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Abstract

Air pollution sensors are quickly proliferating for use in a wide variety of applications, with a low 

price point that supports use in high-density networks, citizen science, and individual consumer 

use. This emerging technology motivates the assessment under real-world conditions, including 

varying pollution levels and environmental conditions. A seven-month, systematic field evaluation 

of low-cost air pollution sensors was performed in Denver, Colorado, over 2015–2016; the 

location was chosen to evaluate the sensors in a high-altitude, cool, and dry climate. A suite of 

particulate matter (PM), ozone (O3), and nitrogen dioxide (NO2) sensors were deployed in 

triplicate and were collocated with federal equivalent method (FEM) monitors at an urban 

regulatory site. Sensors were evaluated for their data completeness, correlation with reference 
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monitors, and ability to reproduce trends in pollution data, such as daily concentration values and 

wind-direction patterns. Most sensors showed high data completeness when data loggers were 

functioning properly. The sensors displayed a range of correlations with reference instruments, 

from poor to very high (e.g., hourly-average PM Pearson correlations with reference 

measurements varied from 0.01 to 0.86). Some sensors showed a change in response to laboratory 

audits/testing from before the sampling campaign to afterwards, such as Aeroqual, where the O3 

response slope changed from about 1.2 to 0.6. Some PM sensors measured wind-direction and 

time-of-day trends similar to those measured by reference monitors, while others did not. This 

study showed different results for sensor performance than previous studies performed by the U.S. 

EPA and others, which could be due to different geographic location, meteorology, and aerosol 

properties. These results imply that continued field testing is necessary to understand emerging air 

sensing technology.

1 Introduction

Next-generation air monitoring (NGAM) is a quickly evolving and expanding field. Low-

cost air pollution sensors have improved the access for both citizens and researchers to 

obtain pollutant concentration data in more locations. Many new sensors are now sold and 

marketed to consumers and come with messaging on implications for health. In addition to 

improving the accessibility of measurement data, air pollution sensors have been used to 

supplement ambient air monitoring by providing measurements with high spatial density and 

high time resolution (Mead et al., 2013; Snyder et al., 2013; Kaufman et al., 2017). Low-cost 

air pollution sensors have the potential to be important enablers of smart cities and the 

Internet of things (IoT), especially in terms of forecasting and health messaging in 

megacities with significant variability in microenvironments (Mead et al., 2013; Kumar et 

al., 2015; Ramaswami et al, 2016). Sensors also enable new techniques for mobile 

monitoring (McKercher and Vanos, 2018; Woodall et al., 2017). However, without a proper 

understanding of sensor data quality and calibration, low-cost sensors have the potential to 

mislead interested community and research groups (Rai et al., 2017). Evaluating how well 

these sensors perform in both laboratory and field environments is critical for understanding 

their possible uses in research, citizen science, and consumer use, for individual exposure 

assessment.

Low-cost air pollution sensors, with purchase prices ranging from the low hundreds to the 

low thousands of dollars per pollutant, have been developed for both particulate and gas-

phase pollutants, including ozone (O3) and nitrogen dioxide (NO2). Particulate matter (PM) 

sensors typically measure particle counts using light scattering principles. By using light 

scattering to measure an ensemble of particles, sensors can be produced that are 

miniaturized, have a lower cost, and provide real-time data. However, this detection 

approach can result in bias and inaccuracy from measurement artifacts (Gao et al., 2015; 

Holstius et al., 2014). Some sensors, such as the OPC-N2 (AlphaSense), measure single 

particles and allocate them into size bins. This approach is subject to measurement artifacts 

due to humidity effects and potential particle coincidence, and it assumes particles are 

spherical and of a homogenous density (Mukherjee et al., 2017). Gas-phase sensors produce 

a signal through the reaction of the target gases with electrochemical or metal oxide sensors. 
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However, the reactive agents used in these types of sensors may degrade over time, and 

measurement artifacts may also exist, such as cross-interferences and impacts of temperature 

(Rai et al., 2017). Therefore, it is necessary to evaluate sensor performance in long-term, 

real-world study conditions (Lewis and Edwards, 2016; Williams et al., 2014).

