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Abstract

While novel technologies such as high-throughput screening have advanced together with significant investment by phar-
maceutical companies during the past decades, the success rate for drug development has not yet been improved prompt-
ing researchers looking for new strategies of drug discovery. Drug repositioning is a potential approach to solve this
dilemma. However, experimental identification and validation of potential drug targets encoded by the human genome is
both costly and time-consuming. Therefore, effective computational approaches have been proposed to facilitate drug repo-
sitioning, which have proved to be successful in drug discovery. Doubtlessly, the availability of open-accessible data from
basic chemical biology research and the success of human genome sequencing are crucial to develop effective in silico drug
repositioning methods allowing the identification of potential targets for existing drugs. In this work, we review several che-
mogenomic data-driven computational algorithms with source codes publicly accessible for predicting drug–target interac-
tions (DTIs). We organize these algorithms by model properties and model evolutionary relationships. We re-implemented
five representative algorithms in R programming language, and compared these algorithms by means of mean percentile
ranking, a new recall-based evaluation metric in the DTI prediction research field. We anticipate that this review will be
objective and helpful to researchers who would like to further improve existing algorithms or need to choose appropriate
algorithms to infer potential DTIs in the projects. The source codes for DTI predictions are available at: https://github.com/
minghao2016/chemogenomicAlg4DTIpred.

Key words: drug–target interaction; in silico drug repositioning; drug discovery; chemogenomic data; mean percentile rank-
ing; open-source code

Introduction

Drug development is a complex and expensive process. Over the
past decades, despite technological advances in drug discovery
and increase of investments in pharmaceutical research and
development, the number of new drug approvals has remained
stagnant [1]. The most significant causes of drug failures are tox-
icity and a lack of efficacy [2]. Thus, there is an urgent need to
develop effective drugs to overcome these limitations [3]. Drug
repositioning, the process of finding new uses outside the scope
of the original medical indications for existing drugs [4], is

considered to be a promising strategy with the benefit of provid-
ing a rapid route to clinic than through the traditional drug dis-
covery approaches because of the use of existing knowledge
about drugs [5]. The new indication-driven discovery by using
repositioning methods has already yielded several successes. For
example, HIV protease inhibitors such as nelfinavir can be used
as a new class of anticancer drugs [6]. Sunitinib, originally devel-
oped for treating renal cell carcinoma, was found to be effective
for patients with pancreatic neuroendocrine tumors [7]. Imatinib,
developed originally for chronic myeloid leukemia, has shown
clinical benefits to the treatment of gastrointestinal stromal
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tumor [8]. Some other successful repositioning drugs such as tha-
lidomide [9], celecoxib [10] and rapamycin derivatives [11], can be
found in the previous reports [12–14].

One of the necessary steps of drug repositioning is to accu-
rately identify the drug–target interactions (DTIs). However,
experimental determination of such associations is time-
consuming and costly. Thus, computational methods have
been proposed alternatively to infer potential DTIs in effective
ways. Traditionally, computational methods for DTI predictions
include molecular docking simulation, quantitative structure–
activity relationship (QSAR) and so forth [15–21]. However, these
methods possess inherent limitations. For example, docking
simulation requires 3D crystal structure of the drug target,
which is difficult to obtain for membrane proteins. Traditional
QSAR often handles compound analogs targeting a single
molecular target, which is less efficient for processing chemoge-
nomic data with a large library of compounds and many targets.

Unlike QSAR (chemical data-based) and molecular docking
(genomic data-based) approaches, chemogenomic data-driven
DTI prediction methods simultaneously consider both chemical
information and genomic information (often from large-scale
screenings of small molecule libraries against a panel of drug tar-
get, which may or may not be biologically related). For example,
Yamanishi et al. [22] proposed a bipartite graph learning method
to infer the relationship between chemical/genomic space and
pharmacological space. Kim and coworkers [23] explored the
effect of drug–drug interactions (DDIs) on DTI predictions. They
used two machine learning algorithms, including support vector
machine (SVM) and kernel-based L1-norm regularized logistic
regression (KL1LR) to build prediction models. As a result, they
concluded that DDI from pharmacological information is a prom-
ising feature in predicting DTIs when compared with other data
sources such as chemical structures of drugs, and KL1LR is useful
for investigating the contributing features. In the work by Wang
et al. [24], a two-layer graphical model, called restricted
Boltzmann machine, was proposed to predict not only the direct
and indirect drug–target relationships but also the drug modes of
action, including binding, activation and inhibition, which
extended the conventional binary DTI predictions. Most recently,
Meng et al. [25] proposed a novel feature-based approach, called
predicting drug targets with protein sequence (PDTPS), to infer
potential DTIs. In PDTPS, for each protein sequence, position-spe-
cific score matrix (PSSM) was first constructed, and the bigram
probability feature extraction method was used to represent a
given protein sequence based on the calculated PSSM. After this,
principal component analysis (PCA) was adopted to reduce the
protein sequence feature vector. For each drug compound, the
structural features were calculated. As a result, the feature repre-
sentation of each drug–target pair was obtained by concatenating
both protein vector and drug vector. Finally, relevance vector
machine was used to predict potential DTIs. Another feature-
based approach proposed by Li et al. [26] adopted local binary pat-
tern operator to compute the histogram descriptors for protein
sequences. For drug molecules, they calculated the fingerprints,
and used PCA to extract the low-dimensional features for both
proteins and drugs. Finally, they used the discriminative vector
machine classifier to identify DTIs. Some other DTI prediction
methods were described in the previous reviews [27–32] and
research articles [33–40].

