female of a species from the niloticus clade
available for a direct test for sex chromosome homology,
however, earlier detection of ZZ/ZW sex chromosomes in
species from this clade (Table 1) suggests that varanid sex
chromosomes can be even older than the basal split of this
group. The presence of a ZZ/ZW system in H. suspectum
(Johnson Pokornd et al. 2014) suggests that these sex
chromosomes might be ancestral for Anguimorpha. A test
of homology of varanid and helodermatid ZZ/ZW sex
chromosomes needs to be performed in future studies to
clarify this point.

The high conservation of sex chromosomes described
here in monitor lizards has also been reported for iguanas
(XY, Rovatsos et al. 2014b, 2014c; Altmanova et al. 2016,
2018), caenophidian snakes (ZW, Matsubara et al. 2006;
Vicoso et al. 2013; Rovatsos et al. 2015) and lacertid lizards
(ZW, Rovatsos et al. 2016). This stability is comparable to
viviparous mammals (XY, Graves 2006; Waters et al. 2007)
and birds (ZW, Shetty et al. 1999; Zhou et al. 2014).

The W chromosome in V. beccarii, V. macraei, V. pra-
sinus, V. mertensi, V. glauerti, and V. acanthurus analyzed
in this study was strongly heterochromatic as detected via
C-banding (Fig. 2d, g, i, n, q, s). No heterochromatic
microchromosome was detected in the female of V. salvator
(Fig. 21). A sex ratio consistent with temperature-dependent
sex determination was reported in this species by Hairston
and Burchfield (1992). However, our chromosome painting
results revealed ZZ/ZW sex chromosomes with extensive
differences in genetic content between Z and W in V. sal-
vator. Therefore, heterochromatinization may not be a
universal feature of differentiated sex chromosomes. The
lack of heterochromatin detectable by C-banding in V.
salvator can be attributed to extensive variability in non-
coding DNA in the W sex chromosomes of varanids.
Unpaired chromosomes (Y and W) of vertebrates often
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undergo heterochromatinization and accumulation of repe-
titive sequences during sex chromosome differentiation
(e.g., Acosta et al. 2009; Pokornd et al. 2011b, 2014;
Matsubara et al. 2016; Augstenova et al. 2018). Evidence
for a likely secondary elimination of a heterochromatic
block on differentiated sex chromosomes has also been
reported, for instance, in oplurid iguanas (Altmanov4 et al.
2016). The nested phylogenetic position of V. salvator
suggests that secondary loss of heterochromatin from W
chromosome might be plausible also for this species.

Until now, the dynamics of the genetic content of the W
chromosome among varanids has only been partially
investigated. Matsubara et al. (2014) performed a test
among V. gouldii, V. rosenbergii, and V. acanthurus by
hybridization of microsatellite motifs and the W chromo-
some probe obtained from V. acanthurus. Most sequences
were apparently not conserved between W chromosomes
because the chromosome W probe from V. acanthurus
showed only weak hybridization signals on the pericen-
tromeric region of the W chromosomes in V. rosenbergi and
V. gouldii females. FISH with microsatellite motifs also
revealed a different repetitive sequence composition
between the W chromosomes of the three species. Johnson
Pokornd et al. (2016) obtained similar results. These authors
did not find any accumulation of the microsatellites accu-
mulated in the W chromosome of V. acanthurus on the W
chromosome of V. komodoensis. However, in our case,
hybridization results of VKO11/12/W onto metaphases of
all female individuals revealed a strong conservation of the
W chromosomes among varanids. This discrepancy could
be explained by methodological differences. The part of the
W labeled by the probe derived from flow sorting can be
rich in euchromatic regions containing coding genes, which
are more conserved across species than repetitive sequences
such as microsatellites diverging rapidly during evolution
(Matsubara et al. 2006; Pokorna et al. 2011b; Rutkowska
et al. 2012; Altmanova et al. 2016). These dynamics would
explain size differences between W chromosomes among
varanids despite sex chromosome homology.

Triploidy in V. albigularis

The fully grown individual of V. albigularis was found to
have a chromosome number of 3n = 60. King and King
(1975) described the typical varanid chromosome number
of 2n =40 for this species (referred there as V. exanthe-
maticus albigularis). They also reported ZZ/ZW sex chro-
mosomes for this species. Based on the results of the
chromosome painting it seems that our individual possesses
a ZZ7 sex chromosome constitution. Although further
investigations are still needed to clarify the origin of tri-
ploidy in V. albigularis, we tentatively assume that it
emerged spontaneously in this individual. Spontaneous
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triploidy has been reported in sauropsids, including birds,
iguanas, and snakes (Tiersch and Figiel 1991; Lamborot
and Vasquez 1998 and citations therein; Stenberg and Saura
2013; Rovatsos et al. 2018). In amniotes it mostly leads to
early mortality (Bonaminio and Fechheimer 1993; Baumer
et al. 2000; Trukhina and Smirnov 2014). Triploidy is
mainly attributed to dispermic fertilization of an egg or
abnormal meiosis. However, in squamates it can be also the
result of mating between a female of a diploid obligatory
asexual hybrid and a male derived from one of the sexual
ancestors (Moritz et al. 1989; Neaves and Baumann 2011;
Trifonov et al. 2015; Ryskov et al. 2017). Facultative par-
thenogenetic births have been documented for several
monitor lizards, such as V. panoptes, V. komodoensis, V.
ornatus, V. glauerti, and V. rainerguentheri (Watts et al.
2006; Hennessy 2010; Wiechmann 2011, 2012; Horenberg
2013; Grabbe and Koch 2014). The triploidy status of our
individual V. albigularis albigularis could be the result of a
parthenogenetic diploid egg followed by fertilization. Sev-
eral parthenogenetic male individuals of V. komodoensis
have been karyotyped by Johnson Pokornd et al. (2016) and
all of them were diploids, however, the mother of these
males did not have access to males at the time of clutch
formation.

In conclusion, our study shows that genome organisation
in monitor lizards is generally well conserved. Inter-
chromosomal rearrangements were not observed, but we
uncovered intrachromosomal rearrangements in four pairs of
macrochromosomes during the evolution of the group. Our
ancestral state reconstruction suggests that intrachromosomal
rearrangements led to transitions from acrocentric to meta-
centric chromosomes and vice versa. We also documented the
first case of triploidy among varanids. Sex chromosomes are
clearly conserved across varanids during their long evolu-
tionary history. Although homologous, the W chromosomes
differ among varanid species in size, morphology, content of
DNA repeats, and heterochromatinization. Future studies
exploring and expanding our findings should investigate
karyotype evolution in varanids at all molecular genomic
levels. Sequencing and chromosome anchoring of V. komo-
doensis genome in the ongoing project will provide an
important base for further research particularly in varanids and
their anguimorphan outgroups where partial cytogenetic maps
or genomic data are already available (Srikulnath et al. 2013;
Gao et al. 2017).
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