
Microbial genome analysis: the COG approach
Michael Y. Galperin, David M. Kristensen, Kira S. Makarova, Yuri I. Wolf and
Eugene V. Koonin
Corresponding author: Eugene V. Koonin, National Institutes of Health, National Center for Biotechnology Information, National Library of Medicine,
Bethesda, MD, 20894, USA. Tel.: +1-301-435-5913; Fax: +1-301-435-7793; E-mail: koonin@ncbi.nlm.nih.gov

Abstract

For the past 20 years, the Clusters of Orthologous Genes (COG) database had been a popular tool for microbial genome anno-
tation and comparative genomics. Initially created for the purpose of evolutionary classification of protein families, the COG
have been used, apart from straightforward functional annotation of sequenced genomes, for such tasks as (i) unification of
genome annotation in groups of related organisms; (ii) identification of missing and/or undetected genes in complete micro-
bial genomes; (iii) analysis of genomic neighborhoods, in many cases allowing prediction of novel functional systems; (iv)
analysis of metabolic pathways and prediction of alternative forms of enzymes; (v) comparison of organisms by COG func-
tional categories; and (vi) prioritization of targets for structural and functional characterization. Here we review the prin-
ciples of the COG approach and discuss its key advantages and drawbacks in microbial genome analysis.
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Introduction

The success of the entire genomic enterprise critically de-
pends on reliable genome annotation, i.e. correct identifica-
tion of the genes, which includes accurate determination of
gene boundaries and functional annotation of the gene prod-
uct(s). The Clusters of Orthologous Groups of proteins (COGs)
database has been devised as a way to allow phylogenetic
classification of proteins from complete microbial genomes
[1]. While the COG system has grown over the years (Figure 1),
the goal has always been for each COG to represent a family
of orthologous protein-coding genes. However, when the
compared genomes are separated by long evolutionary dis-
tances and possess substantially different numbers of genes,
evolutionary relationships between these genes are not ac-
curately captured by the straightforward definition of orthol-
ogy as a one-to-one relationship because of such evolutionary

processes as lineage-specific gene duplication and loss, as
well as horizontal gene transfer [7, 8]. Owing to these com-
plexities of the evolutionary relationships among genes, the
COGs have become families of co-orthologous genes that em-
body one-to-many and many-to-many relationships. Hence
the term ‘orthologous groups’ (of proteins) that embraces
such more complex evolutionary relationships among genes
and simplifies the assignment of (general) functions to genes
and their products. As the genomic community gradually
embraced the notion of co-orthologous relationships between
genes [7–9], the COGs have been re-branded Clusters of
Orthologous Genes [10].

During the 20 years since the inception of the COG project,
several alternative systems for orthology analysis have been de-
veloped [11–20], some of them implementing genome-wide
phylogenetic analysis, which, in principle, is supposed to pro-
vide robust resolution of evolutionary relationships between
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orthologs and paralogs. In practice, however, such methods are
computationally expensive and fraught with artifacts at differ-
ent stages, and therefore, simpler approaches such as the COGs
continue to be widely used in microbial genomics. The popular
EggNOG database (‘Evolutionary genealogy of genes: Non-
supervised Orthologous Groups’, http://eggnog.embl.de) applies
essentially the same approach as COGs to a much greater num-
ber of genomes, but fully relies on automated assignment of
orthologs and does not annotate the orthologous gene clusters
[21, 22].

Here we briefly review the key principles underlying the COG
approach and its applications for genome annotation and com-
parative analysis. Rather than providing a detailed description of
the COG construction methods and the resulting collections of
(co)orthologous gene families, our goal here is to highlight the
unresolved problems in functional annotation and the possible
ways to address them. For a description of the COG database per
se, the reader is referred to the previous publications [1, 2–6].