Among these algorithms, many of them are made publicly
available. Researchers often compared different algorithms
based on the benchmark data set [22], and they adopted two
commonly used metrics [i.e. area under the curve (AUC) and
area under precision–recall curve (AUPR)] as the evaluation

criteria. However, the comparison may be suboptimal and less
objective because of differences in program parameter setting
and details of cross-validation methods. In this work, we first
review chemogenomic data-driven and open-source algorithms
published in recent years, and then we compare five represen-
tative algorithms based on a new recall-based evaluation metric
in the same framework. We hope the reviewed algorithms can
be continuously improved to make stronger prediction, and can
be optimized to ease reuse and ensure result replication.

Material and methods
Benchmark data set

The benchmark data set used in many DTI prediction studies
was originally proposed by Yamanishi and coworkers [22], which
has been considered as the golden data set for comparing various
DTI prediction algorithms. The data set is composed of drug mol-
ecules and protein targets in the KEGG LIGAND and GENES data-
bases [41]. It consists of three matrices: the chemical space
matrix, Sc for drugs; the genomics space matrix, Sg for targets;
and the drug–target adjacency (interaction/association) matrix Y.
Sc 2 R

n�n denotes the drug similarity matrix, where the chemical
similarities between drugs from the KEGG LIGAND database were
computed by using the SIMCOMP tool [42]. Sg 2 R

m�m denotes the
target similarity matrix where the sequence similarities between
protein targets from the KEGG GENES database [41] were calcu-
lated by using normalized Smith–Waterman scores [43]. Y 2 R

m�n

2 f0; 1gm�n denotes the interaction matrix with a value Yji ¼ 1 if
drug i interacts with target j, 0 otherwise, based on the annota-
tions from the KEGG BRITE [41], BRENDA [44], SuperTarget [45]
and DrugBank [46] databases. Here, a 0 value in Y does not neces-
sarily mean that the corresponding target is irrelevant to the
drug, but it could be that the DTI is not validated yet by experi-
ments. The benchmark data set is listed in Table 1. The data set
includes four subsets grouped by target classification: Enzyme,
ion channel (IC), G protein-coupled receptor (GPCR) and nuclear
receptor (NR). The largest subset, Enzyme, includes 445 drugs and
664 targets with 2926 known (experimentally validated) DTIs
between them, while the smallest subset, NR, consists of only 54
drugs and 26 targets with 90 known interactions. Two subsets of
moderate size, IC and GPCR, include 210 and 223 drugs, 204 and
95 targets and 1476 and 635 known interactions, respectively.
The sparsity value listed in the last column of Table 1 for each
subset is calculated as the ratio of known interactions to all pos-
sible interactions between drugs and targets.

Data set transformation

It should be emphasized that the benchmark data set may be
transformed slightly based on the individual prediction algo-
rithms. For algorithms such as bipartite local models (BLMs) [47],
the zero components in matrix Y may be transformed to �1,
while for algorithms such as dual-network integrated logistic
matrix factorization (DNILMF) [48], the original zero elements
remain unchanged. Besides the interaction matrix Y, the drug
similarity matrix Sc and target similarity matrix Sg may be trans-
formed to corresponding kernel matrices, Kc and Kg, respectively.
For example, BLM requires a kernel matrix as input to build a
model. A general transformation procedure can be performed in
the following way: taking the conversion from Sc to Kc as an
example, Sc was first converted to a symmetrical matrix by add-
ing its transposed matrix and then divided by 2. The obtained
symmetrical matrix was finally converted to a positive semi-
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definite matrix by adding an identity matrix with a small value
(0.1 in the work) in the main diagonal line for multiple times. A
similar procedure was applied to Sg for generating Kg.

