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Abstract. Autophagy has an important role in the pathogen-
esis of plasma cell development and multiple myeloma (MM); 
however, the prognostic role of autophagy‑related genes (ARGs) 
in MM remains undefined. In the present study, the expression 
profiles of 234 ARGs were obtained from a Gene Expression 
Omnibus dataset (accession GSE24080), which contains 559 
samples of patients with MM analyzed with 54,675 probes. 
Univariate Cox regression analysis identified 55 ARGs that 
were significantly associated with event‑free survival of 
MM. Furthermore, a risk score with 16 survival‑associated 
ARGs was developed using multivariate Cox regression 
analysis, including ATIC, BNIP3L, CALCOCO2, DNAJB1, 
DNAJB9, EIF4EBP1, EVA1A, FKBP1B, FOXO1, FOXO3, 
GABARAP, HIF1A, NCKAP1, PRKAR1A and SUPT20H, 
was constructed. Using this prognostic signature, patients with 
MM could be separated into high‑ and low‑risk groups with 
distinct clinical outcomes. The area under the curve values for 
the receiver operating characteristic curves were 0.740, 0.741 
and 0.712 for 3, 5 and 10 years prognosis predictions, respec-
tively. Notably, the prognostic role of this risk score could be 
validated with another four independent cohorts (accessions: 
GSE57317, GSE4581, GSE4452 and GSE4204). In conclusion, 
ARGs may serve vital roles in the progression of MM, and 
the ARGs‑based prognostic model may provide novel ideas for 
clinical applications in MM.

Introduction

Autophagy is the process of transporting damaged, denatured or 
aging proteins, and organelles into lysosomes for digestion and 
degradation. Under normal physiological conditions, autophagy 
helps cells to maintain a self‑stable state; however, during stress, 

autophagy prevents accumulation of toxic or carcinogenic 
damaged proteins and organelles, and inhibits cell carcinogen-
esis (1‑4). Once a tumor is formed, autophagy can be harmful 
as cells provide additional nutrients and promote tumor growth. 
Therefore, the role of autophagy in the development of tumors 
is two‑sided (5‑9). Since autophagy can regulate cancer forma-
tion, proliferation, metastasis and energy metabolism of tumors, 
antitumor drugs based on regulation of autophagy activity have 
been used in clinical treatment (10‑12). Additionally, inhibition 
of tumors by improving autophagy activity has become a novel 
concept for cancer treatment (10‑14).

Depending on the way a lysosome accepts the substance 
to be degraded, autophagy can be divided into macroau-
tophagy, microautophagy and chaperone‑mediated autophagy. 
Macroautophagy, the usual form of autophagy, is the 
most common type and is characterized by the formation 
of cup‑shaped bilayer membrane structures surrounding the 
cytoplasmic component, followed by the formation of autopha-
gosomes (15‑18). The outer membrane of autophagosomes and 
the enzymatic fusion form a monolayer membrane structure 
of autophagosomes, while the inner membrane and contents 
of autophagosomes are digested (15‑18). The aforementioned 
process is mediated by autophagy‑related genes (ARGs). 
Autophagocytosis is a process in which cells use lysosomes 
to degrade damaged organelles and macromolecules under 
regulation of ARGs (19‑26). Previous studies have identified 
234 ARGs (27). These ARGs have been identified as direct or 
indirect participants in the process of autophagy; thus, analysis 
of a list of ARGs can provide a comprehensive overview of the 
alterations of autophagy in multiple myeloma (MM). Several 
studies have demonstrated that these ARGs have significant 
clinical implications for various types of cancer, including 
glioma, liver cancer and thyroid cancer (23,24,28).

Autophagy has an important role in the pathogenesis of 
plasma cell development and MM, the incidence rate of which is 
estimated to be 2‑3/100,000, and which mostly affects patients 
>40 years old (29‑31). Generally, autophagy is considered to 
be involved in pro‑survival mechanisms of MM cells and to 
interact with the ubiquitin‑proteasome system to maintain 
homeostasis of MM cells via degraded and misfolded proteins 
for energy recovery (32‑36). Therefore, inhibiting autophagy 
may effectively induce MM cell death and can act synergis-
tically using proteasome inhibitors. However, exaggerated 
activation of autophagy may result in excessive degradation 
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of organelles, which can induce autophagic cell death. Thus, 
activation of autophagic cell death may represent a promising 
approach for treatment of MM (32‑36). Recent studies have 
demonstrated that autophagy mediates drug resistance in MM 
cells and leads to development of clinical complications for 
MM, while inhibition of autophagy may reverse the response 
to drugs (37,38). However, the clinical role, particularly the 
prognostic role of ARGs in MM, has yet to be determined.

