Skip to main content
. 2018 Feb 6;20(4):1465–1474. doi: 10.1093/bib/bby010

Table 3.

Comparison of open-source algorithms based on MPR, AUC and AUPR for the benchmark data set

Data Method MPR (mean ± SE) AUC (mean ± SE) AUPR (mean ± SE)
Enzyme BLM 0.119 ± 0.002 0.923 ± 0.003 0.750 ± 0.003
KronRLSMKL 0.047 ± 0.001 0.993 ± 0.000 0.963 ± 0.001
DTHybrid 0.053 ± 0.002 0.986 ± 0.001 0.939 ± 0.001
SCMLKNN 0.076 ± 0.002 0.986 ± 0.000 0.839 ± 0.002
DNILMF 0.033 ± 0.001 0.996 ± 0.000 0.951 ± 0.001
IC BLM 0.169 ± 0.003 0.899 ± 0.002 0.684 ± 0.009
KronRLSMKL 0.088 ± 0.002 0.990 ± 0.001 0.953 ± 0.003
DTHybrid 0.090 ± 0.002 0.989 ± 0.002 0.918 ± 0.002
SCMLKNN 0.109 ± 0.003 0.975 ± 0.000 0.823 ± 0.004
DNILMF 0.068 ± 0.001 0.996 ± 0.000 0.947 ± 0.002
GPCR BLM 0.266 ± 0.006 0.752 ± 0.010 0.326 ± 0.009
KronRLSMKL 0.079 ± 0.001 0.987 ± 0.003 0.833 ± 0.005
DTHybrid 0.080 ± 0.002 0.969 ± 0.002 0.768 ± 0.014
SCMLKNN 0.086 ± 0.005 0.968 ± 0.003 0.650 ± 0.011
DNILMF 0.056 ± 0.001 0.987 ± 0.001 0.826 ± 0.008
NR BLM 0.349 ± 0.020 0.777 ± 0.050 0.211 ± 0.091
KronRLSMKL 0.254 ± 0.006 0.979 ± 0.001 0.613 ± 0.060
DTHybrid 0.257 ± 0.005 0.917 ± 0.003 0.566 ± 0.087
SCMLKNN 0.135 ± 0.016 0.951 ± 0.002 0.342 ± 0.009
DNILMF 0.205 ± 0.005 0.952 ± 0.011 0.605 ± 0.063
kd BLM 0.320 ± 0.003 0.755 ± 0.009 0.233 ± 0.015
KronRLSMKL 0.166 ± 0.003 0.817 ± 0.004 0.200 ± 0.002
DTHybrid 0.126 ± 0.002 0.957 ± 0.001 0.686 ± 0.004
SCMLKNN 0.181 ± 0.005 0.908 ± 0.002 0.526 ± 0.008
DNILMF 0.122 ± 0.002 0.966 ± 0.001 0.721 ± 0.004