
MG-RAST version 4—lessons learned from a decade

of low-budget ultra-high-throughput

metagenome analysis
Folker Meyer, Saurabh Bagchi, Somali Chaterji, Wolfgang Gerlach,
Ananth Grama, Travis Harrison, Tobias Paczian, William L. Trimble, and
Andreas Wilke
Corresponding author: Folker Meyer, 9700 S. Cass Ave, 60439 Argonne, IL, USA. E-mail: folker@anl.gov

Abstract

As technologies change, MG-RAST is adapting. Newly available software is being included to improve accuracy and perform-
ance. As a computational service constantly running large volume scientific workflows, MG-RAST is the right location to per-
form benchmarking and implement algorithmic or platform improvements, in many cases involving trade-offs between spe-
cificity, sensitivity and run-time cost. The work in [Glass EM, Dribinsky Y, Yilmaz P, et al. ISME J 2014;8:1–3] is an example; we
use existing well-studied data sets as gold standards representing different environments and different technologies to evalu-
ate any changes to the pipeline. Currently, we use well-understood data sets in MG-RAST as platform for benchmarking. The
use of artificial data sets for pipeline performance optimization has not added value, as these data sets are not presenting the
same challenges as real-world data sets. In addition, the MG-RAST team welcomes suggestions for improvements of the work-
flow. We are currently working on versions 4.02 and 4.1, both of which contain significant input from the community and our
partners that will enable double barcoding, stronger inferences supported by longer-read technologies, and will increase
throughput while maintaining sensitivity by using Diamond and SortMeRNA. On the technical platform side, the MG-RAST
team intends to support the Common Workflow Language as a standard to specify bioinformatics workflows, both to facilitate
development and efficient high-performance implementation of the community’s data analysis tasks.

Key words: metagenome analysis; cloud; distributed workflows

Folker Meyer is a Senior Computational Biologist at Argonne National Laboratory; a Professor at the Department of Medicine, University of Chicago; and a
Senior Fellow at the Computation Institute at the University of Chicago. He is also deputy division director of the Biology Division at Argonne National
Laboratory and a senior fellow at the Institute of Genomics and Systems Biology (a joint Argonne National Laboratory and University of Chicago Institute).
Saurabh Bagchi is a Professor in the School of Electrical and Computer Engineering and the Department of Computer Science (by courtesy) at Purdue
University. He is the founding Director of CRISP, a university-wide resiliency center at Purdue.
Somali Chaterji is a biomedical engineer and medical data analyst. She is a Research Faculty at Purdue University, specializing in high-performance com-
puting infrastructures and algorithms for synthetic biology and epigenomics.
Wolfgang Gerlach, PhD is a Bioinformatics Senior Software Engineer at the University of Chicago with a joint appointment at Argonne National Laboratory.
Ananth Grama is a Professor of Computer Science at Purdue University. He also serves as the Associate Director of the Center for Science of Information, a
Science and Technology Center of the National Science Foundation.
Travis Harrison is a Bioinformatics Senior Software Engineer at the University of Chicago with a joint appointment at Argonne National Laboratory.
Tobias Paczian is a Senior Developer at the University of Chicago with a joint appointment at Argonne National Laboratory. He has more than a decade of
experience building User Interfaces for bioinformatics applications.
William L. Trimble, PhD is a postdoctoral researcher at Argonne National Laboratory with a background in physics and data science.
Andreas Wilke is a Principal Bioinformatics Specialist Argonne National Laboratory with a joint appointment at the University of Chicago. He has more
than a decade of experience building bioinformatics applications.
Submitted: 25 May 2017; Received (in revised form): 21 July 2017

, 20(4), 2019, 1151–1159

doi: 10.1093/bib/bbx105
Advance Access Publication Date: 26 September 2017
Paper

Briefings in Bioinformatics

1151

Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

https://academic.oup.com/

Introduction

The ever-increasing amount of DNA sequence data [1] has moti-
vated significant developments in biomedical research.
Currently, however, many researchers continue to struggle with
large-scale computing and data management requirements.
Numerous approaches have been proposed and are being pur-
sued to alleviate this burden on application scientists. The
approaches include focusing on the user-interface layer while
relying primarily on legacy technology [2]; reimplementing sig-
nificant chunks of code in new languages [3]; and developing
clean-slate designs [4]. Breakthroughs that appreciably reduce
computational burden, such as Diamond [5], are the exception.
While important, few if any of the solutions contribute to solv-
ing the central problem: data analysis is becoming increasingly
expensive in terms of both time and cost, with reference data-
bases growing rapidly and data volumes rising. In essence,
more and more data are being produced without sufficient re-
sources to analyze the data. All indicators show that this trend
will continue in the foreseeable future [1].

We strongly believe that a change in how the research com-
munity handles routine data analytics is required. While we
cannot predict the outcome of this evolutionary process, scal-
able, flexible and—most important—efficient platforms will, in
our opinion, be part of any ‘new computational ecosystem’. MG-
RAST [6] is one such platform that handles hundreds of submis-
sions daily, often aggregating >0.5 terabytes in a 24 h period.

MG-RAST is a hosted, open-source, open-submission plat-
form (‘Software as a Service’) that provides robust analysis of
environmental DNA data sets (where environment is broadly
defined). The system has three main components: a workflow, a
data warehouse and an API (with a Web frontend). The work-
flow combines automated quality control, automated analysis
and user-driven parameter- and database-flexible analysis. The
data warehouse supports data archiving, discovery and integra-
tion. The platform is accessible via a Web interface [7], as well
as a RESTful API [8].