In the present study, the expression profiles of ARGs and 
prognosis data of MM were integrated, and used to develop 
a risk score to predict the clinical outcome of patients with 
MM. Previous studies on the role of autophagy in MM tended 
to focus on a single gene, on the contrary, the present study 
proposed a novel predictor by integrating several effective 
indexes, which could provide more effective information 
concerning autophagy and offer more favorable performance 
in survival prediction of patients with MM. The present study 
evaluated the prognostic value of ARGs in MM clinical 
samples by data mining and bioinformatics analysis of gene 
expression profiles. Additionally, a risk score was constructed 
using the prognosis‑associated ARGs, which was expected to 
provide novel ideas for clinical applications in MM.

Materials and methods

Dataset and data processing. Microarray expression profiles 
were obtained from the Gene Expression Omnibus (GEO) 
database (ncbi.nlm.nih.gov/geo/) using the accession number 
GSE24080, which contained 559 samples of patients with 
MM (39). GSE24080 belongs to the MAQC‑II Project: Multiple 
myeloma (MM) dataset. All patients had complete data for 
event‑free survival (EFS), which included the recurrence of 
MM or the onset of certain symptoms associated with MM. 
Additionally, the platform was [HG‑U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array (GPL570), which contains 
54,675 probes (Affymetrix; Thermo Fisher Scientific, Inc.). To 
generate the gene expression profile, the expression matrix and 
microarray platform annotation file were downloaded. When 
more than one probe detected the same gene expression value, 
the average value was considered as the gene expression. 

For further analysis, a total of 234 human genes and 
proteins involved in autophagy were acquired from the human 
autophagy database (HADb; autophagy.lu/). HADb is the first 
human autophagy‑dedicated database, and is a public reposi-
tory that contains annotation information associated with the 
up‑to‑date human genes the have been reported to be involved 
in autophagy. By October 2018, there were 234 ARGs included 
in the dataset (27). 

Survival analysis and functional characteristics. A total of 
234 ARGs were selected and their prognostic values were 
assessed. ARGs that were significantly associated with the 
EFS of MM were identified using univariate Cox analysis. 
Kaplan‑Meier plots were used to further analyze the potential 
of ARGs as prognostic factors in patients. In order to deter-
mine the best cut‑off value for grouping the patients to observe 
significant difference in outcome, all gene expression values 
from the 20 to 80th percentiles were considered. The cut‑off 
with the lowest log‑rank P‑value was selected to group the 
patients. Survival analysis was conducted using the ‘survival’ 

package of R software (version 3.5.1; https://CRAN.R‑project.
org/package=survival). P<0.05 was considered to indicate a 
statistically significant difference (40). To reveal molecular 
functional characteristics, in addition to the autophagy of 
these prognostic ARGs, functional enrichment analysis was 
conducted for the Gene Ontology (GO; http://geneontology.
org/) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https://www.kegg.jp/) databases using the R package 
‘clusterProfiler’ (version 3.12.0) (41,42). The protein‑protein 
interaction (PPI) network was generated to display the asso-
ciations between the prognosis‑associated ARGs, by using the 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (https://string‑db.org/; version 10.0).

Risk score construction. To develop a risk score using indepen-
dent factors with ARGs, least absolute shrinkage and selection 
operator (LASSO) multivariate Cox regression analysis was 
performed. Subsequently, for each patient, the risk score was 
derived by multiplying the expression level of prognosis‑asso-
ciated ARGs and its corresponding coefficient as follows: Risk 
score=Σn

iARGi * βi; in detail, LASSO Cox analysis selected 
the eligible ARGs for the risk score based on the expression 
levels of each sample and generated the corresponding coef-
ficients for each of them. Accordingly, a risk score formula 
consisting of 16 ARGs weighted by the coefficients from 
LASSO penalized regression was established, where ‘β’ is 
the coefficient, ‘i’ refers to each ARG and ‘n’ is the number 
of the prognostic ARGs included in the calculation. The risk 
score for each patient was calculated, and all patients were 
divided into high‑ or low‑risk groups based on the median 
level of the risk score. The performance of the risk score was 
assessed using the ‘survival receiver‑operator characteristic 
(ROC)’ package for R software (https://CRAN.R‑project.
org/package=survivalROC; version 1.0.3), which provides 
an effective approach for evaluating time‑dependent ROC 
using censored data. To quantitatively evaluate the prognostic 
value, the area under the curve (AUC) of the ROC curves was 
calculated (24,43‑48).