Cross-validation and evaluation metric

Stringent cross-validation is important for model evaluation.
Different from previous methods [47, 49], which put both posi-
tive and negative interaction pairs (considering unknown inter-
actions as negative ones) into the test set. We, in this work, only
include the positive interaction pairs in the test set in the proc-
ess of cross-validation. Specifically, in each split, we removed a
random subset of 10% of the known entries in the drug–target
adjacency matrix Y as the test set and trained on the remaining
90% of the known DTI. In addition, we ensured each drug has at
least one interaction with a target (and vice versa, each target
has at least one interaction with a drug as well) in the training
matrix as reported by a previous DTI prediction work [50]. Then,
we used a ranking-based statistical metric to evaluate different
DTI prediction algorithms.

One of the issues with evaluating one-class prediction model
is that the data set only encodes positive values (i.e. known
DTIs, labeled as 1 in matrix Y). When a 0 value is included in the
cell of matrix Y, it does not necessarily mean the drug does not
interact with that target but could instead mean that it was not
tested against that target. Unlike previous studies [47–49],
whereas the authors simply considered zero components in
matrix Y as negative samples, we currently only consider posi-
tive one as input information (i.e. lack of negative samples) to
evaluate the model. Thus, a recall-based evaluation metric,
known as mean percentile ranking (MPR) [51, 52], was adopted
to evaluate the algorithm performance. Specially, for each drug i
in the test set, we generated a ranked list of the targets sorted in
descending order by the predicted scores between the current
drug with all targets in the data set. Let rankji denote the percen-
tile ranking (PR) of target j with drug i. rankji ¼ 0% indicates that
drug i is predicted to interact with target j with the highest prob-
ability. Similarly, rankji ¼ 100% signifies that drug i is predicted
to interact with target j with the lowest probability. Herein, the
definition of MPR is described as follows:

MPR ¼
PNt

D
i¼1 Ri

Nt
D

; (1)

where Nt
D denotes the number of drugs in the test set, and Ri

can be computed as follows:

Ri ¼
PNt

T
j¼1 rankji

Nt
T

; (2)

where Nt
T denotes the number of targets in the test set for the

current drug i. It should be pointed out that lower values of MPR
are more desirable, as they indicate higher probability for the
experimentally validated DTIs. Conversely, higher values of

MPR indicate that drugs are predicted to interact with their tar-
gets with lower possibilities. Evidently, randomly produced lists
would have an expected MPR of 50%. By using this kind of met-
ric, one can obtain a recommended list of candidate targets for
a drug of interest, with top predictions recommended for exper-
imental validation with higher priority.

Open-source chemogenomic data-driven DTI prediction
algorithms

In this section, we review several chemogenomic data-driven
and open-source DTI prediction algorithms focusing on model
properties and model evolutionary relationships. Table 2 lists
the reviewed algorithms with the corresponding Web links.

Given three matrices, Y (DTI matrix), Kc (kernel matrix of
drugs) and Kg (kernel matrix of targets), Bleakley et al. [47] pro-
posed to use multiple BLM to perform DTI predictions (see a1 in
Figure 1). BLM essentially transforms the edge-prediction problem
of a DTI network into a binary classification problem of points
with labels. Specifically, each column of the interaction matrix Y

is used as a dependent variable [þ1 denotes the positive label
(interaction) and �1 denotes the negative label (non-interaction)]
in turn, and the target kernel, Kg, is used as the independent vari-
ables, and then a kernel-based SVM is used to predict the interac-
tions between current drug i and all targets. The abovementioned
process with the predicted scores bY1 is based on the target side
(Kg). Similarly, the process can also be applied to the drug side
(Kc, to generate the prediction scores bY2), and the final prediction
scores are yielded by an aggregated function f, such as the maxi-
mum function (bY ¼maxðbY1; bYT

2 ), where bYT
2 indicates the trans-

pose of bY2). Following a similar idea of local models as BLM,
Hao et al. [53] adopted a nonlinear kernel fusion (KF) technique
[54] combined with the regularized least squares (RLS) algorithm
to predict DTIs (RLSKF, see a7 in Figure 1). Two fundamental dif-
ferences between RLSKF and BLM are (1) RLSKF adopts the RLS
algorithm rather than SVM; and (2) RLSKF uses the nonlinear
fused kernel (taking target side-based prediction as an example,
Kt ¼ fusedðKg; Kgip;gÞ, where Kgip;g is the Gaussian interaction pro-
file (GIP) kernel calculated from the target interaction profiles of
Y, which will be discussed below) instead of the single kernel
(Kg or Kc) as in BLM. It should also be noted that the fused kernel
is derived from an iteration process rather than a simple linear
combination such as Kt ¼ avgðKg;Kgip;gÞ used in some algorithms
such as KronRLS [55].