Analysis of environmental DNA (i.e. metagenomics) presents a
number of challenges, including feature extraction (e.g. gene call-
ing) from (mainly unassembled) often lower-quality sequence
data; data warehousing; movement of often large data sets to be
compared against many equally large data sets; and data discov-
ery. A key insight (see Lessons learned, L1) is that the challenges
faced here are distinct from the challenges facing groups that ren-
der services for individual genomes or even sets of genomes [9].

Several hosted systems currently provide services in this
field: JGI IMG/M [10], EBI MG-Portal [11] and MG-RAST [6]. Myriad
stand-alone tools exist, including integrative user-friendly
interfaces [12]; feature prediction tools [5, 13]; tools that ‘bin’ in-
dividual reads using codon frequencies, read abundance and
cross-sample abundance [14–17]; and sets of marker genes
reducing the search space for analysis with associated visual-
ization tools [18]. MG-RAST seeks to select the best-in-class im-
plementations and provide a hosted resource-efficient service
that implements a balance between custom analysis and one-
size-fits-all recipes. The approach taken in MG-RAST to achieve
this goal is by defining parameters late—during download or
analysis—not a priori before running a set of analyses tools. The
analysis workflow in MG-RAST is identical across all data sets,
except for data set-specific operations such as host DNA re-
moval and variations in filtering to accommodate different
user-submitted data types.

While many approaches to metagenome analysis exist, we
chose an approach that allows large-scale analysis and massive

comparisons. The core principle for the design of MG-RAST was
to provide consistent analyses as deep and unbiased as possible
at affordable computational cost. Other approaches, such as
comprehensive genome and protein binning, adopted by IMG/
M, or the profile hidden Markov model-based approaches using
MG-Portal, do add value and provide valuable alternative ana-
lyses. These portals complement each other’s capabilities, and
we routinely share best practices with them. MG-RAST’s strong
suit is handling raw reads directly from a sequencing service. It
has been extended to handle assembled metagenomes and
metatranscriptomes as well. In its current form, however, it
does not support metagenomics assembly or a genome-centric
approach to metagenomics (i.e. binning).

Like many hosted applications (not just in bioinformatics),
MG-RAST started out as a traditional database-oriented system
using largely traditional design patterns. While expanding the
number of machines able to execute MG-RAST workflows, we
learned that data access input and output (I/O) is as limiting a
factor as the processing power or memory (see Lessons learned,
L2 and L8). MG-RAST has rapidly adapted [19–21] to meet the
needs of a growing user community, as well as the changing
technology landscape. We have run MG-RAST workflows on
several computational platforms, including OpenStack [22],
Amazon’s AWS [23], Microsoft’s Azure [24], several local clusters
and even laptops on occasion. In many ways, MG-RAST has
evolved to be the counterpoint to the now-abundant one-offs
that are routinely implemented in many laboratories for se-
quence analysis. It offers reproducibility and was designed for
efficient execution [9] (see Lessons learned, L9).

To date, MG-RAST has processed >295 000 data sets from
23 000 researchers. As of June 2017, over 1 trillion individual se-
quences totaling >40 terabase pairs have been processed, and the
total volume of data generated is well over half a petabyte of data.
A fair assessment is that we do a lot of the heavy lifting of high-
volume automated analysis of amplicon and shotgun metage-
nomes as well as metatranscriptomes for a large user community.
Currently, only 20% (44 000) of the data sets in MG-RAST are pub-
licly available. Data are frequently shared by researchers with
only their collaborators. In future releases, we will introduce a ser-
ies of features to incentivize data publication.

The vast majority of the data sets in MG-RAST represent
user submissions; <3000 are data sets extracted from SRA by
the developers. Determining identity between any two data sets
is far from trivial if available metadata does not provide suffi-
cient evidence—one more reason to incentivize metadata (see
Lessons learned, L7). However, the developers are working
jointly with researchers at EBI to synchronize the contents of
EBI’s ENA with the contents of MG-RAST. Currently, to the best
of our combined knowledge, there is little overlap between the
data sets in SRA/ENA and those in MG-RAST.

The analysis shown in Figure 1 is typical for one class of user
queries. We note that in addition to requesting SEED annotations,
the user might also request annotations from the M5NR sub-
databases (i.e. namespaces) such as KEGG pathways [25], KEGG
orthologues [26], COG [27] and RefSeq [28]. Providing a smart data
product that can be projected with no computation onto other
namespaces (read annotation databases) saves a significant
amount of computational resources (see Lessons learned, L3).

Compared with previous versions of MG-RAST, the latest
version has increased throughput dramatically while using the
same amount of resources: �22 million core-hours annually are
used to run the MG-RAST workflow for user-based submissions.
In addition, the RESTful API has allowed a rethinking and
restructuring of the user interface (different model–view–

1152 | Meyer et al.

Deleted Text: ,
Deleted Text: (e.g.,
Deleted Text:)
Deleted Text: is
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: over
Deleted Text: -
Deleted Text: our
Deleted Text: (&hx201C;
Deleted Text: &hx201D;)
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text:
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: over
Deleted Text: ,
Deleted Text: ,
Deleted Text: over 1
Deleted Text: ,
Deleted Text: is
Deleted Text: fewer than
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: approximately
Deleted Text: -
Deleted Text: -

controller pattern) and, most important, the reproducibility of
results using containers.

Implementation

While MG-RAST started as an application built on a traditional
LAMP stack [30], we quickly realized that a single database could
not provide sufficient flexibility to support various underlying
components at the scale required. Instead, we chose to rely on
an open API [8] that provides the ability to change underlying
components as required by scale.