Gene set enrichment analysis. In order to explore the path-
ways that are affected in the high‑ or low‑risk group, gene set 
enrichment analysis (GSEA) (http://software.broadinstitute.
org/gsea/index.jsp; version 3.0) was performed (49‑52). Using 
GSEA, the present study tested whether the activated/repressed 
gene signatures were enriched for high‑risk vs. low‑risk cases. 
The pre‑defined hallmarks were calculated using a normal-
ized enrichment score (NES) and false discovery rate (FDR). 
Pathways with NES>1 and FDR<0.05 were considered to be 
significant. 

Validation of the autophagy‑associated risk score in other inde‑
pendent cohorts. MM‑related microarray and RNA‑sequencing 
datasets were screened in the GEO (https://www.ncbi.nlm.nih.
gov/geo/), ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) 
and SRA databases (https://www.ncbi.nlm.nih.gov/sra), and 
the search strategy was as follows: ‘Myeloma AND Homo 
sapiens’. Subsequently, prognosis‑associated datasets were 
selected for further analysis. Four independent cohorts met the 
inclusion criteria, including GSE57317, GSE4581, GSE4452 
and GSE4204. The expression data of the aforementioned 
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16 genes [5‑aminoimidazole‑4‑carboxamide ribonucleotide 
formyltransferase/IMP cyclohydrolase (ATIC), BCL2 inter-
acting protein 3 like (BNIP3L), calcium binding and coiled‑coil 
domain 2 (CALCOCO2), DnaJ heat shock protein family 
(Hsp 40) member B1 (DNAJB1), DnaJ heat shock protein 
family (Hsp 40) member B9 (DNAJB9), eukaryotic transla-
tion initiation factor 4E binding protein 1 (EIF4EBP1), eva‑1 
homolog A (EVA1A), FKBP prolyl isomerase 1B (FKBP1B), 
forkhead box O1 (FOXO1), forkhead box O3 (FOXO3), 
GABA type A receptor‑associated protein (GABARAP), 
hypoxia‑inducible factor 1 subunit α (HIF1A), NCK associ-
ated protein 1 (NCKAP1), protein kinase cAMP‑dependent 
type I regulatory subunit α (PRKAR1A), SPT20 homolog 
SAGA complex component (SUPT20H) and transmembrane 
9 superfamily member 1 (TM9SF1)] were extracted from 
these selected datasets. The risk score was calculated and 
one‑way Cox regression analysis was performed using SPSS 
version 19.0 (IBM Corp.) and individual hazard ratios (HRs) 
were calculated. The HR and corresponding 95% confidence 
interval (CI) estimates were calculated and pooled to deter-
mine the association of risk score with clinical outcome. The 
random‑effects model was conducted. Finally, a meta‑analysis 
was carried out to impute the summarized HR combining all 
five datasets.

Results

Prognostic autophagy‑specific gene screening. Univariate Cox 
regression analysis using autophagy‑specific gene expression 
values for MM samples identified 55 ARGs that were signifi-
cantly associated with EFS of MM (Table I). The top 20 ARGs 
with significant association with survival are displayed in Fig. 1.

Molecular characteristics of ARGs in MM. The asso-
ciation of these prognostic ARGs with the GO terms of 
the biological process (BP), cellular component (CC) and 
molecular function (MF) categories were analyzed. The top 
three enriched BP terms were ‘process utilizing autophagic 
mechanism’, ‘autophagy’ and ‘response to extracellular stim-
ulus’ (Fig. 2A). For CC, the tops three terms were ‘vacuolar 
membrane’, ‘autophagosome’ and ‘late endosome’ (Fig. 2B). 
The top three enriched MF terms were ‘ubiquitin‑like 
protein ligase binding’, ‘ubiquitin protein ligase binding’ and 
‘protein heterodimerization activity’ (Fig. 2C). Accordingly, 
genes involved in KEGG pathways were enriched in 
autophagy‑related pathways, including ‘autophagy‑animal’, 
‘mitophagy‑animal’ and ‘PI3K‑Akt signaling pathway’ 
(Fig. 2D; Table II). The PPI network suggested that these 
genes have important interactions with each other. GAPDH, 
MAPK1, BCL2L1, ATG5 and PARP1 were at the center of 
the PPI network, which suggested that these genes had a 
broader connection to the other genes (Fig. 3).