We herein summarize and reiterate the key steps of the KF
algorithm [54]. First, KF preprocesses the similarity matrices
(i.e. Kc, Kgip;c, Kg and Kgip;g in this work. Please note that similarity
matrix such as Sc and Sg without kernel properties can also be
preprocessed for KF). Taking Kc as an example, its normalized
similarity can be calculated by Fc ¼ D�1Kc, where D is the diago-
nal matrix with the diagonal elements of the individual row
sums of Kc. From Fc, the local similarity matrix is obtained in the
following way:

Table 1. Benchmark data set for DTI prediction algorithms

Data set Number of drugs Number of targets Number of interactions Sparsity value

Enzyme 445 664 2926 0.010
IC 210 204 1476 0.034
GPCR 223 95 635 0.030
NR 54 26 90 0.064
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Lc ¼
Fcði; jÞP

k2Ni
Fcði; kÞ

; j 2 Ni

0; otherwise

;

8><
>: (3)

where Ni represents a set of neighbors of drug i, and K is the
number of nearest neighbors. Through this operation, the simi-
larities between non-neighboring points set to 0. In a similar
way, Fgip;c and Lgip;c are obtained for drug interaction kernel Kgip;c.
Then, from two full similarity matrices (Fc and Fgip;c) and two
local similarity matrices (Lc and Lgip;c), the key fusion steps are
performed as follows:

FðtÞc ¼ Lc � Fðt�1Þ
gip;c � LT

c ; (4)

FðtÞgip;c ¼ Lgip;c � Fðt�1Þ
c � LT

gip;c; (5)

where FðtÞc is the status matrix of the drug structural similarity
after t iterations, FðtÞgip;c is the status matrix of the drug interaction
similarity and LT

c and LT
gip;c are the transpose of Lc and Lgip;c,

respectively. Finally, after t steps, the overall similarity is calcu-
lated by Kd ¼ 0:5� ðFðtÞc þ FðtÞgip;cÞ. Thus, Kd can be used as the input
of any DTI prediction algorithm. It is a similar process for the
fusion of target-based similarity matrices.

Table 2. Open-source chemogenomic data-driven DTI prediction algorithms based on the benchmark data set

No. Algorithm Open-access link Year Reference

1 BLM http://cbio.mines-paristech.fr/�yyamanishi/bipartitelocal/ 2009 [47]
2 KronRLS http://cs.ru.nl/�tvanlaarhoven/drugtarget2011/ 2011 [55]
3 KBMF2K http://users.ics.aalto.fi/gonen/bioinfo12.php 2012 [59]
4 DTHybrid http://alpha.dmi.unict.it/dtweb/dthybrid.php 2013 [50]
5 KronRLSWNN http://cs.ru.nl/�tvanlaarhoven/drugtarget2013/ 2013 [57]
6 SCMLKNN http://web.hku.hk/�liym1018/projects/drug/drug.html or

http://www.bmlnwpu.org/us/tools/PredictingDTI_S2/METHODS.html
2015 [63]

7 RLSKF https://github.com/minghao2016/RLS-KF 2016 [53]
8 KronRLSMKL http://www.cin.ufpe.br/�acan/kronrlsmkl/ 2016 [56]
9 KronRLSWNNS https://github.com/hkmztrk/SMILESbasedSimilarityKernels 2016 [58]
10 NRLMF https://github.com/stephenliu0423/PyDTI 2016 [49]
11 COSINE http://bioinfo.cs.uni.edu/COSINE.html 2016 [60]
12 DNILMF https://github.com/minghao2016/DNILMF 2017 [48]

Figure 1. Open-source chemogenomic data-driven DTI prediction algorithms clustered by model properties and evolutionary relationships.
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Instead of multiple local models (such as BLM and RLSKF),
the following discussed algorithms are all global models indi-
cating that one model can simultaneously predict potential
interactions from multiple targets and multiple drugs in the test
set. As shown in a2 of Figure 1, van Laarhoven et al. [55] used a
simple machine learning method (RLS), combined with a GIP
kernel from the DTI network, Y, to infer the potential interaction
pairs (named KronRLS here). The GIP kernel can be obtained
either from the target side (denoted by Kgip;g) or from the drug
side (denoted by Kgip;c) based on the DTI matrix Y only. The final
combined kernels are obtained by a simple weighted average
operation (i.e. Kt ¼ aKg þ 1� að ÞKgip;g for targets, and Kd ¼ aKc

