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Abstract

We develop a robust and efficient iterative method for hyper-elastodynamics based on a novel 

continuum formulation recently developed in [1]. The numerical scheme is constructed based on 

the variational multiscale formulation and the generalized-α method. Within the nonlinear solution 

procedure, a block factorization is performed for the consistent tangent matrix to decouple the 

kinematics from the balance laws. Within the linear solution procedure, another block factorization 

is performed to decouple the mass balance equation from the linear momentum balance equations. 

A nested block preconditioning technique is proposed to combine the Schur complement reduction 

approach with the fully coupled approach. This preconditioning technique, together with the 

Krylov subspace method, constitutes a novel iterative method for solving hyper-elastodynamics. 

We demonstrate the efficacy of the proposed preconditioning technique by comparing with the 

SIMPLE preconditioner and the one-level domain decomposition preconditioner. Two 

representative examples are studied: the compression of an isotropic hyperelastic cube and the 

tensile test of a fully-incompressible anisotropic hyperelastic arterial wall model. The robustness 

with respect to material properties and the parallel performance of the preconditioner are 

examined.
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1. Introduction

In our recent work [1], a unified continuum modeling framework was developed. In this 

framework, hyperelastic solids and viscous fluids are distinguished only through the 

deviatoric part of the Cauchy stress, in contrast to prior modeling approaches. In our 

derivation, the Gibbs free energy, rather than the Helmholtz free energy, is chosen as the 
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thermodynamic potential, resulting in a unified model for compressible and incompressible 

materials. A beneficial outcome of the modeling framework is that it naturally allows one to 

apply a computational fluid dynamics (CFD) algorithm to solid dynamics, or vice versa. In 

our work [1], the variational multiscale (VMS) analysis, a mature numerical modeling 

approach in CFD [2], is taken to design the spatial discretization for solid dynamics. This 

numerical model provides a stabilization mechanism that circumvents the Ladyzhenskaya-

Babuška-Brezzi (LBB) condition for equal-order interpolations. In particular, it allows one 

to use low-order tetrahedral elements, even for fully incompressible materials. This gives us 

the maximum flexibility in geometrical modeling and mesh generation.

In this work, we build upon the proposed unified formulation to develop a robust and 

efficient iterative method. Traditional black-box preconditioners are non-robust, and the 

convergence rate of the linear solver drops significantly under certain conditions. The lack of 

robustness may be attributed to the saddle-point nature of the problem. Algebraic 

preconditioners built based on incomplete factorizations are prone to fail due to zero-

pivoting; one-level domain decomposition preconditioners do not perform well due to its 

locality. In this work, we design a preconditioning technique tailored for the VMS 

formulation for hyper-elastodynamics [1]. The design of the preconditioner is based on a 

nested block factorization of the consistent tangent matrix in the Newton-Raphson iteration. 

A block factorization is performed in the nonlinear solution procedure to decouple the 

kinematics from the balance laws [3]. The resulting 2×2 block matrix is further factorized in 

the linear solution procedure. This strategy is, in part, related to the classical projection 

method [4, 5] and the block preconditioning technique [6, 7, 8] that have been widely used 

in the CFD community. We examine the solver performance for both isotropic and 

anisotropic hyperelastic models. The significance of this work is that it paves the way 

towards robust, efficient, and scalable implicit solver technology for biomechanics and 

monolithic fluid-solid interaction (FSI) simulations [1]. In the rest part of this section, we 

give an overview of the background and an outline of the work.

1.1. Projection method and block preconditioners

The development of efficient solver techniques for multiphysics problems has been an active 

area of research in recent years [9]. One simple but important prototype multiphysics 

problem is the Stokes or the Navier-Stokes equations, representing the coupling between the 

mass conservation and the balance of the linear momentum for incompressible flows. In the 

late 1960s, the Chorin-Teman projection method [4, 5] was proposed to solve for the 

pressure and the velocity separately based on the Helmholtz decomposition. Since then, the 

projection method and its variants have attracted concentrated research and lead to a 

voluminous literature [10, 11, 12, 13]. The projection method is attractive because the 

nonlinear system of equations is decomposed into a series of linear elliptic equations. 

