Skip to main content
. 2019 Oct 7;18:58. doi: 10.1186/s12937-019-0486-7

Table 1.

Participants’ characteristics according to the tertiles of seaweed intakes at baseline (n = 500)

Variables Tertiles of seaweed intakes p valuea
Tertile 1 Tertile 2 Tertile 3
Seaweed intakes, g/1000 kcal/day 1.6 (0.9) 5.0 (1.4) 13.1 (6.3)
No. of participants 167 167 166
Sex (women), % 20.4 18.0 29.5 0.046
Age, years 44.0 (10.0) 45.4 (9.6) 47.6 (10.6) 0.001
BMI, kg/m2 23.2 (3.3) 23.2 (3.9) 23.0 (3.3) 0.530
Education (≥college), % 21.6 33.5 31.9 0.037
Occupation (desk work), % 46.1 43.7 48.8 0.624
Living status (alone), % 15.0 9.0 7.2 0.021
Smoking status
 Current, % 46.1 46.1 38.6
 Former, % 15.6 13.2 13.9
 Never, % 38.3 40.7 47.6 0.098
Alcohol intake frequency
 Every day, % 31.7 25.7 27.1
 Sometimes, % 48.5 56.3 45.8
 Never, % 19.8 18.0 27.1 0.120
Physical activity
 0, MET hours/week 24.0 22.2 24.1
 0.1–22.9, MET hours/week 38.9 38.3 40.4
 ≥ 23, MET hours/week 37.1 39.5 35.5 0.838
Skipping breakfast, % 29.3 20.4 13.9 0.001
Metabolic syndrome, % 18.6 14.4 18.7 0.980
Protein intakes, g/1000 kcal/day 32.8 34.1 36.4 < 0.001
Green leafy vegetables intakes, g/1000 kcal/day 15.2 (16.4) 16.5 (13.0) 24.4 (19.5) < 0.001
Fish intakes, g/1000 kcal/day 15.2 (11.8) 16.2 (9.4) 19.9 (12.7) < 0.001
SDS scores 38.9 (6.6) 39.0 (6.8) 37.5 (7.5) 0.077

Data are presented as mean (standard deviation), or percentage

BMI Body mass index, MET Metabolic equivalent, SDS Self-rating depression scale

aDifferences were evaluated using analysis of covariance and chi-squared test for linear trend, as appropriate