We note that MG-RAST is not a comprehensive analysis tool
offering every conceivable kind of boutique analysis. By making
some data-filtering parameters user adjustable at analysis or
download time, MG-RAST provides flexibility. Via the API, users
and developers can pipe MG-RAST data and results into their
in-house analysis procedures. Figure 1 shows an MG-RAST API
query for sequences with similarities to proteins with the SEED
Subsystem namespace annotation inosine-50 phosphate dehy-
drogenase from the soil metagenome mgm4662210.3 that is
streamed into a filtering and alignment procedure. A key fea-
ture of MG-RAST (see Lessons learned, L6) is its ability to adjust
database match parameter at query time—a function frequently
not recognized by researchers and in some cases missed even
by studies comparing systems [31].

MG-RAST has been designed to treat every data set with the
same pipeline. Given the expected volume and variety of data-
sets, per-data set optimization of parameters has not been a de-
sign goal. The system is optimized for robust handling of a wide
variety of input types, and users can perform optimizations
within sets of parameters that filter the pipeline results. The
automatic setting of, for instance, detection thresholds for dra-
matically different data types and research questions is not the
role of a data analysis platform. While this one-size-fits-all na-
ture of the processing might somewhat limit sensitivity and po-
tentially limit downstream scientific inquiry, these limitations
are counterbalanced by the vast scope of the consistently ana-
lyzed data universe that the uniformly applied workflows and
data management and discovery systems enable researchers to
access. We believe that relying on smart data products that en-
able adjustment of parameters after processing and using cus-
tom downstream analysis scripts more than compensate for
any reduction in sensitivity (see Lessons learned, L3 and L6).

Backend components

Figure 2 shows the current design of the MG-RAST backend
components, using various databases and caching systems
[32–35] as appropriate to support the API with the performance
needed.

Figure 1. MG-RAST data and analysis results can be reused for other purposes. Here, we show a muscle [29] alignment of (the prodigal translations) of filtered sequences from the

following unauthenticated API call: http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue¼10&type¼function&source¼Subsystems&filter¼Inosine-5.

Figure 2. Backend of MG-RAST version 4 using several database systems to enable efficient querying via the API.

MG-RAST version 4 | 1153

Deleted Text: &hx2019;
Deleted Text: -
Deleted Text: (e.g.,
Deleted Text:)
Deleted Text: (e.g.,
Deleted Text:)
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5
http://api.metagenomics.anl.gov//annotation/sequence/mgm4662210.3?evalue=10&hx0026;type=function&hx0026;source=Subsystems&hx0026;filter=Inosine-5

A major criterion for success of the workflow is the ability to
scale to the throughput levels required. Algorithmic changes
(e.g. adoption of Diamond [5]) can help, but the design of the
execution environment—most specifically its portability—is the
single key to scaling (see Lessons learned, L4 and L5).

Access to data

In computational biology, shared filesystems traditionally are
used to serve data to the computational resources. Sharing data
between multiple computers is necessary because the data typic-
ally require more computational resources than a single machine
can provide. Shared filesystems can render data accessible on sev-
eral computers. This approach, however, limits the range of avail-
able platforms or requires significant time for configuring access
or moving data into the platform. In addition, many shared file-
systems exhibit poor scaling performance for science applications.
Slow or inadequate shared filesystems have been observed by al-
most every practitioner of bioinformatics (see Lessons learned,
L2). This situation has forced the use of complex I/O middleware
to transform science I/O workloads into patterns that can scale in
various science domains, including quantum chromodynamics
and astrophysics [36], molecular dynamics [37], fusion science [38]
and climate [39].

Rather than adopting this approach, we conducted a detailed
analysis of our workloads, which revealed that individual compu-
tational units (e.g. cluster nodes) typically use a small fraction of
the data and do not require access to the entire data set.
Consequently, we chose to centralize data into a single point and
access it in a RESTful way, thus providing efficient access while
requiring no configuration for the vast majority of computing sys-
tems. A single object store can support distributed streaming ana-
lysis of data across many computers (see Lessons learned, L8).

The SHOCK object store [40] provides secure access to data
and, most important, to subsets of the data. A computational
client node can request a number of sequence records or sets of
records meeting specific criteria. Data are typically streamed at
significant fractions of line speed, and as results are frequently
returned as indices that are much smaller than the original data
files, writing is extremely efficient. Furthermore, the data are
primarily write-once, which significantly simplifies the design
of the object store with respect to data consistency.

Data in SHOCK is available to third parties via a RESTful API,
and thus, SHOCK supports the reuse of both data and results.

Execution format

Executing workflows across a number of systems requires that
the code be made available in suitable binary form on those
platforms. Among the emerging challenges, reproducibility is a
key problem for scientific disciplines that rely on the results of
sequence analysis at scale without the ability to validate every
single computational step in depth.

Virtual machines have been used to provide stable and port-
able execution environments [41] for a number of years.
However, because of many technical details (e.g. significant
number of binary formats required to cover all platforms) and
significant overhead [42] in execution, containers provide a
more suitable platform for most scientific computations.

In particular, the relatively recent advent of binary Linux
containers (notably, Docker) in computing affords a novel way
to distribute execution environments. Containers reduce the set
of requirements for any given software package to one: a con-
tainer. We have devised a scalable system [43] to execute

scientific workflows across a number of containers connected
only via a RESTful interface to an object store. With increasing
numbers of systems supporting containerized execution [44]
and with compatibility mechanisms [45] emerging to support
legacy installations, Linux containers are quickly becoming the
lingua franca of binary execution environments (see Lessons
learned, L5). As with all of MG-RAST, the recipes for building the
containers (‘Dockerfiles’) are available as open source on github,
and the binary containers are available on DockerHub. The re-
sulting containers are not specific to the MG-RAST systems, and
the binary containers and the recipes are available to third par-
ties for their adoption.