Differences between COGs and other
collections of gene and protein families

Functional annotation of proteins encoded in sequenced gen-
omes typically relies on BLASTP [23] or, more recently, HMMer
[24] search of protein databases for the most similar sequence,
followed by a (semi-)automated transfer of the best hit annota-
tion to the new protein. This approach has a number of well-
known drawbacks [25–28]. First, if the sequence similarity is
low, there is a distinct possibility that the two proteins have dif-
ferent functions; this problem is exacerbated in cases of transi-
tive annotation of multiple proteins in this manner. Second, the
reliance on the best hit often results in a protein ending up
being annotated as ‘uncharacterized’ and/or ‘putative’ even
when the function of a close homolog is already known. Third,
differences in domain architectures of homologous proteins
often result in erroneous functional assignment. Given these
systematic errors, advanced approaches for functional annota-
tion of proteins increasingly rely on curated databases of pro-
tein sequences [29], such as UniProt KnowledgeBase or
PANTHER [30, 31], and protein domains, such as Pfam, SMART
or SUPERFAMILY [32–34]. Aggregated domain databases InterPro
and CDD, which allow an easy comparison of the annotations
provided by various databases, often prove to be the most effi-
cient tools [35, 36]. The COG approach shares some features
with the curated protein family databases but differs from them
in several important aspects.

Use of complete genomes

A distinct feature of the COG approach is the reliance on com-
plete genome (proteome) sequences, which allows relatively
simple and reliable recognition of potential orthologs and

paralogs among all proteins encoded in the given genome. With
incomplete genomes, there always remains the obvious possi-
bility that the true ortholog of the given gene failed to make it
into the final assembly. Like other methods for ortholog identi-
fication, the COG approach relies on sequence similarity
searches against selected proteomes, aimed at the identifica-
tion of pairwise best hits. However, instead of imposing
predetermined similarity scores for delineation of likely homo-
logs, the COG approach extends the popular concept of two-way
(often also called bidirectional, symmetric or reciprocal) best
BLAST hits in each particular proteome by adding the more
stringent requirement of forming a triangle, or three-way set of
best BLAST matches (thus forcing the mathematical property of
transitivity [7, 9]) to form a new COG. Owing to the presence of
potential paralogs from the same lineage (inparalogs [37]), the
original approach [1] only required that at least one such tri-
angle be included that represented symmetrical (bidirectional)
matches, with that criteria being imposed by manual supervi-
sion of groups initially constructed with an automated method.
Later, the process of detection and collapsing such obvious
paralogs was performed by an automated method, introduced
in the first major update of the COGs [3] and later codified in the
EdgeSearch algorithm [38–40]. Proteins from new genomes can
be added to the existing COGs by using the new sequences as
queries for an RPS-BLAST search of the collection of position-
specific scoring matrices generated from COG-specific multiple
sequence alignments [41]. The query is assigned to the COG that
yields the best score in this search. Technically, this approach is
analogous to that used to search domain databases, such as
InterPro and CDD, but because the COGs contain previously
identified orthologs, in this case, the best hit gives a strong indi-
cation of orthology. A detailed discussion of other methods for
ortholog identification can be found e.g. in [7, 9, 42–45]. In add-
ition to sequence similarity and phylogenetic proximity, a po-
tentially useful criterion is genomic synteny [39, 40], which,
however, in practice is typically used for manual verification of
the existing assignments at the quality-control stage.

Flexible similarity cutoffs

The advantage of the triangle-based approach for orthology infer-
ence is that it dispenses with artificially imposed sequence simi-
larity cutoffs for different protein families, some of which evolve
with dramatically different rates, and permits creation of COGs
from proteins that span the entire range of similarity, from barely
detectable to extremely high. For example, Naþ-binding c subunits
(COG0636) of Naþ-translocating ATP synthases from bacteria and
archaea have low sequence similarity and might not be recognized
as orthologs using arbitrarily high BLAST cutoffs; to further com-
plicate the annotation, archaeal protein is often referred to as sub-
unit K [46]. With strict BLAST cutoffs, recognition of orthology
becomes particularly complicated for short proteins, including

Figure 1. Evolution of the COG system. The numbers in parentheses indicate the number of bacterial, archaeal and eukaryotic genomes, respectively, included in the

respective COG release [1–6].
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some ribosomal proteins. The COG approach also allows separ-
ation of closely related paralogs, such as, for example, 3-isopropyl-
malate dehydrogenase (LeuB) and isocitrate dehydrogenase (Icd),
members of COG0473 and COG0538, respectively, that in most
other databases are assigned to the same family (PF00180 in
Pfam, SM01329 in SMART, PS00470 in PROSITE, SSF53659 in
SUPERFAMILY).