Although this method has attracted significant attention, it still poses several major 

challenges. One critical issue is that the physics-based splitting necessitates the introduction 

of an artificial boundary condition for the pressure. There is no general theory to guide the 

choice of the artificial boundary conditions, and most likely this artificial boundary 

condition limits the solution accuracy. For an overview of the projection method, the readers 

are referred to the review article [14].
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In recent years, it has been realized that one can invoke an arbitrary time stepping scheme 

(e.g. fully implicit) and achieve the decoupling of physics within the linear solver. Indeed, in 

each iteration of the Krylov subspace method, one only needs to solve with a preconditioner 

and perform a matrix-vector multiplication to construct the new search direction. Therefore, 

if the preconditioner is endowed with a block structure, one may sequentially solve each 

block matrix with less cost. It has been pointed out that the Chorin-Teman projection method 

is closely related to a block preconditioner [15]. Consider a matrix problem with a 2×2 block 

structure,

𝒜 ≔ A B
C D .

This matrix can be factored into lower triangular, diagonal, and upper triangular matrices as 

follows,

𝒜 = ℒ𝒟𝒰 =
I O

CA−1 I
A O
O S

I A−1B
O I

,

wherein I is the identity matrix, and O is the zero matrix. The diagonal block matrix 𝒟
contains a Schur complement S := D−CA−1B, which acts as an algebraic analogue of the 

Laplacian operator for the pressure field [16]. To construct a preconditioner for 𝒜, one needs 

to provide approximations for A and S that can be conveniently solved with. The new 

formulation for hyper-elastodynamics we consider here is similar to the generalized Stokes 

equations, in which the operator A arises from the discretization of a combination of zeroth 

order and second order differential operators. Thus, A is amenable for approximation by a 

standard preconditioning technique. Due to the presence of A−1, S is a dense matrix. When 

the matrix A represents a discretization of a zeroth-order differential operator, an effective 

choice is to replace S by S ≔ D − C(diag(A))−1B to construct the preconditioner for 𝒜. This 

choice is closely related to the SIMPLE scheme commonly used in CFD [17, 18]. When the 

matrix A represents a discretization of a second-order differential operator, a scaled mass 

matrix is often effective [19]. For more complicated problems, designing a spectrally 

equivalent preconditioner for the Schur complement is challenging and, in a broad sense, 

remains an open question. In recent years, progress has been made for problems where A is 

dominated by a discrete convection operator. Notable examples include the BFBT 

preconditioner [20], the pressure convection diffusion preconditioner [21], and the least 

squares commutator (LSC) preconditioner [22]. Based on the Sherman-Morrison formula, a 

different preconditioner for the Schur complement can be designed for problems with 

significant contributions from the boundary conditions [23]. In all, the block preconditioner, 

as an algebraic interpretation of the projection method, has become increasingly popular, 

since it does not necessitate ad hoc pressure boundary conditions and allows fully implicit 

time stepping schemes.

If one can solve the sub-matrices A and S to a prescribed tolerance, the matrix 𝒜 is solved in 

one pass without generating a Krylov subspace. This is commonly known as the Schur 
complement reduction (SCR) or segregated approach [6, 24, 25, 26]. In contrast, the 
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aforementioned strategy, where 𝒜 is solved by a preconditioned iterative method, is referred 

to as the coupled approach [6]. For many problems, it is impractical to explicitly construct 

the Schur complement. Still, the action of the Schur complement on a vector can be obtained 

in a “matrix-free” manner (see Algorithm 2 in Section 4.2). Thus, one can still solve with the 

Schur complement by iterative methods. To achieve high accuracy, a sufficient number of 

bases of the Krylov subspace for S need to be generated, and this procedure can be 

prohibitively expensive.

1.2. Nested preconditioning technique

The difference between the coupled approach and the segregated approach can be viewed as 

follows. In the coupled approach, S is replaced by a sparse approximation to generate a 

preconditioner for 𝒜. In the segregated approach or SCR, one strives to solve directly with 

S. The distinction between the two approaches is blurred by using the SCR procedure as a 

preconditioner. In doing so, one does not need to solve with S to a high precision, thus 

alleviating the computational burden. In comparison with the coupled approach, the 

information of the Schur complement is maintained in the preconditioner (up to the 

tolerances of SCR), and this will improve the robustness. Therefore, in solving with 𝒜, there 

are three nested levels. In the outer level, a Krylov subspace method is applied for 𝒜 with a 

block preconditioner. In the intermediate level, the block preconditioner is applied by 

solving with the matrices A and S. In the inner level, a solver of A is invoked to approximate 

the action of S on a vector. Two mechanisms guarantee and accelerate the convergence. In 

the outer level, the Krylov subspace method for 𝒜 minimizes the residual of the coupled 

problem. In the intermediate and inner levels, the SCR procedure is utilized as the 

preconditioner, which itself can be viewed as an inaccurate solver for 𝒜.

