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Abstract

The PerMM web server and database were developed for quantitative analysis and visualization of 

passive translocation of bioactive molecules across lipid membranes. The server is the first 

physics-based web tool that calculates membrane binding energies and permeability coefficients of 

diverse molecules through artificial and natural membranes (phospholipid bilayers, PAMPA-DS, 

blood–brain barrier, and Caco-2/MDCK cell membranes). It also visualizes the transmembrane 

translocation pathway as a sequence of translational and rotational positions of a permeant as it 

moves across the lipid bilayer, along with the corresponding changes in solvation energy. The 

server can be applied for prediction of permeability coefficients of compounds with diverse 

chemical scaffolds to facilitate selection and optimization of potential drug leads. The 

complementary PerMM database allows comparison of computationally and experimentally 

determined permeability coefficients for more than 500 compounds in different membrane 

systems. The website and database are freely accessible at https://permm.phar.umich.edu/.
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INTRODUCTION

Recent progress in combinatorial synthesis has rapidly increased the number of tangible 

small molecules to more than a billion, and millions of them are of pharmaceutical interest.1 

Discovery of natural products from microorganisms additionally brought >23 000 valuable 

agents for medicine, veterinary science, and agriculture.2 Identification of possible drug 

leads from synthetic chemicals and natural products relies on experimental methods for 

high-throughput screening of these compounds against potential therapeutic targets and on 

the development of computational tools for prediction of drug-likeness of a compound of 

interest and evaluation of its pharmacokinetics profiles defined by its absorption, 

distribution, metabolism, and excretion (ADME).

Currently, quantitative structure–permeability relationship (QSPR) models are the primary 

tools for ADME optimization and selection of potential drug candidates in the early stages 

of drug development. These models use experimentally and computationally derived 

properties of organic molecules to predict their oral bioavailability, intestinal absorption, and 

permeability through black lipid membranes (BLM), the blood–brain barrier (BBB), the gut 

epithelium, or skin multilayered membranes.3–6 Statistics-based models for prediction of 

various ADME properties have been combined into state-of-the-art publicly or commercially 

available web tools, such as admetSAR,7 pkCSM,8 SwissADME,9 or QikProp (Schrödinger, 

LLC).

The QSPR models are usually trained on limited sets of compounds and show good 

performance for classes of similar molecules, but they may have a poor transferability to 

compounds with different molecular skeletons. Besides, QSPR models do not consider the 

actual process and physical mechanisms of permeation. Therefore, to rationalize key factors 

underlying permeation of solutes through the lipid bilayers, solubility–diffusion models of 

different complexity have been developed.10–12

In order to describe the thermodynamics of membrane–solute interactions and to uncover 

mechanisms of passive permeation across the lipid bilayer, general physics-based methods 

are needed. For example, MD simulations were used to describe diffusivity and free energy 

profiles, to define optimal orientations of molecules in membranes, and to calculate their 

permeability coefficients.13–16 However, all-atom MD simulations are highly 

computationally expensive, which hampers their application for high-throughput drug 
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screening. Simulations of molecules in the lipid bilayer treated as a low dielectric continuum 

are more computationally efficient. This approach was applied in physics-based methods 

developed by Leung et al.,17 Swift and Amaro,18 Ferrarini et al.,19 and, recently, by Brocke 

et al.20

Despite the advancement of physics-based methods for modeling of permeability, they have 

certain limitations in calculating the absolute membrane permeability17 and, until very 

recently,20 were not available online. Therefore, we have developed a new physics-based 

computational method, PerMM, aimed at the fast and reliable modeling of passive 

permeability of structurally diverse compounds across artificial and natural membranes (first 

reported as a conference abstract21) as an extension of our PPM method.22 The development 

and testing of the PerMM method was described in the accompanying paper.46

In this publication, we describe implementation of the PerMM method as a public web 

server for modeling the transmembrane translocation pathways and permeability coefficients 

of diverse molecules. A complementary PerMM database is the first web resource that 

contains experimentally determined permeability coefficients of bioactive molecules through 

liposomes and black lipid membranes (BLM) collected from publications alongside with 

permeability coefficients through PAMPA, BBB, and Caco-2/MDCK systems compiled by 

Avdeef.23–25 Furthermore, the PerMM database provides for the first time the 

computationally simulated pathways for numerous drugs and other biologically important 

molecules.