Protein family granularity in COGs

Flexible similarity cutoffs have the built-in advantage of allowing
the COGs to be as wide or as narrow as dictated by the evolution-
ary history of a given gene family. In the above example, the LeuB/
Icd family is split into two COGs, which reflects the wide distribu-
tion of these enzymes among bacteria and archaea. However, this
family also includes even two more closely related enzymes. One
of these is tartrate dehydrogenase/decarboxylase that has been
characterized in Pseudomonas putida and Agrobacterium vitis [47, 48].
This enzyme is closely related to LeuB, still has the isopropylma-
late dehydrogenase activity and has probably evolved from LeuB
in the course of the adaptation of the host bacteria to life on
tartrate-rich grapevine [47]. The fourth member is homoisocitrate
dehydrogenase AksF, which participates in the biosynthesis of the
methanoarchaeal coenzyme B [49]. Homoisocitrate dehydrogen-
ase has been described in Methanocaldococcus jannaschii, and a var-
iety of methanogenic archaea encode closely related proteins [49].
At this time, there are too few tartrate dehydrogenases to form a
separate COG. As for homoisocitrate dehydrogenase, LeuB and
AksF are co-orthologs with respect to the bacterial LeuB enzymes.
Accordingly, all members of this family are currently assigned to
the same COG0473 (LeuB) and the same arCOG01163 in archaeal
COGs [10]. In the future, methanogenic homoisocitrate dehydro-
genases might form an archaea-specific COG. For now, however,
the split of the family into two COGs appears to represent a rea-
sonable compromise. In contrast, TIGRfams [50] and NCBI Protein
Clusters [51] databases divide this family into 6 and 13 clusters, re-
spectively. However, because sequence similarity alone does not
allow unequivocal functional assignment, most of these clusters
end up with the same functional annotation, either LeuB or Icd.

Phyletic profiles in COGs

An important feature of the COG approach is that a protein (or
domain) either belongs or does not belong to it. Accordingly, a
genome is either represented in the given COG (by one or more
proteins) or it is not. Thus, the COG approach can dispense with
the matrix of similarity scores and replace them with the simple
yes/no (1 or 0) representation or, alternatively, indicate the
number of paralogous members of the given COG in the given
genome. Such phyletic patterns, i.e. the patterns of species that
are either represented or not represented in the given COGs, are
a powerful tool for functional annotation of microbial genomes
and evolutionary reconstruction. The most obvious use of phy-
letic patterns is for identification of supposedly essential genes
that are missing in certain genomes [4, 52]. Consistent applica-
tion of this principle offers an easy way to evaluate genome
quality [53, 54], which is why the NCBI’s prokaryotic genome an-
notation pipeline currently involves routine checking of the
submitted genomes for the presence of certain (nearly) univer-
sal genes, including those encoding ribosomal proteins and
translation system components, as well as RNA polymerase
subunits [55, 56]. A conceptually similar application of phyletic
patters involves analysis of metabolic pathways and multi-
protein functional systems. Obviously, metabolic pathways

should not allow accumulation of any intermediate that cannot
be further metabolized and represents a dead end: to avoid poi-
soning the cell, such intermediate would have to be exported
into the surrounding milieu. Likewise, an intermediate in the
functional metabolic pathway needs to be either imported or
synthesized within the cell. Although the possibility of ‘distrib-
uted’ pathways cannot be discarded, these simple consider-
ations prove productive when COGs are superimposed on the
metabolic map to identify the intermediates that have no
known enzymes to produce or metabolize them. Identification
of such gaps in pathways often suggests alternative enzymes
that can be then identified experimentally [54, 57].