The evaluation of low-cost air pollution sensors and their performance is continually 

evolving (McKercher et al., 2017). Many sensors are evaluated in laboratory settings by 

exposure to known concentrations of gases and PM, with PM often being evaluated by well-

defined aerosols, such as polystyrene latex, in controlled conditions (Wang et al., 2015; 

Lewis et al., 2016; Manikonda et al., 2016). In outdoor field settings, sensors are often 

evaluated to determine their performance in comparison with reference methods (Borrego et 

al., 2016; Jiao et al., 2017; Crilley et al., 2018; Mukherjee et al., 2017; Hagan et al., 2018). 

Correlations of low-cost sensors have been found to vary from study to study, spanning from 

negligible to high correlations. Recent studies have shown the correlation between sensors 

and reference measurements can be improved by the application of correction factors for 

environmental conditions such as relative humidity (Crilley et al., 2018) or multivariate 

models and machine learning (Cross et al., 2017; Zimmerman et al, 2018; Hagan et al., 

2018).

There are relatively few efforts that exist to systematically examine air pollution sensor 

technology performance that test a variety of replicate sensor types against reference 

monitors in a real-world environment. In the United States, the U.S. EPA and the South 

Coast Air Quality Management District (SCAQMD) have developed field- and laboratory-

testing programs for both gas and particulate matter sensors. These efforts represent specific 

geographic locations and concentration ranges (U.S. EPA, 2017; SCAQMD, 2017). For 

example, EPA’s Community Air Sensor Network (CAIRSENSE) project tested a variety of 

gas-phase and particulate-matter sensors in Atlanta, Georgia, under conditions that were 

high temperature, high humidity, and fairly low ambient concentrations (e.g., hourly PM2.5 

ranging 0 to 40 μg m−3) (Jiao et al., 2016). The SCAQMD AQ-SPEC program similarly 

conducts field testing of sensor technology in Diamond Bar, California, at a near-road 

location approximately two months. Evaluation of identical sensors by the EPA and 

SCAQMD has revealed that the sensor performance may vary by geographical region. For 

example, Jiao et al. (2016) found AirBeam sensor correlations to be moderate (r2 ≈ 0.43), 

while SCAQMD (2017) reported much stronger correlations (r2 ≈ 0.74). This might be a 

result of both different concentration ranges as well as the optical properties of the aerosol 

being measured.

The Community Air Sensor Network (CAIRSENSE) project was a multi-year, multi-

location project that focused on evaluating performance characteristics and limitations of 

low-cost sensors. A prior CAIRSENSE study in Atlanta, Georgia, was conducted in 2014 

and early 2015 (Jiao et al., 2016). Atlanta was chosen to test the sensors’ performance in the 

face of higher temperatures and humidity. For the second part of the CAIRSENSE study, 

Denver, Colorado, was chosen to test the sensors’ performance under conditions of high 

altitude, dryness, and lower temperature. Beyond assessing sensor performance through 

correlation with a reference monitor, this study also investigates the degree to which data 
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from sensors are able to produce similar temporal, wind-direction, and transient-event trends 

in comparison to high-time-resolution reference monitors.

2 Methods

Sensors for this study were selected based on cost, commercial availability, market 

prevalence, capability, and applicability to EPA research objectives. Table 1 lists the sensors 

chosen for this study, pollutants measured by each sensor, and the measurement principle 

used by each sensor. Cost information for these sensors can be found on the EPA’s Air 

Sensor Toolbox (U.S. EPA, 2017). Two different Dylos units were used for this study. Unit 1 

was a Dylos DC1100, while units 2 and 3 were Dylos DC1100 Pro models, where the Pro 

models are advertised to have increased sensitivity for smaller particles. The Shinyei, Dylos, 

AirBeam, Aeroqual, and CairClip sensors were used in both the Denver and Atlanta studies 

(Jiao et al., 2016). Additionally, several of these sensors have been evaluated in laboratory or 

short-term ambient settings (e.g., Air Sensor Toolbox reference; Sousan et al., 2016; 

SCAQMD 2017).

Air pollution sensors were acquired and deployed in triplicate. Before deployment, 

laboratory sensor response audits were performed for all of the available sensors. PM 

sensors were zero-checked in a clean room environment, all reporting < 2 μg m−3 values 

under those conditions, except for the AirAssure. The software for the AirAssure performs 

its own zeroing; therefore, they were operated “as is”. A pre-deployment sensor response 

audit was not performed for the TZOA as it was received shortly before deployment. Sensor 

output was not adjusted based on the calibration audits in order to reflect their “out of the 

box” performance. Sensor responses were also audited by either recording their responses to 

known concentrations (Aeroqual and CairClip sensors) or in a clean air environment (PM 

sensors) after the end of the measurement period, to evaluate possible sensor drift. 