PERMM METHOD

The PerMM method combines the heterogeneous solubility–diffusion theory10 and the 

anisotropic solvent model of the lipid bilayer characterized by transbilayer profiles of 

dielectric and hydrogen-bonding capacity parameters.22 PerMM calculates the membrane 

binding energies (ΔGbind) and the transfer energy profiles (ΔGtransf(z)) of permeants in 

membranes and obtains their optimal spatial positions and conformations during rotational 

and translational motion along the membrane normal. The membrane-bound state of a 

permeant is defined as its conformation and the spatial position in membrane with the lowest 

transfer energy from water. The integration of free energy profile over the permeation 

pathway allows evaluation of permeability coefficients of molecules through artificial 

(BLM) and natural membranes (BBB and Caco-2/MDCK) based on the following equations 

(all details are provided in the accompanying paper46):

log PΣ
BLM = − log ASA∫

−d /2

d /2 dz
K(z) (1)

log Pcalc
BLM = 1.063log PΣ

BLM + 3.669 (2)
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log P0calc
BBB = 0.375log PΣ

BLM − 1.600 (3)

log P0calc
Caco−2/MDCK = 0.272log PΣ

BLM − 2.541 (4)

where K(z) are the local partition coefficients, ASA is the accessible surface area to account 

for the size-dependence of the diffusivity, log PΣ
BLM is the integral of the Gibbs free energy 

of a molecule over the hydrophobic thickness d (30 Å) of the dioleoyl-phosphatidylcholine 

(DOPC) bilayer. The dependency of the partition coefficient K(z) on the Gibbs free energy 

(ΔGtransf(z)) of a solute along the membrane normal is calculated as

K(z) = e
−ΔGtransf(z)/RT

(5)

The integral of the transbilayer energy profile (eq 1) is calculated in the interval from −15 to 

+15 Å distance from the membrane center with the step of 1 Å.

PERMM DATABASE

The PerMM database (https://permm.phar.umich.edu/) was created for the following 

reasons: (1) to allow comparison of permeability parameters measured for the same 

compounds in different experimental systems; (2) to facilitate development and testing of 

computational methods; and (3) to provide access to coordinate files and results of 

calculations by our PerMM method for each included molecule.

Database Content.

The database contains a set of 506 organic molecules and FDA-approved drugs with 

molecular weights ranging from 17 to 1202 Da (Figure S1) with experimentally measured 

and PerMM-calculated permeability coefficients. The molecules are divided into different 

chemical classes (organic acids, amino acids, nucleotides, lipids, alkaloids, polyketides, 

macrolides, etc.) and to groups with different ionization properties.

Experimental permeability data were collected from the literature for assays performed in 

artificial and natural membrane systems, including phospholipid bilayers (BLM and 

liposomes), parallel artificial membrane permeability assay (PAMPA), BBB, and Caco-2 

(colon adenocarcinoma cell line) and MDCK (Mardin–Darby canine kidney) cells. The data 

set of experimental permeability coefficients includes 132 data points for phospholipid 

bilayers (obtained by Xiang and Anderson,11,26,27 Walter and Gutknecht,28–30 and others) 

and 1808 data points for PAMPA, BBB, and Caco-2/MDCK assays that were collected and 

processed by Avdeef23–25 (see notes for Figure S1). These data cover a wide range of 

experimental values spanning 9 orders of magnitude for the neutral states (from −7.5 to 1.5) 

and 6 orders of magnitude for species ionized in water (from −13 to −7).
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The permeation pathways, membrane binding energies, and permeability coefficients of all 

compounds were calculated at physiological conditions (at pH = 7.4 and 298 K), i.e., taking 

into account the deionization costs of acids, bases, and zwitterions. The permeability 

coefficients are provided for ionized (log Pm−7.4 at pH 7.4) and un-ionized (log P0) species 

through BLM and PAMPA-DS and for un-ionized species through BBB and Caco-2/MDCK 

cells (i.e., intrinsic permeability coefficients, log P0). The database also offers information 

about influx and efflux transporters, including the classification of compounds as substrates, 

inducers, or inhibitors. These data were collected from the Human Metabolome Database,31 

DrugBank,32 and Metrabase.33

Three types of downloadable coordinate files (in pdb format) are available for each 

molecule: (a) a set of source conformations which can be used as input for the PerMM web 

server; (b) the permeation pathway, i.e., multiple models of the molecule representing 

optimal conformers and orientations of the molecule in different positions along the bilayer 

normal; and (c) the lowest-energy membrane-bound state of the molecule.

Database Access.

Access to data is provided through a menu on the website that allows browsing of the 

content for each compound individually using classification on chemical classes and groups 

or based on experimental systems for permeability measurement. Dynamic pages are 

generated for every compound, chemical class, charge group, and type of experimental 

permeability data. To facilitate retrieval and analysis of data, web pages are organized as 

sortable lists and tables. Pages for each individual molecule display physicochemical 

properties of the molecule (pKa, MW), experimentally measured and predicted permeability 

coefficients in different membrane systems, brief annotation, and links to external web 

resources, such as PubChem,34 DrugBank,32 KEGG,35 ChEBI,36 the Human Metabolome 

Database (HMDB),31 the Protein Data Bank (PDB),37 and Wikipedia. Static 2D images of 

molecules were produced by PubChem or ChemDraw (PerkinElmer Informatics, Inc.). 