Risk score identification. I order to construct novel risk assess-
ment models for the prognosis of patients with MM, prognostic 
signatures were generated using multivariate Cox regression 
analysis. Finally, to develop the prognostic signature, 16 
prognosis‑associated ARGs were included (Figs. 4 and 5). 
Kaplan‑Meier survival plots demonstrated that all 16 genes 
were significantly associated with the EFS of patients with 

MM. Furthermore, the risk score was calculated for each 
patient by multiplying the regression coefficient and expres-
sion value for each gene. Risk score=ATIC x 0.3374 + BNIP3L 
x (‑0.2126) + CALCOCO2 x (‑0.2682) + DNAJB1 x (‑0.3848) 
+ DNAJB9 x (‑0.3443) + EIF4EBP1 x 0.1397 + EVA1A x 
0.1794 + FKBP1B x (‑0.1205) + FOXO1 x (‑0.3114) + FOXO3 
x (‑0.2853) + GABARAP x (‑0.3557) + HIF1A x 0.0876 + 
NCKAP1 x (‑0.1487) + PRKAR1A x 0.7314 + SUPT20H 
x (‑0.3261) + TM9SF1 x (‑0.1992). Using these prognostic 
signatures, patients with MM were separated into high‑ and 
low‑risk groups with distinct clinical outcomes (Fig. 6). The 
AUC values for the ROC curve were 0.740, 0.741 and 0.712 for 
3, 5 and 10 years, respectively (Fig. 7).

Hallmarks of high‑ and low‑risk groups. The results of the GSEA 
analysis indicated that five hallmarks were significantly associ-
ated with high‑risk patients, including ‘G2M_CHECKPOINT’, 
‘MITOTIC_ SPINDLE’,  ‘E2F_TARGETS’,  ‘MYC_
TARGETS_V1’ and ‘MYC_TARGETS_V2’. Fig. 8 shows the 
three most significant hallmarks, and heatmaps of the G2M 
checkpoint revealed that genes in the high‑risk group differed 
greatly from genes in the low‑risk group (Fig. 9). 

Validation of the autophagy‑associated risk score in other 
independent cohorts. In addition to the original testing 
cohort (GSE24080), four independent cohorts met the inclu-
sion criteria, including GSE57317, GSE4581, GSE4452 and 
GSE4204. The expression data of the 16 ARGs were extracted 
from these microarray datasets and the prognostic signatures 
were calculated based on the aforementioned formula. The 
HRs were all >1 (Table III). To have a comprehensive view of 
the clinical role of the risk score based on all the rational cases, 
the overall HR was 1.92 (95% CI, 1.51‑2.44; P<0.01; Table III; 
Fig. 10) with 1,631 cases, which supported the findings from 
the testing cohort.

Discussion

The role of autophagy in tumors is well known, and the func-
tion of autophagy in the development and treatment of MM 
has been previously reported (29‑30). However, the clinical 
significance of ARGs, particularly their prognostic effect in 
MM has not been extensively studied. Furthermore, there is 
no comprehensive analysis of the prognostic significance of 
all ARGs. Therefore, in the present study, the expression levels 
of ARGs were analyzed, and the prognostic value of ARGs 
was subsequently examined. Finally, a prognostic model 
was constituted using the prognostic ARGs. Furthermore, 
this model could predict the prognosis of patients well and 
provided novel ideas for clinical applications in MM. Given 
the clinical significance of these prognostic ARGs in MM, if 
drugs could be used to intervene in their expression, they may 
provide novel directions for clinical MM treatment.