Current MG-RAST workflow

MG-RAST has been used for tens of thousands of data sets. This
extensive use has led to a level of stability and robustness that
few sequence analysis workflows can match.

The workflow (version 4.01) consists of the following logical
steps:

1. Data hygiene
Providing quality control and normalization steps that also
include mate pair merging with ea-utils fastq-join [46–48].
The focus, however, is on artifact removal and host DNA re-
moval [48, 49].

2. Feature extraction
Using a predictor that has been shown to be robust against
sequence noise (FragGeneScan [50]) to predict potentially
protein-coding features, and using a purposefully simple
similarity-based approach to predict ribosomal RNAs using
VSEARCH [51]. The similarity-based predictions use a ver-
sion of M5RNA [52] that was clustered at 70% identity to find
candidate ribosomal RNA sequences.

3. Data reduction
Clustering of predicted features at 90% identity (protein cod-
ing) and 97% (ribosomal RNA). Features overlapping with
predicted ribosomal RNA (rRNA) sequences are removed. For
each cluster, the longest representative is used.

4. Feature annotation
Using similarity-based mapping of cluster representatives
using super nonredundant M5NR [52] with a parallelized
version of BLAT [53] for candidate proteins and ribosomal
RNAs. This creates ‘annotations’ with M5NR database identi-
fiers only.

5. Profile creation
Mapping the M5NR identifiers to several functional name-
spaces (e.g. RefSeq or SEED), hierarchical namespaces (e.g.
COG and Subsystems), pivoting into functional and taxo-
nomic categories, and thus creating a reduced fingerprint
(‘profile’) for each namespace and hierarchy.

6. Database load
Uploading profiles to the various MG-RAST backend data-
bases that support the API.

We note that the approach taken to sequence analysis is dif-
ferent from the state of the art for more or less complete micro-
bial genomes [54].

Using data from MG-RAST

A key problem of current big data bioinformatics is the barrier
to reuse of data and results. Comparing results of an expensive
computational procedure with results from another laboratory
can be problematic if the procedures used are not identical

1154 | Meyer et al.

Deleted Text: ,
Deleted Text: :
Deleted Text: s
Deleted Text: ,
Deleted Text: ,
Deleted Text: utilize
Deleted Text: ,
Deleted Text: is
Deleted Text: ;
Deleted Text: since
Deleted Text: is
Deleted Text: :
Deleted Text: ,
Deleted Text: (&hx201C;
Deleted Text: &hx201D;)
Deleted Text: protein
Deleted Text:
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: (&hx201C;
Deleted Text: &hx201D;)
Deleted Text: quite
Deleted Text: (see e.g.
Deleted Text:)

(potentially compromising integrity of the study). Another com-
mon approach is to not reuse existing results but to do an ex-
pensive reanalysis of both data sets, thus duplicating the work
originally performed. One key problem with this approach is
that data-driven science is no longer reviewable, as no reviewer
can be expected to retrace the steps of the investigators while
duplicating their computational work. If the data and results
(also intermediate results) were available as reproducible enti-
ties, the problem of data uncertainty and costly recomputations
would disappear.

This exceptional waste of computer time is acceptable de-
fault behavior in a discipline that is rich in computation and
poor in data. In a data-rich ecosystem, however, either the
terms of engagement have to change or the percentage of the
research budgets allocated to computational resources has to
dramatically increase. One of the key goals of MG-RAST is to
provide a wealth of data sets and the underlying analysis
results. Both the Web-based user interface and the RESTful API
make these results accessible. To get closer to our goal of trans-
parent and reproducible MG-RAST data analysis, we already
execute all workflow steps in containers. The missing building
block—which we are currently working on and which will
enable every interested party to easily to execute, compare or
modify our analysis pipeline—is support for the Common
Workflow Language (CWL) [55] in our workflow engine.
We think that producing data with a CWL workflow adds more
value because it adds executable provenance (see Lessons
learned, L4). Executable provenance is critical, as it allows recre-
ation of the results on a wide variety of computational platforms.

Using profiles generated by MG-RAST

Profiles are the primary data product generated by MG-RAST,
and they feed into the Web user interface and the various other
tools. They encode the abundance of entities in a given sample
combining information from several databases. Most important,
profiles include information on the quality of the underlying ob-
servation (e.g. results of sequence similarity search) (Figure 3).
Profiles are a compressed representation of the environmental
samples, allowing large-scale comparisons.

Another critical feature is the ability to adjust matching par-
ameters (e.g. minimal alignment length required for inclusion)
at analysis time, allowing data reuse without the need for
recomputing the profile with different cutoffs. With this ‘smart
data product’, data consumers can switch between reference
databases and parameter sets without recomputing the under-
lying sequence similarity searches (see Lessons learned, L3).

Metadata—making data discoverable

A key component of data reuse is the much-discussed ‘meta-
data’ (or ‘data describing data’). With tens of thousands of data
sets available, the ability to identify the relevance of data sets
has become critical. Approaches include ‘simple’ machine-
readable encoding of data items such as pH, temperature and
location and the use of controlled vocabularies to allow unam-
biguous encoding of, for example, anatomical organs via [56] or
geographical features using the ENVO ontology [57].