Laboratory audit results are presented in the Supplement.

Sensors were deployed at the downtown Denver Continuous Ambient Monitoring Program 

(CAMP) regulatory monitoring site (latitude: 39.751184; longitude: −104.987625) from 

September 2015 to March 2016. The CAMP site was operated by the state of Colorado for 

the duration of the study. Sensors were placed in a ventilated, multi-level shelter designed to 

allow ambient air circulation and prevent intrusion from precipitation, as shown in Fig. 1. A 

full description of the shelter has been previously reported (Jiao et al., 2016). The sensors 

were connected to data loggers stored in weatherproof enclosures attached to the bottom of 

the shelter. Most of the sensors were connected to Arduino (single-board) microprocessors 

with either Ethernet (IEEE 802.3 standard) or Recommended Standard 232 (RS-232) serial 

communication cables. The OPC-N2 and Speck sensor data were logged using laptops, and 

the TZOA data were stored internally on secure digital (SD) cards. To comply with EPA data 

security requirements, the cloud based storage capability of the AirAs-sure sensors was 

disabled, and these units reported data locally via the Arduino microprocessors with onboard 

memory. The CairClip sensor measures the combined signal from NO2 and O3. Therefore, 

both NO2 and O3 measurements from the CairClip were determined by subtracting the 

opposite (col-located) reference measurement. The Dylos units also measure multiple 

particle size fractions. In this study, the “small” particle size fraction, as described by the 
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manufacturer, was used for PM2.5 comparisons. TZOA sensors did not have a real-time 

clock and only measured time as the elapsed number of milliseconds since the device was 

powered on. Therefore, field operators were required to accurately record start and end times 

as a means of establishing the sensor response time series.

A total of four Arduino microprocessors and three laptops were used simultaneously for data 

logging. Between the data loggers, laptops and onboard data storage, there were many 

different sensor data output formats. Separate data scripts were developed to process each 

different data format into similarly formatted files for each air pollution sensor type. Once 

data collections were initiated in September 2015, the sensors were operated with little or no 

intervention through the entirety of the study. Noted interventions included restarting data 

systems when they “locked up” or removing snow from the shelves housing the sensors 

during a major winter snowstorm.

Federal equivalent method (FEM) measurements at the Denver monitoring site were 

collected using a Teledyne 400E O3 monitor, Teledyne 200EU NO2 analyzer, and a GRIMM 

EDM 180 dust monitor, which measured PM2.5 and PM10 mass at 1 min intervals using 

optical detection. All sensors and monitors collected pollutant data at 1 min intervals or less. 

One-minute values were used to generate concentrations at multiple time intervals, with 

primarily 1 h averages used for data analysis. All averaging and other data processing was 

performed using the following software: RStudio version 0.98.1103, R version 3.2.2, and the 

ggplot2, scales, plyr, lattice, corrplot, and “data.table” (extension of “data.frame”) packages.

Sensor data were recovered from the connected laptops and SD cards connected to the data 

loggers. Most sensors reported data in 1 min intervals. The AlphaSense OPC-N2 units 

recorded concentrations every 10 s. These measurements were used to calculate 1 min 

averages. The TZOA sensors reported data based on time elapsed from turning on each unit. 

The start times for each unit and total elapsed time for each measurement were combined to 

generate 5 s time stamps for the TZOA measurements. These values were then used to 

calculate 1 min averages.

In order to best replicate actual use by non-experts and avoid biasing the results towards a 

positive direction, minimal screening of data was performed. Quality assurance screening 

consisted primarily of removing data where there was a clear malfunction of the sensor, such 

as non-numeric data output, or when a sensor (e.g., CairClip unit 1) became “stuck”, 

reporting a repeated value (value = 255) for long time spans. These types of errors had 

previously been identified for the output of this sensor type. The Aeroqual units had 

significant numbers of measurements that, for some reason, were reported as zero. These 

were possibly due to the inability of the sensor to detect trace concentrations and were 

therefore not screened out of the data.