With the assistance of GEO GSE24080 from the MAQC‑II 
Project, the prognostic value of all 234 ARGs in MM was 
evaluated. By performing univariate Cox analysis, 55 prog-
nostic ARGs were identified, which indicated that autophagy 
served an essential role in the development of MM and could 
influence the outcome of patients with MM. As, in addition 
to autophagy, the ARGs could have multiple functions, GO 
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and KEGG pathway analyses were also conducted. Indeed, 
most pathways that were enriched were autophagy‑related 
pathways. Interestingly, certain other annotations were identi-
fied, including ‘response to extracellular stimulus’, ‘vacuolar 
membrane’ and ‘late endosome’. For KEGG pathways, the 
‘PI3K‑Akt signaling pathway’ was identified. It has been docu-
mented that there was a close association between PI3K‑Akt 
signaling and autophagy  (53‑55). In general, activation of 
the PI3K‑Akt signaling pathway may induce autophagy in 
numerous types of cancer (53‑58).

To assess the prognosis of patients with MM more 
accurately, multivariate Cox regression analysis was used 
to analyze prognostic significance of ARGs. The results 
narrowed the scope of ARGs to 16. Due to the limited 
predictive power of individual prognostic indicators, these 
ARGs were combined into a prognostic assessment model. 
The prognostic model exhibited AUCs of >0.7, suggesting 
that it had a moderate power to evaluate the prognosis of 
patients with MM. The establishment of such a prognostic 
index confirmed the role of autophagy for the development 
and patient prognosis of MM; however, it also provided novel 
biomarkers for clinical applications in MM. Notably, another 
four independent cohorts were used to validate the results 
based on the 559 patients from GSE24080, and the current 
ARG‑based risk score succeeded in yielding concordant 
prognostic values in individual cohorts and when all cohorts 
were combined (1,631 cases).

Figure 1. Prognostic autophagy‑specific genes in multiple myeloma. The top 
20 most significant survival‑associated autophagy‑related genes. A Z‑score 
>0 indicates that genes are risk factors; otherwise, they are protective factors. 

Table I. Continued.

Gene	 Hazard ratio	 Z‑score	 P‑value

NAF1	 1.324480	 2.089132	 3.67x10‑2

MTMR14	 0.808476	 ‑2.054530	 3.99x10‑2

CASP8	 1.271856	 1.981271	 4.76x10‑2

GAPDH	 1.263585	 1.973326	 4.85x10‑2

Table I. Prognosis‑associated autophagy‑related genes in 
multiple myeloma.