Machine-readable metadata, such as the concepts cham-
pioned by the Genomic Standards Consortium (GSC) [58], is key.
GSC metadata is intentionally kept as simple and lightweight as
possible while trying to meet the needs of the data producers and
data consumers. Despite its simplicity, however, for the occasional
user (e.g. a scientist depositing data), it is still cumbersome. Tools
such as Metazen [59] help bridge the gap between data scientists
and occasional users. MG-RAST implements the core MIxS [60]
checklist, as well as all available environmental packages [61].

GSC-compliant, machine-readable markup of data sets at
the time of upload to or deposition in online resources offers a
unique opportunity. Data become discoverable, and analysis is
made easier. MG-RAST incentivizes the addition of metadata by
offering priority access to the compute resources to data sets
with valid GSC metadata (see Lessons learned, L7).

Web user interface

Not all scientists spend a significant fraction of their time on
the command line or enjoy using the command line to solve
their bioinformatics questions. Extracting and displaying the
relative abundance of proteins from proteins classified as part
of the subsystem class ‘Protein Metabolism’from the phylum
Proteobacteria are simple via the Web interface (Figure 4) but re-
quire many command line invocations.

For these users, MG-RAST provides a graphical user interface
(GUI) implemented in JavaScript/HTML5. The GUI provides guid-
ance for nontrivial procedures such as data upload and validation,
data sharing and data discovery, as well as data analysis Figure 5A.
Data export in various formats is also supported Figure 5B.

User’s view of MG-RAST

Every user has a different view of the data in MG-RAST. All users
have access to the public metagenomics data, but shared or pri-
vate data available to the user are linked to the user’s login in-
formation. Each data set has a unique identifier and
information on visibility; until the data are made publicly

Figure 3. MG-RAST profile encoding abundance and matching parameter information as well as information on the observed entities.

MG-RAST version 4 | 1155

Deleted Text: since
Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: see
Deleted Text: ,
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx2013;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;).
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: quite
Deleted Text: (e.g.,
Deleted Text:)
Deleted Text: s
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: see
Deleted Text: ,
Deleted Text: (see, e.g.,
Deleted Text: (see
Deleted Text: is
Deleted Text: is

available, temporary identifiers are used to minimize the num-
ber of data sets mentioned in the literature without being pub-
licly available. Figure 6 provides a comparison of public and
private data sets and highlights the sharing and data organiza-
tion capabilities of the platform.

A key design feature of MG-RAST is to allow private data
sets; users are in charge of uploading, sharing and releasing the
data. Once submitted, data are private to the submitting user.
The submitting user is reminded to share their data at their ear-
liest convenience.

In addition to data, the processing pipeline and the data
warehousing, MG-RAST provides an analytical tool set. It is im-
plemented as a user-friendly Web application and consuming
the profiles generated by the MG-RAST pipeline.

Future work

As technologies change, MG-RAST is adapting. Newly available
software is being included to improve accuracy and perform-
ance. As a computational service constantly running large-
volume scientific workflows, MG-RAST is the right location to
perform benchmarking and implement algorithmic or plat-
form improvements, in many cases involving trade-offs be-
tween specificity, sensitivity and run-time cost. The work in
[62] is an example. We use existing well-studied data sets as
gold standards representing different environments and

different technologies to evaluate any changes to the pipeline.
Currently, we use well-understood data sets in MG-RAST as a
platform for benchmarking. The use of artificial data sets for
pipeline performance optimization has not added value be-
cause these data sets do not present the same challenges as
real-world data sets do.

The MG-RAST team welcomes suggestions for improve-
ments of the workflow. We are currently working on versions
4.02 and 4.1, both of which contain significant input from the
community and our partners that will enable double barcoding
and stronger inferences supported by longer-read technologies
and will increase throughput while maintaining sensitivity by
using Diamond and SortMeRNA.

On the technical platform side, the MG-RAST team intends to
support the CWL as a standard to specify bioinformatics workflows,
to facilitate both development and efficient high-performance im-
plementation of the community’s data analysis tasks.

Lessons learned

L1. Analyzing large-scale environmental DNA is different from
genomics.

Because of the absence of high-quality assembled data (in
most projects) and the lack of good models for removing con-
taminations upstream, a metagenomics portal site has to take
over quality control and normalization and become good at it.

Figure 4. Relative abundance of protein functional classes (‘Subsystems’) in Proteobacteria (‘RefSeq Phylum’) displayed as a waterfall diagram for data sets in study

mgp128 as displayed by the version 4.0 MG-RAST graphical user interface.

Figure 5. (A) Heatmap and clustering of the occurrence of Corynebacteria in study mgp128 as displayed by the MG-RAST web frontend. (B) Data export options available

for the data and visualization, including sequences and abundance in tabular and JSON format.

1156 | Meyer et al.

Deleted Text: in order
Deleted Text: actually
Deleted Text: ,
Deleted Text: is
Deleted Text: ,
Deleted Text:
Deleted Text: ,
Deleted Text: in order
Deleted Text:
Deleted Text: Common Workflow Language

L2. Data I/O is as limiting as CPU and RAM.
A bad tradition in bioinformatics is ignoring the cost of I/O.

Large-scale distributed systems need to model the I/O cost ex-
plicitly and design their solution to include I/O cost as well as
CPU cost.

L3. Using smart data products helps avoid costly recomputa-
tions and empowers downstream tool builders.

The bad tradition of downloading raw data and creating
spreadsheets with results is not sustainable. While bioinfor-
matics is not yet able to fully rely on disseminating data as re-
search objects [63], we need to move toward them.