Timestamps for all sensors except the TZOA were recorded in Mountain Standard Time. As 

previously mentioned, TZOA timestamps were generated by combining the initial recording 

time and the elapsed time reported by the sensors. One-minute measurements and averages 

were used to calculate 5 min and hourly averages. Hourly averages were further used to 

calculate 12 h and daily averages. FEM measurements from the state of Colorado 
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instruments were also recorded at 1 min intervals and averaged in the same manner as the 

sensor data. Data from all sensors and reference instruments were stored in separate data 

files and combined based on timestamps for analyses using R scripts.

Sensors were also investigated for how well they replicated different trends in the regulatory 

monitor measurement data. The trends analyzed included average sensor responses based on 

time of day and wind direction. In order to evaluate these trends, different normalized sensor 

responses were used. The normalized average sensor response for the diel (daily, 24 h) 

patterns was calculated as the average concentration for a given hour divided by the average 

concentration for the hour beginning at 12:00. The normalized average sensor response for 

wind direction data was defined as the mean concentration for each 10°wind “bin”, divided 

by the average concentration of the 170 to 180°bin. The sensor response times were also 

analyzed by calculating the average 1 min relative sensor response, as defined by the 

distribution of the 1 min concentration differences divided by the average sensor response.

3 Results and discussion

Table 2 shows a summary of data completeness from the air pollution sensors, including the 

total percentage of minutes measured, percentage of measurements missed by not logging 

data, and the percentage of completely missing data. The majority of missing data was due 

to events where the sensor and data loggers were inoperative. The most significant of these 

events was due to snow intrusion into the monitoring platform in December 2015, which 

caused units to shut down. Most sensors had a very high data capture rate throughout the 

study when the units were on (and operational). The CairClip units had significant amounts 

of missing data, likely due to data transmission errors from the universal asynchronous 

receiver-transmitter (UART) serial communication system. In the previous Atlanta study as 

well as in a Newark-based citizen science study (Kaufman et al., 2017), CairClip units with 

identical sensors but different universal serial bus (USB) data connections were used and did 

not have significant amounts of missing data.

Measurements from air pollution sensors and regulatory monitors were time-averaged at 

multiple intervals for comparison. The time intervals included 5 min, hourly, 12 h, and daily 

averages. For each set of time averaging, regressions were calculated to evaluate sensor 

correlation and bias when compared to regulatory measurements. Additionally, inter-

comparisons were made between sensors of the same pollutant type (e.g., correlations 

between PM sensors). Table 3 displays a summary of regression statistics for sensors when 

compared to regulatory measurements as well as precision calculations for 1 h time 

averages. The precision was calculated as the root mean square (rms) of the hourly 

coefficients of variation. In general, correlations were greatest at the 1 h time average. 

Correlations in general improved slightly with increasing length of the averaging period up 

to hourly averages. Reduced correlations for most sensors at the 12 h and daily averages may 

be a result of a lower number of data points. In contrast to most other measurements, sensors 

that reported data for coarse PM (Dylos) or PM10 (OPC-N2) showed improved correlations 

with increasing averaging time for those measurements. The correlations for all the time 

averaging periods can be found in the Supplement. Sensors that measured particle count had 

better precision than those measuring particle mass concentrations. Figure 2 shows a 
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Pearson correlation (R) plot for 1 h average reference (SoC) and PM sensor measurements. 

The PM units show high correlation among sensors of the same model, except for when one 

sensor in a group had significant issues. Of the PM2.5 sensors, the AirAssure, AirBeam, and 

Dylos (R = 0.73 to 0.86) units exhibited the highest correlation with reference 

measurements. Dylos unit 1 had the highest linearity; however, it had the lowest particle 

count response, both of which are likely explained by not detecting the smallest particles as 

effectively as other units. CairClip unit 1 rarely properly transmitted data throughout the 

study, leading to its low correlations. CairClip units 2 and 3 had more sporadic data 

transmission issues. All CairClip units recovered data properly once returned to the lab after 

the field campaign where their internal data storage was used. The response from Shinyei 

unit 3 changed in mid-October. The correlation between the unit and the reference monitor 

was initially 0.01, then increased to 0.84 when comparing only the data starting October 16 

and later.