Functional categories of genes in COGs

Another widely used feature of the COG system is the assign-
ment of all COGs to one of the 26 functional categories. These
categories have evolved over time, with several of them (B, Y,
W, Z) describing functions that are found primarily in eukary-
otic cells. The recently added V (Defense mechanisms) and X
(Mobilome) categories provide for a more detailed description of
the dynamics of bacterial and archaeal genomes. Functional
categories are assigned in accordance with the cellular roles of
the respective COGs, so that, for example, peptide uptake sys-
tems are included into category E (Amino acid transport and
metabolism), rather than in general ‘Transport’ or other similar
categories. Two functional categories of uncharacterized pro-
teins, R (genes with only a generic functional prediction, typic-
ally of the biochemical activity) and S (uncharacterized genes),
are particularly useful, as they reflect the current level of under-
standing of protein function on the proteome level and allow
tracing the progress in experimental characterization and com-
putational analysis of widespread protein families. The fraction
of proteins from a given genome assigned to certain COG func-
tional categories turned out to be a useful whole-genome fea-
ture [58] and has been adopted by the Genome Standards
Consortium as an essential characteristic of the newly
sequenced genomes https://standardsingenomics.biomedcen
tral.com/submission-guidelines.

Full-length proteins and domains as COG members

Most existing protein family databases include either full-
length sequences (NCBI protein database, UniProt, PANTHER,
TIGRfams [30, 31]) or separate protein domains (Pfam, SMART,
SUPERFAMILY, etc [32–34]). The COG approach allows a degree
of flexibility: conserved domain combinations can be included
in separate COGs without the need to split them into individual
domains. As an example, along with the COG0784 for individual
CheY-like receiver (REC) domains of the two-component signal
transduction systems (which also includes stand-alone CheY/
Spo0F proteins), the current COG collection includes 15 add-
itional REC-domain COGs, such as COG2197 for DNA-binding re-
sponse regulators of the NarL/FixJ family, containing REC and
helix-turn-helix domains; COG0745 for DNA-binding response
regulators of the OmpR/PhoB family, which consist of REC and
winged-helix domains; COG3279 for DNA-binding response
regulators of LytR/AlgR family, containing REC and LytTR do-
mains, and many others [59, 60]. The discrimination between
the architectures of proteins that share a common domain pro-
vides for a finer granularity of annotation and allows better
characterization of the respective proteins. However, non-
critical use of COGs for high-throughput domain annotation can
result in egregious errors, whereby a multidomain protein
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receives a misleading annotation of its best COG hit that has a
completely different domain architecture. The recent attempts
to identify specific domain architectures and limit annotation
transfer to proteins with the same domain combination [36]
have the potential to resolve this issue.

COG annotation

Functional annotation of COGs, including assignment of COG
names, is based on two key principles. First, reliance on ortholo-
gous relationships for the COG construction makes it likely, ac-
cording to the ‘orthology conjecture’, that members of each
COG have equivalent functions [7] (with only rare known excep-
tions [61]). Accordingly, experimentally characterized functions
of a single member of a given COG often can be used to assign
the functional annotation to the entire COG. Indeed, in most
cases, subsequent characterization of additional COG members
has confirmed the validity of the initial assignment [6]. Second,
all COG names are manually curated with the goal of creating
the most appropriate annotation, avoiding the common anno-
tation errors [25], as well as over- and under-predictions. Thus,
for those COGs whose members have two or more distinct func-
tions, the annotations (COG names) get expanded to cover the
entire range of experimental results. In some cases, the growing
number of distinct paralogs justifies splitting a COG into two or
more separate COGs with higher sequence conservation and
more narrowly defined functional annotation. Many COGs,
however, do not include any experimentally characterized
members so that their annotation has to rely on computational
analyses alone. In such cases, inference of a robust annotation
requires careful analysis of their sequences, structures, genomic
neighborhoods, phyletic patterns and other cues, which re-
quires a substantial effort that, however, often leads to interest-
ing insights [62, 63]. Such efforts are essential for increasing the
fraction of proteins that belong to well-characterized COGs be-
yond the figure of 60–70% that is currently obtained for most
bacterial and archaeal genomes [6]. The overall genome cover-
age by COGs (including the R- and S-type COGs) has stayed
largely the same over the years and currently ranges from �65%
of the total proteomes in Chlamydiae and Planctomycetes to
>80% in Synergistetes and Thermotogae (Figure 2). This stable
coverage of bacterial and archaeal genomes by COGs, despite
the addition of numerous new genomes, is likely to reflect the
open pangenomes of most prokaryotes [65–68] and the ex-
tremely rapid turnover of the poorly conserved gene class.