L4. The use of reproducible workflows such as CWL [55, 64] is
a crucial requirement for any service generating data meant for
reuse.

Providing a detailed, portable, executable recipe for how the
data were generated is important to data consumers. In add-
ition, making the recipes available supports improvement to
the workflows by third parties.

L5. Containers should be used to capture the execution
environment.

Containers (e.g. Linux containers) capture the environment
in a reproducible format.

Workflows without their environment are less than useful.
L6. Data reuse is critical for saving computational cost.
While the reproducibility resulting from reproducible execu-

tion environments is great, providing intermediate results adds
significantly more value to reviewers and fosters reuse of com-
putational results for a variety of purposes such as building
software to improve existing components (e.g. feature pre-
dictors) or use the data for scientific projects.

L7. Metadata is invaluable and should be required.
Users require encouragement to provide metadata. We aim

to make users submit metadata as early as possible, and to

incentivize users, we provide high-quality tools that make
metadata collection easy.

L8. The complexity of shared filesystems should be avoided
whenever possible.

Relying on RESTful interfaces instead of shared filesystems
provides cross-cloud execution capabilities, allowing us to run
on almost any computational platform including the cheapest
computational platform available.

L9. Portals are the right place for performance engineering.
While many biomedical informatics groups are computa-

tionally proficient, the convergence of large-scale processing
and domain expertise makes portal sites an ideal location for
optimization. Running many workflows thousands of times and
providing services to many other groups is a good platform for
accumulating expertise.

Discussion

As more environmental DNA sequence data become available
to the research community, a new set of challenges emerges.
These challenges require a change in approach to computing at
the community level. We describe a domain-specific portal that,
like its European companion system [11], acts as an integrator
of data and efficiently implements domain-specific workflows.
The lessons learned about building scale-out infrastructure
dedicated to executing bioinformatics workflows and the result-
ing middleware systems [19, 20, 40, 59, 65] will benefit both the
community of users and researchers attempting to build effi-
cient sequence analytics workflows.

Reproducible efficient execution of domain-specific workflows
is a central contribution of the MG-RAST system. Provisioning of
data and results via a Web interface and a RESTful API is another
key aspect. Encouraging data reuse by provisioning both data and

Figure 6. Public study (with permanent unique identifier mgp128) and private study set with temporary identifier. A study groups multiple data sets, provides a single

identifier and allows sharing via simply providing an email address for the person the data are to be shared with.

MG-RAST version 4 | 1157

Deleted Text: input and output (
Deleted Text:)
Deleted Text: was
Deleted Text: ,
Deleted Text: ,
Deleted Text: ;
Deleted Text: s

results (as well as intermediate files) via a stable API is a key func-
tion that serves the community of bioinformatics developers, who
can use precomputed data that are well described by a workflow,
rather than implementing their own (frequently subpar prepro-
cessing steps), and thus can focus on their key mission.

By providing preanalyzed data (using an open recipe that is
available to the community for discussion and improvement),
MG-RAST can help reduce the current ‘method uncertainty’,
where individual data sets analyzed with different analysis
strategies can lead to dramatically different interpretations.

The role of MG-RAST is not one-size-fits-all. Rather than
being the one and only analysis mechanism, MG-RAST is a well-
designed high-performance system on top of an efficient scale-
out platform [66] that can take some of the heavy lifting off the
shoulders of individual researchers. Researchers can add their
own custom boutique analyses at a fraction of the computa-
tional and development cost, allowing them to focus on their
specific problem and thus maximizing overall productivity.

With the state of the art of sequencing technology shifting,
MG-RAST will adapt to extract maximum value by, for example,
explicitly supporting value-added information from longer se-
quences with multiple features, for example for taxonomy call-
ing. We also anticipate that the currently used alignment-based
methods will be supplemented by profile-based methods for
performance reasons within a few years.

Key Points

• Analyzing the growing volume of biomedical environ-
mental sequence data requires cost-effective, reprodu-
cible and flexible analysis platforms and data reuse and
is significantly different from analyzing (almost) com-
plete genomes.

• The hosted MG-RAST service provides a Linux
container-based workflow system and a RESTful API
that allow data and analysis reuse.

• Community portals are the right location for perform-
ance engineering, as they operate at the required scale.

Acknowledgements

The authors thank Dion Antonopoulos, Gail Pieper and
Robert Ross for their input and help.

Funding

The work reported in this article was supported in part by a
grant from the National Institutes of Health (NIH) grant
1R01AI123037-01. Work on this article was also supported
by NSF award 1645609. This work was supported in part by
the NIH award U01HG006537 ‘OSDF: Support infrastructure
for NextGen sequence storage, analysis, and management’,
by the Gordon and Betty Moore Foundation with the grant
‘6-34881, METAZen-Going the Last Mile for Solving the
Metadata Crisis)’. This material was based on work sup-
ported by the US Department of Energy, Office of Science,
under contract DE-AC02-06CH11357.

References
1. NHGRI. DNA sequencing costs. https://www.genome.gov/

sequencingcosts/.[TQ1]

2. Afgan E, Baker D, van den Beek M, et al. The Galaxy platform
for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res 2016;44:W3–10.

3. Doring A, Weese D, Rausch T, et al. SeqAn an efficient, generic
Cþþ library for sequence analysis. BMC Bioinformatics 2008;9:11.

4. Xia F, Dou Y, Xu J. Families of FPGA-based accelerators for
BLAST algorithm with multi-seeds detection and parallel ex-
tension. In: Elloumi M, Küng J, Linial M, et al. (eds),
Bioinformatics Research and Development: Second International
Conference, BIRD 2008 Vienna, Austria, July 7-9, 2008 Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 43–57.