Several sensor models were used in both the Atlanta and Denver CAIRSENSE evaluation 

campaigns. Both studies deployed the AirBeam, Dylos, and Shinyei PM sensors. In all cases 

except for Shinyei unit 3, these sensors showed greater linearity in Denver than in Atlanta, 

when comparing 12 h averages. When only considering data after October 16, Shinyei unit 3 

also had higher correlation in Denver than in Atlanta. This may be due to less noise caused 

by lower humidity in Denver than in Atlanta. Aeroqual and CairClip air pollution sensors 

were also deployed in both Atlanta and Denver. O3 measured by the Aeroqual units showed 

similar correlations in both locations (R2 = 0.82 to 0.94 in Atlanta, R2 = 0.85 to 0.92 in 

Denver). O3 measured by CairClip units 2 and 3 in Denver showed poorer correlations than 

the CairClip units used in Atlanta (R2 = 0.00 to 0.21 in Denver versus R2 = 0.68 to 0.88 in 

Atlanta). However, NO2 measured by CairClip units 2 and 3 in Denver was more highly 

correlated than in Atlanta (R2 = 0.71 to 0.76 in Denver versus 0.57 in Atlanta).

While Denver is not necessarily known for high humidity, humidity artifacts were observed 

in some sensors. Figure 3a shows the PM2.5 concentrations measured by one of the OPC-N2 

against relative humidity. At relative humidity around 90 %, the PM concentration spikes 

significantly, suggesting that humidity is interfering with the sensor response measurement. 

This behavior is similar to that observed by Sousan et al. (2016). Some other instruments 

also had different responses based on humidity. Figure 3b shows hourly particle counts 

measured by an AirBeam sensor against PM2.5 concentration measured by the reference 

instrument, stratified by relative humidity. There appear to be two separate relations between 

reference measured concentrations and sensor measured particle counts, with a greater 

particle count response occurring more at higher humidity. This relationship was observed in 

each of the AirBeam sensors. An example of humidity relationships from each sensor type 

can be found in the Supplement.

In addition to understanding the precision of air pollution sensors and how well they 

correlate with reference measurements, it is also important to understand how well a sensor 

can capture trends and distributions of pollutant concentrations. There are many ways to 

examine these trends and distributions. Figure 4 shows the diel patterns of PM2.5 (a) and O3 

(b) reference and sensor measurements respectively. The results, for each sensor, represent 

the measurements of the best performing unit for each sensor type/model, as determined by 
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R2 values. The various PM air pollution sensors have a wide range of comparisons to the 

reference monitor. Two sensors (TZOA and AirBeam) show similar patterns throughout the 

day, while some other sensors do not reflect the reference diel pattern at all (e.g., OPC, 

Speck). It is interesting to note that both the TZOA and AirBeam measure particle count; 

however, there is no basis to say why these sensors performed better than those measuring 

mass concentrations. The Aeroqual sensor diel pattern was similar to that of the reference O3 

monitor. The nature of the calculation of O3 and NO2 by subtraction, and missing data from 

the CairClip sensors, prevented this analysis from providing meaningful results.

Air quality measurements are also known to be dependent on wind direction, and it is 

important to know whether these differences were reflected in the sensor measurements. 

Figure 5 shows the normalized average sensor response PM2.5(a) and O3 (b) response of the 

sensors and the reference monitors respectively. The reference monitor response is 

represented by the black line. Both the highest concentrations and greatest variation from the 

reference monitor concentrations occurred when winds were from the north, where there are 

multiple large roadways and a railyard. However, there was no other evidence to suggest that 

these sources contributed to differences in the measurement trends. The sensors generally 

compared more favorably with the reference monitors when examining the wind direction 

dependence of concentration. This is most apparent in the OPC-N2 sensor, where the sensor 

trends track the trends measured by the reference monitor. This increases the confidence that 

sensors may be useful in studies that pair wind direction with concentration to determine 

potential bearings or locations of pollution sources to supplement source apportionment and 

receptor modeling. It also raises questions as to why an air pollution sensor would be able to 

reproduce wind direction trends but not necessarily reproduce daily concentration 

measurement patterns. We undertook exploration of this perplexing result, but we were not 

able to determine a clearly identifiable cause. While relative humidity and temperature do 

have time-of-day variation that is not reflected in wind direction, we were unable to use 

these parameters to explain the differences between time-of-day and wind-direction trends.

The high-time-resolution data collected for this study allowed for the examination of air 

pollution sensor response trends compared to that of regulatory air pollution monitors. 