þ 1� að ÞKgip;c for drugs). Given Kt and Kd, the Kronecker product
of them (denoted by Kt � Kd) is calculated to yield a large pair-
wise kernel as the independent variables. A long vector stacked
by column (denoted by Ys) of the interaction matrix Y is gener-
ated as the dependent variable. As a result, RLS takes the inputs
of Ys and Kt � Kd to predict the potential interaction scores
between drugs and targets globally. It should be emphasized
that more efficient implementation based on Eigen decomposi-
tions of kernels can be applied to this algorithm [55]. Following
KronRLS, two improved algorithms were proposed. The first
algorithm is named as KronRLSMKL (see a8 in Figure 1), pro-
posed by Nascimento et al. [56], which extends KronRLS to the
multiple kernel learning (MKL) framework. As a result, the ker-
nel weight can be used to indicate the importance of each indi-
vidual kernel. The second algorithm (KronRLSWNN, see a5 in
Figure 1) was proposed by van Laarhoven et al. [57] to extend
KronRLS to new drug candidates (i.e. drugs have no interactions
with any targets) by inferring the drug profile using the
weighted nearest neighbors (WNNs). Having used KronRLSWNN
as a basic framework, Öztürk et al. [58] investigated the effects
of a series of SMILES-based kernels on the model performance
(named KronRLSWNNS, see a9 in Figure 1).

Several of these algorithms are low rank-based models. The
first one is KBMF2K (see a3 in Figure 1), which was proposed by
Gönen et al. [59]. KBMF2K uses techniques, including dimen-
sionality reduction, matrix factorization and binary classifica-
tion to perform DTI predictions. Unlike KBMF2K, which
transforms Sg and Sc into two low-dimensional matrices (Gt and
Gd, respectively), NRLMF, the second low rank-based model,
proposed by Liu et al. [49], transforms the interaction matrix, Y,
into two low-dimensional matrices (U and V for target latent
variables and drug latent variables, respectively). As a result,
the prediction scores of NRLMF are given by bY ¼ exp UVTð Þ

1þexp ðUVYÞ (see
a10 in Figure 1). NRLMF takes the logistic matrix factorization as
the model algorithm, which is especially suitable for binary var-
iables. Furthermore, NRLMF adopts a technique with aug-
mented known interaction pairs to decrease the imbalanced
level between positive and negative samples. In the model’s
objective function, NRLMF uses a neighborhood regularized
approach, and for the postprocessing stage, NRLMF uses a
neighborhood smoothing method to generate new drug/target
prediction scores instead of the original predicted scores. Based
on NRLMF, two improved algorithms were also developed.
COSINE (see a11 in Figure 1) was recently proposed by Lim and
coworkers [60] to improve prediction performance especially for
predicting potential targets for new drugs. Different from
NRLMF, COSINE formulates the objective function by using posi-
tion-specific weight and imputation values, which can over-
come the sparseness of the DTI network Y. Later, Hao et al. [48]
proposed a DNILMF algorithm to infer potential interactions
between drugs and targets (see a12 in Figure 1). Two different
points of DNILMF from NRLMF lie in the fact that (1) DNILMF

incorporates the ‘trust ensemble’ idea [61] into the logistic func-
tion; and (2) DNILMF uses the KF method [54] (same as RLSKF) to
enhance the similarity metrics.

Two global algorithms in the separate cluster are DTHybrid
and SCMLKNN (see a4 and a6 in Figure 1, respectively).
DTHybrid was proposed by Alaimo et al. [50], which was inspired
by the work from Zhou and coworkers [62] by plugging the drug
and target similarity information into the resource allocation
equation. SCMLKNN designed by Shi et al. [63] is a multi-label K-
nearest neighbors-related algorithm, which incorporates the
super-target clustering idea for handling missing interactions
and combines additional information for enhancing the similar-
ity measures. The final confidence score of a DTI pair is
obtained by a product of two kinds of probabilistic scores gener-
ated from the models. It should be pointed out, in this work,
that the different algorithms were only described briefly with
the key components highlighted. For more details, one can refer
to the original studies and the open-source codes.

Algorithm comparison procedure

We performed the following evaluation procedures for a more
rigorous comparison of the reviewed algorithms based on the
recall-based statistical metric. Step 1: The adjacency matrix, Y,
was first split for 10-fold cross-validation in the abovemen-
tioned approach. Briefly, only positive pairs were used to per-
form the subset splitting to compare the recall-based evaluation
metric. In each fold, at least one link (known interaction) was
kept in each row and each column of Y, respectively. Five trials
of 10-fold cross-validation processes were performed to yield
50 fold matrices with test set data points included in each
matrix. Each fold matrix was used to build the model and pre-
dict the data points in the test set. Step 2: Optionally, the simi-
larity matrices were converted to the corresponding kernel
matrices as shown in the data set transformation section for
the kernel-based algorithms such as BLM. Step 3: Multiple mod-
els were built based on similarity matrix either from targets or
from drugs (or based on matrices from both targets and drugs),
as well as each fold matrix (generated from Step 1). Step 4: The
recall-based evaluation metric, MPR, was calculated from the
test set data points in each fold matrix. The source codes for
comparison of the discussed algorithms can be found at:
https://github.com/minghao2016/chemogenomicAlg4DTIpred.