5. Buchfink B, Xie C, Huson DH. Fast and sensitive protein align-
ment using DIAMOND. Nat Methods 2015;12:59–60.

6. Meyer F, Paarmann D, D’Souza M, et al. The metagenomics
RAST server - a public resource for the automatic phylogen-
etic and functional analysis of metagenomes. BMC
Bioinformatics 2008;9:386.

7. Wilke A, Bischof J, Gerlach W, et al. The MG-RAST metage-
nomics database and portal in 2015. Nucleic Acids Res 2016;44:
D590–4.

8. Wilke A, Bischof J, Harrison T, et al. A RESTful API for access-
ing microbial community data for MG-RAST. PLoS Comput Biol
2015;11:e1004008.

9. Desai N, Antonopoulos D, Gilbert JA, et al. From genomics to
metagenomics. Curr Opin Biotechnol 2012;23:72–6.

10.Chen IA, Markowitz VM, Chu K, et al. IMG/M: integrated gen-
ome and metagenome comparative data analysis system.
Nucleic Acids Res 2017;45:D507–16.

11.Mitchell A, Bucchini F, Cochrane G, et al. EBI metagenomics in
2016–an expanding and evolving resource for the analysis
and archiving of metagenomic data. Nucleic Acids Res 2016;44:
D595–603.

12.Huson DH, Weber N. Microbial community analysis using
MEGAN. Methods Enzymol 2013;531:465–85.

13.Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate
filtering of ribosomal RNAs in metatranscriptomic data.
Bioinformatics 2012;28:3211–7.

14.Kang DD, Froula J, Egan R, et al. MetaBAT, an efficient tool for
accurately reconstructing single genomes from complex mi-
crobial communities. PeerJ 2015;3:e1165.

15.Eren AM, Esen OC, Quince C, et al. Anvi’o: an advanced ana-
lysis and visualization platform for ’omics data. PeerJ 2015;3:
e1319.

16. Imelfort M, Parks D, Woodcroft BJ, et al. GroopM: an auto-
mated tool for the recovery of population genomes from
related metagenomes. PeerJ 2014;2:e603.

17.Alneberg J, Bjarnason BS, de Bruijn I, et al. Binning metage-
nomic contigs by coverage and composition. Nat Methods
2014;11:1144–6.

18.Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial
community profiling using unique clade-specific marker
genes. Nat Methods 2012;9:811–4.

19.Tang W, Bischof J, Desai N, et al. Workload characterization for
MG-RAST metagenomic data analytics service in the cloud. In:
Proceedings of IEEE International Conference on Big Data,
Washington, DC, USA, 2014. IEEE Press, Piscataway, NJ, USA.

20.Tang W, Wilkening J, Bischof J, et al. Building scalable data
management and analysis infrastructure for metagenomics.
In: 5th International Workshop on Data-Intensive Computing in the
Clouds, Poster at Supercomputing 2013.

21.Wilke A, Wilkening J, Glass EM, et al. An experience report:
porting the MG-RAST rapid metagenomics analysis pipeline
to the cloud. Concurr Comput 2011;23:2250–7.

22.openstack.org. OpenStack. https://www.openstack.org/.

1158 | Meyer et al.

Deleted Text: is
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: one
Deleted Text: size
Deleted Text: fits
Deleted Text:
Deleted Text: ,
https://www.genome.gov/sequencingcosts/
https://www.genome.gov/sequencingcosts/
https://www.openstack.org/

23.Amazon Inc. Amazon Web Services. https://aws.amazon.
com/.

24.Microsoft Inc. Azure. https://azure.microsoft.com/.
25.Kanehisa M, Goto S, Sato Y, et al. Data, information, know-

ledge and principle: back to metabolism in KEGG. Nucleic Acids
Res 2014;42:D199–205.

26.KEGG. KAAS - KEGG automatic annotation server. http://
www.genome.jp/kegg/kaas/.

27.Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database:
an updated version includes eukaryotes. BMC Bioinformatics
2003;4:41.

28.O’Leary NA, Wright MW, Brister JR, et al. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expan-
sion, and functional annotation. Nucleic Acids Res 2016;44:
D733–45.

29.Edgar RC. MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res 2004;32:
1792–7.

30.Wikipedia. https://en.wikipedia.org/wiki/LAMP_ (software_
bun d l e).

31.Plummer E, Twin J, Bulach DM, et al. A comparison of three
bioinformatics pipelines for the analysis of preterm gut
microbiota using 16S rRNA gene sequencing data. J Proteom
Bioinform 2016;283–91.

32.Alexandre R. Instant Apache Solr for Indexing Data How-to. Packt
Publishing Limited, 2013.

33.Elasticsearch BV, Elastic search. https://www.elastic.co/prod
ucts/elasticsearch.

34.Cassandra. http://cassandra.apache.org/.
35. Inc. O. MySQL. https://www.mysql.com/.
36.Bent J, Gibson G, Grider G, et al. A Checkpoint Filesystem for

Parallel Applications. 2009.
37. Jens Freche WF, Sutmann G. High-Throughput Parallel-I/O using

SIONlib for Mesoscopic Particle Dynamics Simulations on Massively
Parallel Computers, Advances in Parallel Computing; Volume 19: Parallel
Computing: From Multicores and GPU’s to Petascale, 371–78, DOI:
10.3233/978-1-60750-530-3-371. IOS Press, Amsterdam.