Although COG annotations typically describe protein families,
in the most recent release of the COG database, owing to the popu-
larity of COG-based annotation, many COG names have been
modified to allow functional annotation of individual proteins [6].

Unresolved problems in the COG approach

The wide use of COGs for microbial genome annotation and
comparative analysis has illuminated several problems inher-
ent in the COG approach that warrant a brief discussion. These
difficulties include, among others, the issues of COG hierarchy,
inclusion of paralogs, splitting proteins into separate domains
and scalability of the COG approach.

Orthologs, paralogs and xenologs: the missing hierarchy

The very definition of orthology [69] inherently depends on the
group of organisms under consideration [7, 9, 37]. For example,
in most members of the Crenarchaeota, the family B DNA

polymerases are represented by several paralogs which form
distinct orthologous families (arCOG00328, arCOG00329,
arCOG15272 and others) within this archaeal phylum (all these
genes are out-paralogs in Crenarchaeota). In contrast, most of
those bacteria that possess the polB gene have a single copy,
which is co-orthologous to all archaeal polB genes, so archaea
and bacteria share only one orthologous family of polB, COG0417
(all these genes are co-orthologs among prokaryotes with sev-
eral in-paralogs in archaea). Such complex relationships among
homologous genes confound COG analysis because the defin-
ition of orthology becomes mutually dependent with the phy-
letic patterns (the definition of orthology depends on the list of
organisms where these genes are present, which itself depends
on which of the homologous genes are considered orthologs
and which are not). Several formal and informal empirical rules
have been proposed to resolve this conundrum [70]. The hier-
archical orthologous groups have been implemented in such
databases as EggNOG, OMA and OrthoDB [14, 22, 71].

In most of the current COG collections, all COGs are equal,
and there is no hierarchical structure; only in arCOGs, an extra
level of super-COGs has been introduced to combine paralogous
COGs into higher level clusters. Although the non-hierarchical
structure of COG collections is convenient for straightforward
genome annotation, it has substantial drawbacks. Some COGs
include closely related proteins with similar, if not identical,
biochemical activities. In such cases, assignment of a protein to
a specific COG can be taken, without justification, as an indica-
tion that the respective organism possesses one functionality
but not the other. A good example is the case of glutamate and
glutamine aminoacyl tRNA-synthetases (COG0008). While most
bacteria encode two paralogous enzymes that charge the Glu-
and Gln-specific tRNAs, archaea (as well as chlamydia, chlorobi,
chloroflexi, cyanobacteria and certain members of other bacter-
ial phyla) encode only glutamate-tRNA synthetase and produce
glutamyl-tRNA by transamidation of misacylated Glu-tRNAGln

[72]. Here, both bacterial paralogs are co-orthologs for the arch-
aeal and chlamydial enzymes, which is why they end up in a
single COG. Obviously, splitting COG0008 into two subCOGs
would have been a better solution, allowing a precise character-
ization of the respective enzymes. In some cases, a COG in-
cludes a small subgroup with a well-characterized function but
the lack of hierarchy results in annotation of generic function
only (e.g. an ABC-type transporter).