Gene	 Hazard ratio	 Z‑score	 P‑value

BIRC5	 1.370446	 4.764858	 1.89x10‑6

FKBP1B	 0.804927	 ‑4.731650	 2.23x10‑6

CDKN1A	 0.693169	 ‑4.397310	 1.10x10‑5

ATIC	 1.828409	 4.392418	 1.12x10‑5

FOXO1	 0.685527	 ‑4.142160	 3.44x10‑5

TM9SF1	 0.607627	 ‑4.082530	 4.45x10‑5

ATG4D	 0.651409	 ‑3.819260	 1.34x10‑4

GABARAP	 0.572865	 ‑3.603840	 3.14x10‑4

NCKAP1	 0.813461	 ‑3.598490	 3.20x10‑4

FOXO3	 0.678902	 ‑3.439260	 5.83x10‑4

X10IF4X10BP1	 1.245795	 3.315612	 9.14x10‑4

SIRT2	 0.754843	 ‑3.30136	 9.62x10‑4

GABARAPL1	 0.760565	 ‑3.245810	 1.17x10‑3

SUPT20H	 0.645072	 ‑3.185440	 1.45x10‑3

LAMP1	 0.756851	 ‑3.185010	 1.45x10‑3

ATG13	 0.677256	 ‑3.172030	 1.51x10‑3

CXCR4	 0.840891	 ‑3.106610	 1.89x10‑3

MAP1LC3A	 0.736496	 ‑3.094860	 1.97x10‑3

CTSB	 0.758494	 ‑3.034600	 2.41x10‑3

PRKDC	 1.470160	 3.026135	 2.48x10‑3

PARP1	 1.485479	 3.024757	 2.49x10‑3

ITGA6	 0.868587	 ‑2.995980	 2.74x10‑3

SH3GLB1	 0.708930	 ‑2.987360	 2.81x10‑3

DRAM1	 0.756615	 ‑2.938770	 3.30x10‑3

FADD	 1.517498	 2.908387	 3.63x10‑3

ITGA3	 0.809097	 ‑2.867680	 4.14x10‑3

APOL1	 0.843190	 ‑2.866750	 4.15x10‑3

PTX10N	 1.574460	 2.833041	 4.61x10‑3

PPP1R15A	 0.842720	 ‑2.822870	 4.76x10‑3

HSPA5	 0.698868	 ‑2.774470	 5.53x10‑3

VAMP7	 1.347821	 2.757183	 5.83x10‑3

BNIP3L	 0.734860	 ‑2.653410	 7.97x10‑3

MAPK1	 1.497021	 2.526023	 1.15x10‑2

PINK1	 0.738836	 ‑2.496230	 1.26x10‑2

CALCOCO2	 0.688453	 ‑2.458060	 1.40x10‑2

HIF1A	 1.101043	 2.440301	 1.47x10‑2

BCL2L1	 0.797140	 ‑2.431050	 1.51x10‑2

DNAJB9	 0.746170	 ‑2.406550	 1.61x10‑2

SQSTM1	 0.705885	 ‑2.383290	 1.72x10‑2

ATG9A	 0.789362	 ‑2.358180	 1.84x10‑2

PRKAR1A	 1.414585	 2.347303	 1.89x10‑2

X10VA1A	 1.174754	 2.328178	 1.99x10‑2

HSP90AB1	 1.237892	 2.277807	 2.27x10‑2

RAB24	 0.824202	 ‑2.270130	 2.32x10‑2

VX10GFA	 1.251725	 2.246293	 2.47x10‑2

ATG5	 0.659360	 ‑2.23166	 2.56x10‑2

ATF4	 0.752327	 ‑2.221500	 2.63x10‑2

WDR45B	 0.676826	 ‑2.189410	 2.86x10‑2

XBP1	 0.778841	 ‑2.135780	 3.27x10‑2

DNAJB1	 0.825023	 ‑2.131930	 3.30x10‑2

ARNT	 1.323780	 2.109022	 3.49x10‑2
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Figure 3. PPI network of prognostic autophagy‑specific genes in multiple myeloma. (A) PPI network of prognosis associated ARGs. The size and brightness 
of the circle represents the degree of connection. The larger and brighter circles are the hub genes in the network. The thickness of the lines represents the 
combined score. (B) Top 30 hub genes in the PPI network. ARG, autophagy‑related gene; PPI, protein‑protein interaction.

Figure 2. Molecular characteristics of prognostic autophagy‑specific genes in multiple myeloma. Enriched Gene Ontology (A) biological process, (B) molecular 
function and (C) cellular component terms, and (D) Kyoto Encyclopedia of Genes and Genomes pathways. NOD, nucleotide‑binding oligomerization domain; 
FoxO, forkhead box class O; HIF‑1, hypoxia‑inducible factor 1; EGFR, epidermal growth factor receptor.
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Figure 4. Kaplan‑Meier survival plots of eight included prognostic predictors for multiple myeloma. (A) ATIC, (B) CALCOCO2, (C) BNIP3L, (D) DNAJB1, 
(E) FOXO1, (F) GABARAP, (G) FOXO3 and (H) HIF‑1α. ATIC, 5‑aminoimidazole‑4‑carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase; 
CI, confidence interval; CALCOCO2, calcium binding and coiled‑coil domain 2; BNIP3L, BCL2 interacting protein 3 like; DNAJB1, DnaJ heat shock 
protein family (Hsp 40) member B1; FOXO1, forkhead box O1; GABARAP, GABA type A receptor‑associated protein; FOXO3, forkhead box O3; HIF‑1α, 
hypoxia‑inducible factor 1 subunit α. 
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Figure 5. Kaplan‑Meier survival plots of the other eight included prognostic predictors for multiple myeloma. (A) DNAJB9, (B) EVA1A, (C) EIF4EBP1, 
(D) FKBP1B, (E) NCKAP1, (F) SUPT20H, (G) PRKAR1A and (H) TM9SF1. DNAJB9, DnaJ heat shock protein family (Hsp 40) member B9; CI, confidence 
interval; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1; EVA1A, eva‑1 homolog A; FKBP1B, FKBP prolyl isomerase 1B; NCKAP1, 
NCK associated protein 1; SUPT20H, SPT20 homolog, SAGA complex component; PRKAR1A, protein kinase cAMP‑dependent type I regulatory subunit α; 
TM9SF1, transmembrane 9 superfamily member 1.
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To identify why these ARGs may hold any value for the 
prognosis of MM, the mechanisms involved in the development 
of MM were explored. However, among these 16 prognostic 
ARGs, 11 (ATIC, CALCOCO2, DNAJB1, DNAJB9, EVA1A, 
FKBP1B, GABARAP, NCKAP1, PRKAR1A, SUPT20H and 
TM9SF1) have not been reported to be associated with MM, 
to the best of our knowledge. Their roles in MM are yet to be 
determined; however, several well‑established ARGs for MM, 
including HIF1A, EIF4EBP1, FOXO1, FOXO3 and BNIP3L 
were identified as prognostic ARGs in the present study.