Dynamic images of 3D structures of molecules bound to the lipid bilayer can be viewed by 

Jmol. Translational and rotational motions of molecules along the translocation pathway can 

be viewed using GLmol. The individual tables can be downloaded in csv format.

PERMM WEB SERVER

The database website provides access to the web server (https://permm.phar.umich.edu/

server) (Figure S2). The web server implements our PerMM method for calculation of the 

membrane binding energies of molecules, energy barriers along the membrane normal, and 

permeability coefficients for different membrane systems.

Input.

The input includes (1) 3D structure(s) of a compound with all hydrogens in the pdb format; 

(2) experimental conditions (T K, pH); (3) the choice of the optimization method for 

calculating energy barriers along the membrane normal (pathway); and (4) two options for 

calculating permeability coefficients of ionizable compounds.
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The 3D structures of organic molecules can be obtained from the PerMM database, the 

Protein Data Bank (PDB),37 the Cambridge Structural Database,38 DrugBank,32 or 

PubChem.34 Files in the structure data format (sdf) should be converted into the pdb format, 

for example, by using PyMol (https://pymol.org/2/). 3D coordinates for molecules not found 

in public databases can be generated by molecular modeling software, such as QUANTA 

(BIOVIA-Accerlys Inc.), Marvin Suite (ChemAxon), Chem3D (PerkinElmer Informatics, 

Inc.), or similar ones, with subsequent local energy minimization. Multiple conformers of 

FDA-approved drugs and various organic molecules can be downloaded from 

PubChem3D39 or generated by molecular modeling software, such as Frog2.40 pKa values of 

ionizable groups should be added to the coordinate file of a compound as REMARK PKA 

record (see server instruction for details). The required pKa values can be taken from public 

databases or calculated by publicly or commercially available software.41 Dipole moments 

of different chemical groups are automatically defined by PerMM using a library of dipole 

moments that was compiled based on the previously published tabulations.42,43 However, a 

user can also use dipole moments of specific groups from the literature and include them 

manually in the source coordinate file.

User-Defined Options.

Two different optimization methods are included for calculating the lowest transfer energy 

pathway of the molecule along the membrane normal: drag method and global rotational 

optimization. In drag method,44 the transfer energy is locally minimized with respect to 

rotational variables of the molecule in every z + Δz point of the transmembrane pathway, 

starting from the optimal rotational orientation calculated in the previous point z. This 

method is preferred, because the global rotational optimization effectively nullifies the 

energy barrier for flip-flop of the molecule in the middle of membrane.

The user can define an option for the ionization state. To estimate the actual membrane 

permeability coefficients of bases and acids through the DOPC bilayer that depend on pH 

(i.e., log Pm−7.4 at pH = 7.4), the user must select option 1, where the deionization energy is 

included. The user can also select option 2 to obtain intrinsic permeability coefficients (log 

P0) for neutral molecules or the uncharged forms of ionizable compounds through BLM, 

BBB, and Caco-2/MDCK systems.

Output.

The output includes (1) the graphical representation of the calculated transfer energy profile 

across the DOPC bilayer, ΔGtranf(z); (2) the membrane binding energy, optimal 

conformation and orientation of the molecule in the membrane-bound state; (3) the 

permeability coefficients through the DOPC bilayer (BLM), BBB, and Caco-2/MDCK cells; 

(4) interactive 3D images of the molecule along the permeation pathway and in the 

membrane-bound state; and (5) the downloadable coordinate file that provides multiple 

positions of the molecule during its movement across the lipid bilayer (Figure 1).

Performance.

While testing the PerMM method, we found a good correlation (R2 of 0.88 and rmse of 1.15 

log units) between experimental and calculated permeability coefficients of 78 compounds 
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(log P0 for 58 un-ionized and log Pm for 20 ionized species) studied in BLM or liposomes. 

The prediction of intrinsic permeability coefficients (log P0) was less precise for PAMPA 

and natural membrane systems: the correlation coefficient between experimental and 

predicted data for PAMPA-DS (280 compounds), BBB (182 compounds), and Caco-2/

MDCK cell membranes (165 compounds) demonstrated R2 values of 0.75, 0.69, and 0.52 

and rmse values of 1.59, 0.87, and 0.89 log units, respectively. The estimated threshold for 

BBB-permeable drugs was log P0calc
BBB = − 4.35, i.e., compounds are presumably BBB-

permeable (CNS-active) if their calculated intrinsic permeability coefficients were higher 

than the threshold and they are not substrates for efflux transporters.

The accuracy of the calculation of the membrane binding energy (the lowest transfer energy 

along the translocation pathway) was assessed for all compounds from the database whose 

binding energies were experimentally determined. These energies were reproduced with the 

correlation coefficient R2 of 0.63 and rmse of 0.96 kcal/mol (Figure S3).