The single-level definition of orthology can even result in
annotations that are largely arbitrary. In some cases (e.g.
COG0183, Acetyl-CoA acetyltransferase), COGs are overloaded
with paralogs because it is practically impossible to track all ex-
tant genes to distinct genes in the common ancestor. On other
occasions (COG0050, Translation elongation factor EF-Tu, and
COG5256, Translation elongation factor EF-1a), lineage-specific
COGs are created for genes that are arguably orthologous be-
cause they are sufficiently distinct. The absence of multilevel
hierarchy dilutes functional annotation of the characterized
members of the COG and weakens the evolutionary reconstruc-
tions. Developing and implementing a hierarchical framework
is one of the most pressing problems in the COG-based ap-
proach to gene classification and genome annotation.

Whole proteins versus protein domains

As noted above, COG construction is based on clustering of orthol-
ogous domains that are identified as bidirectional best hits in
genome-specific BLAST searches. This approach, however, is
sensitive to domain rearrangements that occurred after the
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divergence of the analyzed set of species from their last common
ancestor. Particularly severe problems are caused by promiscuous
domains, which can attract proteins to spurious COGs through
significant but effectively irrelevant sequence similarity to the
promiscuous domains. Although this problem can be addressed
semi-automatically, e.g. by excluding the hits that cover only a
small portion of the protein sequence, precise solutions still re-
quire manual intervention. On many occasions, conserved do-
main architectures allowed construction of consistent COGs that
were not substantially affected by the presence of a shared do-
main (e.g. the widespread helix-turn-helix DNA-binding domain).
Conversely, the diversity of domain architectures of proteins
involved in microbial signal transduction and containing a num-
ber of promiscuous domains (PAS, GAF, CHASE, GGDEF, EAL and
others) required splitting some of these proteins into individual
domains or domain combinations. As a result, the COGs are a mix
of (i) highly specific domain architectures (such as the above-
mentioned response regulators), (ii) multiple domain architectures
that include a single shared domain and (iii) separate promiscu-
ous domains. To our knowledge, as of this writing, there is no
complete, formal solution for optimal dissection of full-length pro-
teins into orthologous domains. At present, for the analysis of
multidomain proteins, the best practical approaches are offered
by integrated domain identification tools, such as CDD (which in-
cludes the COGs) and InterPro.

Scalability of the COG approach and
specialized COG collections

The basic COG approach relies first on an exhaustive all-
against-all protein comparison that scales as O(n2) with the total

number of proteins and then on a search of connected triangles
in clusters of reciprocal best hits that scales as O(n3) with the
number of proteins in the cluster [38]. Inevitably, the growth of
the database outpaces the availability of the computational re-
sources, making regular major updates of the entire COG data-
base impractical. Several divide-and-conquer strategies have
been used to circumvent this major difficulty. One approach
that has been implemented in several COG updates includes
accommodating the new sequences into the existing COGs first,
then searching for potential new COGs among the sequences
that do not fit the existing ones, and then, moving some se-
quences from the old COGs to the new ones [10]. The principal
direction, however, has involved construction of dedicated COG
collections for distinct microbial taxa. In particular, the COGs
for archaea (arCOGs) went through several closely curated re-
leases and remain up to date, having become a widely used
framework for archaeal genome annotation and analysis [10,
70, 73]. As illustrated in Figure 2, detailed analysis of archaeal
protein families increased the coverage of cren-, eury- and
thaumarchaeal genomes by 18–20%, so that arCOGs now cover
>92% of the proteins encoded in typical genomes of
Crenarchaeota and Euryarchaeota. Separate projects have
involved construction and analysis of COGs for Cyanobacteria
and Gram-positive bacteria of the order Lactobacillales [74, 75].