38. Jay FL, Scott K, Karsten S, et al. Flexible IO and integration for
scientific codes through the adaptable IO system (ADIOS). In:
Proceedings of the 6th International Workshop on Challenges of
Large Applications in Distributed Environments. Boston, MA:
ACM, 2008, 15–24.

39.Dennis JM, Edwards J, Loy R, et al. An application level parallel
I/O library for earth system models. Int J High Perform Comput
Appl 2012;26:43–53.

40.Bischof J, Wilke A, Gerlach W, et al. Shock: active storage for
multicloud streaming data analysis. In: 2nd IEEE/ACM
International Symposium on Big Data Computing. Limassol,
Cyprus, 2015.

41.Wilkening J, Wilke A, Desai N, et al. Using Clouds for
Metagenomics: A Case Study. CLUSTER. New Orleans, LA: IEEE
Computer Society, 2009, 1–6.

42.Felter W, Ferriera A, Rajamony R, et al. An Updated Performance
Comparison of Virtual Machines and Linux Containers. http://dom
ino.research.ibm.com/library/cyberdig.nsf/papers/09290521
95DD819C85257D2300681E7B/$File/rc25482.pdf.

43.Gerlach W, Tang W, Keegan K, et al. Skyport: container-based
execution environment management for multi-cloud scien-
tific workflows. In: Proceedings of the 5th International Workshop
on Data-Intensive Computing in the Clouds. 2014, 25–32. IEEE
Press, Piscataway, NJ, USA.

44.Kurtzer G, Sochat V, Bauer M. Singularity: Scientific containers
for mobility of compute. PLoS ONE 2017;12(5):e0177459.

45.udocker. https://github.com/indigo-dc/udocker.
46.Keegan KP, Trimble WL, Wilkening J, et al. A platform-

independent method for detecting errors in metagenomic
sequencing data: DRISEE. PLoS Comput Biol 2012;8:e1002541.

47.Marcais G, Kingsford C. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics
2011;27:764–70.

48.Aronesty E. Comparison of sequencing utility programs. Open
Bioinform J 2013;7:1–8.

49.Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9:357–9.

50.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short
and error-prone reads. Nucleic Acids Res 2010;38:e191.

51.Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open
source tool for metagenomics. PeerJ 2016;4:e2584.

52.Wilke A, Harrison T, Wilkening J, et al. The M5nr: a novel non-
redundant database containing protein sequences and anno-
tations from multiple sources and associated tools. BMC
Bioinformatics 2012;13:141.

53.Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res
2002;12:656–64.

54.Overbeek R, Bartels D, Vonstein V, et al. Annotation of bacter-
ial and archaeal genomes: improving accuracy and consist-
ency. Chem Rev 2007;107:3431–47.

55.Amstutz P, Crusoe MR, Tijani�c N, et al. Common Workflow
Language, v1.0. https://dx.doi.org/10.6084/m9.figshare.3115156.v2.

56.Mungall CJ, Torniai C, Gkoutos GV, et al. Uberon, an integra-
tive multi-species anatomy ontology. Genome Biol 2012;13:R5.

57.Buttigieg PL, Morrison N, Smith B, et al. The environment
ontology: contextualising biological and biomedical entities.
J Biomed Semantics 2013;4:43.

58.Field D, Sterk P, Kottmann R, et al. Genomic standards consor-
tium projects. Stand Genomic Sci 2014;9:599–601.

59.Bischof J, Harrison T, Paczian T, et al. Metazen - metadata cap-
ture for metagenomes. Stand Genomic Sci 2014;9:18.

60.Yilmaz P, Kottmann R, Field D, et al. Minimum information
about a marker gene sequence (MIMARKS) and minimum in-
formation about any (x) sequence (MIxS) specifications. Nat
Biotechnol 2011;29:415–20.

61.Glass EM, Dribinsky Y, Yilmaz P, et al. MIxS-BE: a MIxS ex-
tension defining a minimum information standard for
sequence data from the built environment. ISME J 2014;8:
1–3.

62.Trimble WL, Keegan KP, D’Souza M, et al. Short-read reading-
frame predictors are not created equal: sequence error causes
loss of signal. BMC Bioinformatics 2012;13:183.

63.Sean B, Buchan I, De Roure D, et al. Why linked data is not
enough for scientists. Fut Gener Comput Syst 2013;29(2):
599–611.

64.Crusoe MR, Brown CT. Walking the talk: adopting and adapt-
ing sustainable scientific software development processes in
a small biology lab. J Open Res Softw 2016;4:e44.

65.Tang W, Wilkening J, Desai N, et al. A scalable data analysis
platform for metagenomics. In: 2013 IEEE International
Conference on Big Data, Silicon Valley, CA, USA, 2013. IEEE Press,
Piscataway, NJ, USA.

66.Michael M, Moreira JE, Shiloach D, et al. Scale-up x scale-out: a
case study using Nutch/Lucene. In: 2007 IEEE International
Parallel and Distributed Processing Symposium. 2007, 1.

MG-RAST version 4 | 1159

https://aws.amazon.com/
https://aws.amazon.com/
https://azure.microsoft.com/
http://www.genome.jp/kegg/kaas/
http://www.genome.jp/kegg/kaas/
https://en.wikipedia.org/wiki/LAMP
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch
http://cassandra.apache.org/
https://www.mysql.com/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/&hx0026;dollar;File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/&hx0026;dollar;File/rc25482.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/&hx0026;dollar;File/rc25482.pdf
https://github.com/indigo-dc/udocker
https://dx.doi.org/10.6084/m9.figshare.3115156.v2