Results and discussion

In this work, we reviewed several chemogenomic data-driven
and open-source algorithms based on model properties and
model evolutionary relationships. We re-implemented five
algorithms selected based on the clusters (Figure 1) in R pro-
gramming language [64]. DTI prediction algorithms were vali-
dated by using the MPR evaluation metric. Additionally, two
traditional metrics, AUC and AUPR, were also reported. Table 3
lists the results of MPR, AUC and AUPR for the representative
algorithms based on five trials of 10-fold cross-validation. For
MPR, the smaller the value, the better of the algorithm’s per-
formance is. For AUC and AUPR, a larger value indicates better
performance. For calculating AUC and AUPR, the whole data set
was randomly divided into 10 parts with approximately equal
size for the positive and ‘negative’ interaction pairs, respec-
tively. Each part was selected in turn as the test set, while the
remaining nine parts were served as the training set. It is evi-
dent that the data set possesses the imbalanced property.
Therefore, AUPR is more suitable to be used to evaluate such
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imbalanced data set compared with AUC. As shown in Table 3,
for all of the four subsets (Enzyme, IC, GPCR and NR),
KronRLSMKL consistently outperforms (sometimes slightly
though) other algorithms in terms of AUPR, followed by
DNILMF. BLM exhibits the lowest AUPR value. From these
results, it can be noticed that the representative algorithms per-
formed with a similar trend when evaluated using MPR, except
that DNILMF has the lowest MPR value (indicating best perform-
ance), followed by KronRLSMKL in three larger data sets (i.e.
Enzyme, IC and GPCR), which will be discussed in the following.
Figure 2 shows the boxplots of MPR from five trials of 10-fold
cross-validation for the five algorithms based on the benchmark
data set.

For three relatively larger data sets (i.e. Enzyme, IC and
GPCR), all of the five representative algorithms keep the same
trend of prediction performance, where DNILMF outperforms
the other four algorithms consistently, and BLM shows large
MPR values compared with others. Both KronRLSMKL and
DTHybrid show comparable results, which are both (slightly)
better than the ones from SCMLKNN. Interestingly, for NR,
which is the smallest data set, SCMLKNN exhibits the best MPR
value. However, for all four data sets, these algorithms already
gave a large improvement over a purely random model with
MPR expected as of 50% (especially for the larger data sets). We
emphasize that the current results of MPR were calculated
based on the original parameter settings from the reported

algorithms with slight differences, and the parameters were
fixed during the cross-validations. Therefore, it is anticipated
that the performance might be improved by fully exploiting the
parameter space. As reported in the previous work [65], the
nested cross-validation can be used to perform parameter tun-
ing from the inner loop, and the outer loop is used to evaluate
the model. In this work, we took the DTHybrid algorithm as an
example to perform nested cross-validation. As a result, the
model with optimal parameters (i.e. lambda and alpha used by
DTHybrid) derived from the nested cross-validation exhibits
similar or slightly better results than the one using fixed
parameters.

From these results, we notice that the size of samples in the
data set can have an impact on the model performance
(Figure 3). Most models would show improved performance
with the increase of samples. Interestingly, though IC includes
more data points compared with GPCR, algorithms from
KronRLSMKL, DTHybrid, SCMLKNN and DNILMF consistently
give relative better results for GPCR. One of the possible reasons
for this result may be that the ratio of the number of targets to
the number of drugs in Y for GPCR is much less than the ratio in
the IC group. To further investigate the influence of data size,
we subsampled three larger data sets (i.e. Enzyme, IC and GPCR
in descending order of size) to the sizes approximate to that of
the smaller data sets and calculated the MPR values. For compu-
tational efficiency, we took DTHybrid as the tested algorithm.