The COG approach was also implemented in the database of
Alignable Tight Genome Clusters (ATGC) that includes closely
related bacterial and archaeal genomes [64, 76]. COGs have been
constructed separately for each ATGC. These ATGC-COGs
largely avoid the problems inherent in the COG analysis at
larger evolutionary distances (lineage-specific paralogy,
differential gene loss and differences in domain architectures)
and have proved an efficient platform for various types of

Figure 2. Proteome coverage by the current version of COGs. Archaeal and bacterial phyla and selected classes of Firmicutes and Proteobacteria are listed as in the lat-

est release of the COG database [6]. The orange and blue columns show the fractions of the respective proteomes covered by COGs in each taxonomic group (including

R- and S-type COGs that consist of poorly characterized or uncharacterized genes), averaged over the members of that group in the COGs (the respective numbers are

shown in parentheses). The ‘Other archaea’ group includes two genomes representing, respectively, Kor- and Nanoarchaeota; the ‘Other bacteria’ group includes mem-

bers of Deferribacteres, Nitrospirae, Verrucomicrobia and other sparsely sampled phyla, as well as representatives of several candidate phyla. The bright yellow rect-

angles on top of the archaeal columns indicate the additional coverage of the archaeal proteomes in the latest version of arCOGs [10]. The hatched rectangles indicate

the additional coverage of the archaeal and bacterial proteomes in the ATGC-COGs from the latest version of the ATGCs database [64].
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evolutionary reconstructions [77, 78]. In taxa for which ATGCs
are available—i.e. those studied in sufficient depth so that mul-
tiple closely related genomes are available—the coverage of
genomes is again raised so that ATGC-COGs now cover >95% of
the proteins encoded in typical genomes (Figure 2).

The COG approach has also been extended beyond cellular
organisms to construct COG for viruses that infect bacteria or
archaea, and for the large DNA viruses of eukaryotes [79, 80].

The successful application of the early versions of the COGs
was to a large extent based on comprehensive manual curation
of the COG membership, COG names and supporting informa-
tion, and a substantial body of computational analysis aimed at
predicting functions for poorly characterized COGs. This effort
has led to several notable breakthroughs that have been vali-
dated by subsequent experiments and opened up new research
directions, including the characterization of the CRISPR-Cas sys-
tem [81, 82], prediction of the archaeal exosome [83], identifica-
tion of the bacterial c-di-GMP-centered signaling network [84,
85], new bacterial toxin-antitoxin systems [86–88] and archaeal
type IV secretion systems [89], and allowing prioritization of
uncharacterized proteins (COGs) for further study [90, 91].
However, scaling this labor-consuming approach to accommo-
date the exponentially growing amount of genomic sequence
data is even more challenging than keeping the COGs up to
date. That path forward is likely to combine improved auto-
matic approaches to functional annotation with subprojects
focusing on specific taxa or functional classes of COGs.

Concluding remarks

The COG approach for identification of orthologous genes was de-
veloped as a platform for comparative genomic analysis shortly
after the first few microbial genomes have been sequenced. It
could have been expected that in 20 years, this simple strategy
based on sequence similarity hierarchy would completely give
way to more sophisticated, phylogenetic approaches. This, how-
ever, is not the case, primarily, because the extended orthology
conjecture, according to which bidirectional best hits between
genomes correspond to orthologs, and the latter possess equiva-
lent functions, largely holds for prokaryotes given the limited ex-
tent of lineage-specific paralogy, differential gene loss and
domain shuffling. In contrast, in eukaryotes where all these con-
founding aspects of genome evolution are pervasive, the COG ap-
proach encounters great difficulties, and robust, genome-wide
orthology assignment does not seem to be feasible without full-
scale phylogenomics. Thus, the COGs are likely to remain an im-
portant tool for microbial genome analysis for years to come, so
that investment of effort into refinements of this straightforward
approach seems to be justified.

Key Points

• Robust orthology identification is essential for accurate
genome annotation.

• Reconstructions of genome evolution are based on
orthology and paralogy.

• COGs are an essential tool in microbial genomics.
• Several specialized COG projects have been developed.
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