The calculation for a single molecule requires 1–4 min (single CPU), depending on the 

number of conformations. The results of calculations are displayed on a web page and can 

be received via email.

IMPLEMENTATION

The PerMM database was developed using the Ruby on Rails server-side web application 

framework and the PostgreSQL database management system for the back-end and React 

JavaScript library for building user interfaces for the front-end (Figures S4 and S5). The 

database is hosted on the Heroku Cloud platform with assets (images, PDB files, server 

results) stored on the Google Cloud platform. Firebase hosting was used for the front-end of 

the website.

The PerMM web server was developed using Python3 with the Flask framework and an 

executable script that runs the PerMM program. The software is running in the Yottabyte 

Research Cloud environment provided by the Advanced Computing Research Services at the 

University of Michigan. The virtual server that hosts our programs and web applications is 

equipped with Gunicorn, a Python WSGI HTTP Server for UNIX.

COMPARISON WITH OTHER WEB TOOLS

The PerMM server is the first web-based tool that calculates membrane binding energies of 

organic molecules, permeability coefficients through BLM, PAMPA-DS, BBB, and Caco-2/

MDCK cell membranes, and their transbilayer free energy profiles. On the other hand, state-

of-the-art public web tools, such as admetSAR,7 pkCSM,8 and SwissADME,9 as well as 

commercial packages, calculate a number of ADME properties not considered here.

A comparison of permeability coefficients calculated by our and statistics-based server 

demonstrates that PerMM has better performance than both pkCSM8 and admetSAR7 for 

prediction of Caco-2 permeability but shows rather similar performance as admetSAR7 for 

prediction of BBB permeability for the set of 14 natural product-derived drugs with large 
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sizes (MW > 400 Da) (Figure S6). Quantitative comparison with SwissADME9 is not 

possible, as this server shows only a binary classification for GI absorption (high and low) 

and BBB permeation (yes or no). PerMM also significantly out-performed QikProp for 

Caco-2 permeability prediction during testing on 44 compounds, as was demonstrated in the 

accompanying paper.46 A comparison with MemDrugPerm operating with HDGB and 

DHDGB-based implicit membrane models and partial charges from the AM1-BCC force 

field20 for PAMPA-DS permeability prediction of 58 compounds demonstrates much better 

accuracy of our PerMM method, which yielded R2 of 0.67 and rmse of 1.51 log units, as 

compared to R2 of 0.41 and 0.46 and rmse values of 3.83 and 1.90 log units obtained by the 

MemDrugPerm method with both models, respectively (Figure S7).

CONCLUSIONS

Here we present the public web server that implements the physics-based computational 

method for fast evaluation of passive permeability of drug-like molecules of different size 

and scaffolds across artificial and natural membranes. For artificial membranes, the server 

calculates intrinsic and membrane (at specified pH) permeability coefficients of neutral and 

ionizable molecules and allows visualization of permeant movement across the DOPC 

bilayer. The server application for natural membranes is limited to reproducing intrinsic 

permeability of drugs through BBB and Caco-2/MDCK cells rather than their measurable 

effective permeability in vivo. The underlying method is approximate, as it does not account 

for the mechanical properties of lipid bilayers or the influence of lipid composition on 

membrane permeability. As a future direction, we envision to address these issues and to 

include distinct polarity profiles for diverse artificial and natural membranes.45 The method 

can be extended to assess permeation through the lipid bilayer of larger molecules, such as 

cell-penetrating peptides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ADME absorption, distribution, metabolism and excretion

BBB blood–brain barrier

BLM black lipid membranes

Caco-2 colon adenocarcinoma cell line
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CSD Cambridge Structural Database

DHDGB dynamic heterogeneous dielectric generalized Born

FDA Food and Drug Administration

DOPC dioleoyl-phosphatidylcholine

HDGB heterogeneous dielectric generalized Born

MD molecular dynamics

MDCK Madin–Darby canine kidney cell line

NP natural product

PAMPA parallel artificial membrane permeability assay

PAMPA-DS PAMPA double-sink

PC phosphatidylcholine

PDB Protein Data Bank

QSPR quantitative structure–permeability relationship

rmse root-mean-square error
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Figure 1. 
Output of the PerMM server that displays results of calculation of codeine in membranes. 

Graphical representation of the calculated transfer energy profile (ΔGtransf(z)), the 

membrane binding energy (ΔGbind = −1.55 kcal/mol), the membrane permeability 

coefficient at pH 7 through the DOPC bilayer log Pm − 7
BLM = − 2.65 kcal/mol , and 

downloadable coordinate files (A); interactive 3D images of codeine in membrane by 

GLmol (B) and Jmol (C).
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