Figure 2. MPR of five representative DTI prediction algorithms based on the benchmark data set. For Enzyme, IC and NR, all results differ significantly except

KronRLSMKL VS. DTHybrid (P<0.01, t-test). For GPCR, all results differ significantly except KronRLSMKL versus DTHybrid, KronRLSMKL versus SCMLKNN and DTHybrid

versus SCMLKNN (P<0.01, t-test).
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To subsample a larger data set, for example, for the Enzyme
data set (i.e. 664 targets and 445 drugs), three subsamples were
generated with the approximated size of IC (i.e. 204 targets and
221 drugs), GPCR (i.e. 95 targets and 125 drugs) and NR (i.e. 30
targets and 55 drugs). Similarly, two subsamples for the IC data
set and one subsample for the GPCR data sets were generated. It
showed that when the size of a larger data set decreased, the
corresponding performance also reduced (Figure 4). This indi-
cates that the data set size is indeed a factor to influence the
model performance.

Besides data set size, data quality also has an impact. Thus,
we also evaluated the five algorithms based on the kd data set
used in the previous work [65]. Originally, the kd data set con-
tains drug–target pairs with regression-format kd data from the
study by Davis and coworkers [66]. We converted it to a data set
of binary data as done by Pahikkala and coworkers [65]. We also
performed several preprocessing steps for generating proper
data format for the current algorithms, which means that the
generated data set should guarantee each row and each column
have at least one known interaction, respectively. Finally, we

obtained 373 targets and 65 drugs and the corresponding simi-
larity matrices. Having kept the default parameters, we
obtained the MPR values for BLM, KronRLSMKL, DTHybrid,
SCMLKNN and DNILMF as of 0.320, 0.166, 0.126, 0.181 and 0.122,
respectively. The results for the kd data set show a similar trend
of algorithms performance with those from the Enzyme, IC and
GPCR data sets, except that DTHybrid outperforms KronRLSMKL
in the kd data set as indicated by MPR values. In terms of AUPR,
the DNILMF algorithm also presents the best performance for
the kd data set as compared with other algorithms. We also
investigated the influence of data size on the performance
based on the kd data set. As shown in Figure 4, when we sub-
sampled the original kd data (i.e. 373 targets and 65 drugs) to
the approximate size of the smaller data sets in the well-used
benchmark (i.e. IC: 204 targets and 57 drugs; GPCR: 95 targets
and 44 drugs; NR: 26 targets and 31 drugs), the performance also
decreased.

It is evident that DNILMF shows better performance for all
the subsets except NR. However, we notice that the enhanced
performance of DNILMF is not only derived from the proposed

Table 3. Comparison of open-source algorithms based on MPR, AUC and AUPR for the benchmark data set

Data Method MPR (mean 6 SE) AUC (mean 6 SE) AUPR (mean 6 SE)

Enzyme BLM 0.119 6 0.002 0.923 6 0.003 0.750 6 0.003
KronRLSMKL 0.047 6 0.001 0.993 6 0.000 0.963 6 0.001
DTHybrid 0.053 6 0.002 0.986 6 0.001 0.939 6 0.001
SCMLKNN 0.076 6 0.002 0.986 6 0.000 0.839 6 0.002
DNILMF 0.033 6 0.001 0.996 6 0.000 0.951 6 0.001

IC BLM 0.169 6 0.003 0.899 6 0.002 0.684 6 0.009
KronRLSMKL 0.088 6 0.002 0.990 6 0.001 0.953 6 0.003
DTHybrid 0.090 6 0.002 0.989 6 0.002 0.918 6 0.002
SCMLKNN 0.109 6 0.003 0.975 6 0.000 0.823 6 0.004
DNILMF 0.068 6 0.001 0.996 6 0.000 0.947 6 0.002

GPCR BLM 0.266 6 0.006 0.752 6 0.010 0.326 6 0.009
KronRLSMKL 0.079 6 0.001 0.987 6 0.003 0.833 6 0.005
DTHybrid 0.080 6 0.002 0.969 6 0.002 0.768 6 0.014
SCMLKNN 0.086 6 0.005 0.968 6 0.003 0.650 6 0.011
DNILMF 0.056 6 0.001 0.987 6 0.001 0.826 6 0.008

NR BLM 0.349 6 0.020 0.777 6 0.050 0.211 6 0.091
KronRLSMKL 0.254 6 0.006 0.979 6 0.001 0.613 6 0.060
DTHybrid 0.257 6 0.005 0.917 6 0.003 0.566 6 0.087
SCMLKNN 0.135 6 0.016 0.951 6 0.002 0.342 6 0.009
DNILMF 0.205 6 0.005 0.952 6 0.011 0.605 6 0.063

kd BLM 0.320 6 0.003 0.755 6 0.009 0.233 6 0.015
KronRLSMKL 0.166 6 0.003 0.817 6 0.004 0.200 6 0.002
DTHybrid 0.126 6 0.002 0.957 6 0.001 0.686 6 0.004
SCMLKNN 0.181 6 0.005 0.908 6 0.002 0.526 6 0.008
DNILMF 0.122 6 0.002 0.966 6 0.001 0.721 6 0.004

Figure 3. Performance of five representative algorithms on four benchmark subsets with different data sizes.
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algorithm itself but also from the KF method [48, 53, 54], which
is an important but understudied approach in the DTI predic-
tion field. In fact, the KF method can be applied to any algo-
rithm, as it is independent of the model itself. In this work, we
combined two kinds of kernels (in the DNILMF algorithm)
including the drug kernel from structural information (or target
kernel from sequence information) and the drug GIP kernel
from the interaction matrix Y (or target GIP kernel of Y).
However, multiple kernels are allowed to KF.