Among the five previously identified ARGs associated 
with MM, HIF1A is the most widely studied (59,60). Hypoxia, 
a central characteristic for cancer incidence and progression, 
occurs when most types of cancer are evolving (59‑64). HIF1A 
is a hypoxia‑inducible factor, and constitutive expression of 
HIF1A in MM indicates that suppression of HIF1A‑mediated 
transcription could become a favorable target for MM (65‑68). 
For instance, chetomin, an inhibitor of the HIF1A/p300 
interaction, can inhibit tumor cell growth of MM (69). Due 
to the function of HIF1A in inducing autophagy, the suppres-
sive effects of inhibitors of HIF1A could exert their effect 
by modulating the autophagy of MM cells  (70‑73). The 
expression levels of EIF4EBP1, which is a target of mTOR, 
have been reported to be upregulated for MM cases (74). As 
a master regulator of protein synthesis control, phosphory-
lation of EIF4EBP1 has a close functional association with 
Myc and mTOR (75). In Myc‑dependent tumor initiation and 
maintenance of MM, the mTOR‑dependent phosphorylation 

of EIF4EBP1 is required for tumor cell survival (75). This 
may explain the prognostic role of EIF4EBP1 in MM, which, 
to the best of our knowledge, has not been reported previ-
ously. FOXO1 has been reported to act as a tumor suppressor 
for MM (76). The activation of FOXO1 could subsequently 
inhibit the tumor growth and induce cell autophagy and cell 
death (77‑80). FOXO3, another family member of the FOXO 
family, has been studied in MM (81). In primary MM cells, 
FOXO transcription factors are highly phosphorylated (81). 
The activation of FOXO3 has been observed in response to 
thiadiazolidinone, a non‑competitive inhibitor of glycogen 
synthase kinase‑3 (82). An increase in FOXO3a expression 
was observed following treatment of MM cells with 4‑chlo-
robenzoyl berbamine, a novel berbamine derivative (83). The 
prognostic roles of FOXO1 and FOXO3 have not yet been 
investigated, to the best of our knowledge, and the present 
study demonstrated their prognostic value for MM. As for 
BNIP3L, an increase in BNIP3L occurs when MM cells are 
treated with panobinostat, a pan‑histone deacetylase inhib-
itor used to treat MM (84). However, its prognostic value, to 
the best of our knowledge, has not been documented. The 
activation of BNIP3L under drug treatment may improve 
the understanding of its potential mechanism in the develop-
ment of MM. However, the molecular mechanism of these 16 
prognostic ARGs in MM requires further exploration. 

There were several limitations of the present study. Firstly, 
of the 16 identified prognostic ARGs, 11 have not been previ-
ously reported to be associated with MM. Their prognostic 
value needs to be confirmed by other cohorts. Additionally, 
the potential mechanism of these 11 ARGs in MM progression 
remains unclear, which requires additional research. Secondly, 
the efficacy of the prognostic model based on 16 ARGs 
identified in the present study has to be validated using other 
independent samples. Furthermore, multiple detection methods 
are also required for validation of the results of the present 
study using clinical samples. For instance, RNA‑sequencing, 
microarray or reverse transcription‑quantitative PCR, are also 
promising starting points for future research investigating 
ARGs in MM.

In conclusion, the present study focused on autophagy, an 
important phenomenon for tumors, and extracted ARGs with 
prognostic value for MM. Furthermore, an ARG‑based MM 
prognostic evaluation model, with moderate performance 
in predicting the clinical outcome patients with MM, was 
constructed. However, the results require validation, and the 
working principles and molecular mechanisms of the ARGs in 
MM require additional research.
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GEO, Gene Expression Omnibus; HR, hazard ratio; LCI, lower 95% confidence interval; UCI, upper 95% confidence interval; NA, not 
applicable.
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