Figure 6 shows a cumulative distribution function (CDF) for the relative change in sensor 

and regulatory monitor response between 1 min measurements for PM2.5 (a) and O3 (b) 

sensor and reference measurements respectively. The relative response was calculated as the 

absolute value of the difference between consecutive 1 min measurements divided by the 

mean measurement over the entire study period for each sensor/monitor. If the reference 

monitor were considered a perfect measurement, sensor curves to the left and above the 

reference monitor line would have smaller relative changes than the reference monitor, 

indicating a slower response to changes in concentration, while curves below and to the right 

of the monitor line would signify larger measurement-to-measurement changes than the 

reference monitor, indicating potential high levels of measurement noise. Most PM monitors 

exhibited a slower response to changes in concentration than the reference monitor. The 

OPC-N2 and AirBeam sensors were the only ones with curves to the right of the reference 

monitor, suggesting that they may have more noise in their measurements. The Aeroqual 

sensor showed more O3 measurement noise when compared to the reference measurement.
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4 Conclusions

Nine different air pollution sensor devices were deployed in triplicate with collocated air 

pollution reference monitors in Denver, Colorado, over an extended operational timeline of 

longer than six months. The sensors showed a wide range of correlations with reference 

measurements, but they tended to have high correlation with sensors of the same model. PM 

sensors deployed in both Denver and Atlanta had higher correlations with reference 

monitors in Denver than in Atlanta. This is likely due to less humidity-related response in 

Denver. Aeroqual O3 measurements in Denver showed similar linearity to those measured in 

Atlanta. CairClip O3 correlations were lower in Denver than in Atlanta, but NO2 correlations 

were higher. Sensors that have also been evaluated by the South Coast Air Quality 

Management District (SCAQMD) tended to show similar results in terms of correlation 

(SCAQMD, 2017). However, in all cases, sensors’ performance in this long-term field 

deployment was lower than that of laboratory-based comparisons performed in this study 

and others (U.S. EPA, 2017). It is not surprising that the results of this study for PM sensors 

varied from other studies, as the responses to optical measurement techniques used by these 

sensors are likely influenced by aerosol composition. This study demonstrates the need for 

long-term, real-world evaluation studies for current and future air pollution sensors, which 

should be performed in locations with different air pollutant concentration ranges and 

aerosol characteristics.

Several air pollution sensors were able to capture variations in important trends, such as diel 

patterns and wind direction dependence on concentration. However, the OPC-N2 units 

showed similar results to reference monitor measurement data when analyzing the wind 

direction trends but not when analyzing “time-of-day” trends. These promising results show 

that sensors have the possibility for supplementing measurement research capabilities when 

interested in air pollution trends such as those dependent on wind direction. Analyses of 

wind-direction-based air pollutant trends could be useful for possible identification of source 

locations or regions, especially with the use of a sensor-based network.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sensor deployment shelter.
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Figure 2. 
Correlation (r × 100) plot for sensors measuring fine PM. Ellipses represent the overall 

scatter of the data (1 h averaged measurements).
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Figure 3. 
OPC-N2 PM2.5 and relative humidity (a) and hourly average FEM PM2.5 concentration and 

AirBeam particle count stratified by relative humidity (b).
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Figure 4. 
Diel patterns for (a) PM2.5 and (b) O3 sensor and reference measurements.
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Figure 5. 
Wind direction patterns for (a) PM2.5 and (b) O3 sensor and reference measurements.

Feinberg et al. Page 16

Atmos Meas Tech. Author manuscript; available in PMC 2019 October 08.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 6. 
Cumulative distribution functions for 1 min response differences for (a) PM2.5 and (b) O3 

sensor and reference measurements.
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Table 1.

Sensors used during the CAIRSENSE – Denver study.

Sensor Pollutant(s) measured Principle of operation

Aeroqual SM-50 O3 Electrochemical sensor

TSI AirAssure PM Light scattering

AirCasting AirBeam PM Light scattering

Cairpol CairClip NO2 + O3 Electrochemical sensor

Dylos DC1100/DC1100 Pro PM Laser particle counter

AlphaSense OPC-N2 PM Laser particle counter

Shinyei PMS-SYS-1 PM Light scattering

AirViz Speck PM Light scattering

TZOA PM Research Sensor PM Laser particle counter
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