Besides the KF technology, many other methods were also
proposed to improve the data set itself, which are independent
of algorithms. For example, in the SCMLKNN [63] algorithm, the
authors proposed the super-target technique, which first clus-
ters the targets into protein families on the basis of sequence
similarity. By performing such operation, the data sparsity prob-
lem can be solved to some extent. In the KronRLSWNN algo-
rithm [57], the authors proposed to use a WNN to infer the
interaction profiles for new drugs, which have no interaction
data with any targets. In both RLSKF [53] and DNILMF [48], a
similar process was also used to infer those profiles for both
new drugs and new targets. Technologies such as KF, super-
target clustering and WNN, which are unsupervised methods,
are more straightforward and flexible to combine with other
algorithms, as they are obtained before the model building step.
Therefore, such unsupervised technologies are often adopted
by researchers who do not have statistical/mathematical back-
ground because of the simplicity and easy implementation
compared with supervised algorithms, which often require opti-
mization process with complex mathematical knowledge.

Besides the mentioned algorithms above, in fact, there are
many algorithms from other scientific disciplines such as
implicit feedback [51, 52], which can be smoothly transformed
and applied to tackle DTI predictions. Indeed, progress for one
scientific field may be accelerated by ‘borrowing’ ideas, con-
cepts or theories from a different discipline. For example,
NRLMF borrows the logistic matrix factorization technique used
by collaborative filtering [51] with enhanced objective function,
and DNILMF borrows the ‘trust ensemble’ idea from the recom-
mender systems field [61] by adding similarity fusion technique
and extending the original one to dual integration. Thus, with
the development of algorithms in various research fields, it is
beneficial to transfer across-discipline methods into the DTI
prediction field.

In this work, we assessed five open-access DTI prediction algo-
rithms based on the experimental setting where both training and
test sets share common drugs/targets, and proposed to use a
recall-based metric to evaluate the models. Algorithms, which can
handle new drug/target scenarios, will be studied in the future, and
additional and multiple evaluation metrics for estimating one-
class classification problems may be taken into consideration.
Despite of the many applications in previous work, the benchmark
data sets used are rather limited. In fact, as more DTI data becomes
available in the public domain, it will be beneficial to apply the DTI
algorithms to diverse data sets for comparison. In summary, the
current work compares and analyzes the performance on DTI pre-
dictions using the commonly used benchmark data set and DTI
data in the kd data set. Such review and comparative work may
provide insights for advancing the state of art for DTI predictions
by developing new methods to improve scalability and gain stron-
ger generalization abilities, as well as to effectively incorporate neg-
ative samples and better handle regression-format data.

Conclusion

A set of open-source and chemogenomic data-driven DTI pre-
diction algorithms was reviewed based on the model properties
and model evolutionary relationships. Five representative algo-
rithms were compared primarily based on recall-based evalua-
tion metric, MPR. The selected algorithms were re-implemented
in R programming language for straightforward comparison,
ease of reuse and further improvement. Algorithms such as
DNILMF combined with the KF technology exhibited better per-
formance. We believe this review will be helpful to researchers
by facilitating decision making for choosing DTI algorithms, as
well as by providing a common ground to understand the state
of art for future enhancement of DTI algorithms.

Key Points

• Open-source chemogenomic data-driven computational
algorithms for predicting DTIs were reviewed.

• Five representative algorithms were re-implemented in
R programming language.

• Recall-based metric, MPR, was used to evaluate differ-
ent algorithms.

Figure 4. Influence of data size on model performance of DTHybrid. (A) subsample the original Enzyme (E) data set into approximated size of IC (I), GPCR (G) and NR (N)

data sets, respectively; (B) subsample the original IC (I) data set into approximated size of GPCR (G), NR (N) data sets, respectively; (C) subsample the original GPCR (G)

data set into approximated size of NR (N) data set; and (D) subsample the original kd (k) data set into approximated size of IC (I), GPCR (G) and NR (N) data sets,

respectively.
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