Using SCR as a preconditioner was first proposed within a Richardson iteration scheme 

[27]. Due to the symmetry property of that problem, a conjugate gradient method is applied 

to solve the Schur complement equation. Later, the nested iterative scheme was investigated 

for CFD problems [28, 29], and the reported results indicate that using the SCR procedure as 

a preconditioner in a Richardson iteration outperforms the coupled approach with a Krylov 

subspace method. The nested algorithm was then further investigated using the biconjugate 

gradient stabilized method (BiCGStab) as the outer solver [30]. The nested iterative scheme 

in [30] uses rather crude stopping criteria for the intermediate and inner solvers. Still, its 

performance is superior to that of BiCGStab preconditioned by a BFBT preconditioner.

Our investigation of the VMS formulation for hyper-elastodynamics starts with a SIMPLE-

type block preconditioner using our in-house code [31]. As will be shown in Section 5, the 

Krylov subspace method with a block preconditioner like SIMPLE is not always robust. 

This can be attributed to the ignorance of the off-diagonal entries in A. Because of that, it is 

appealing to consider preconditioners like LSC, since the off-diagonal information of A is 

maintained. However, non-convergence has been reported for LSC when solving the Navier-

Stokes equations with stabilized finite element schemes [32]. We then ruled out this option 

since our VMS formulation involves a similar pressure stabilization term. Consequently, we 

consider using SCR with relaxed tolerances as a preconditioner. In doing so, the Schur 

complement is approximated through using an inner solver. In contrast to the nested iterative 
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approaches introduced above, we adopt the following techniques in our study: (1) we use 

GMRES [33] and its variant [34] as the Krylov subspace method in all three levels to 

leverage their robustness in handling non-symmetric matrix problems; (2) we apply the 

algebraic multigrid (AMG) preconditioner [35] for problems at the intermediate level to 

enhance the robustness of the overall algorithm; (3) we use the sparse approximation S as a 

preconditioner when solving with S. We demonstrate application of this method to hyper-

elastodynamics, however we anticipate its general use in CFD and FSI problems in future 

work.

1.3. Structure and content of the paper

The remainder of the study is organized as follows. In Section 2, we state the governing 

equations of hyper-elastodynamics [1]. In Section 3, the numerical scheme is presented. A 

block factorization for the consistent tangent matrix is performed to reduce the size of the 

linear algebra problem. In Section 4, the nested block preconditioning technique is discussed 

in detail. In Section 5, we present two representative examples to demonstrate the efficacy of 

the proposed solver technology. The first example is the compression of an isotropic elastic 

cube [36], and the second is the tensile test of a fully incompressible anisotropic hyperelastic 

arterial wall model [37]. Comparisons with other preconditioners are made. We draw 

conclusions in Section 6.

2. Hyper-elastodynamics

In this section, we state the initial-boundary value problem for hyper-elastodynamics, 

following the derivation in [1]. Let ΩX and Ωx be bounded open sets in ℝ
nsd with Lipschitz 

boundaries, where nsd represents the number of space dimensions. They represent the initial 

and the current configurations of the body, respectively. The motion of the body is described 

by a family of diffeomorphisms, parametrized by the time coordinate t,

φt( ⋅ ) = φ( ⋅ , t) :ΩX Ωx = φ ΩX, t = φt ΩX , ∀t ≥ 0,

X x = φ(X, t) = φt(X), ∀X ∈ ΩX .

In the above, x is the current position of a material particle originally located at X. This 

requires that φ(X, 0) = X. The displacement and velocity of the material particle are defined 

as

U ≔ φ(X, t) − φ(X, 0) = φ(X, t) − X, V ≔ ∂φ
∂t X

= ∂U
∂t X

= dU
dt .

In the definition of V and in what follows, d (·) /dt designates a total time derivative. The 

spatial velocity is defined as v ≔ V°φt
−1 Analogously, we define u ≔ U°φt

−1. The 

deformation gradient, the Jacobian determinant, and the right Cauchy-Green tensor are 

defined as
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F ≔ ∂φ
∂X , J ≔ det(F), C ≔ FTF .

We define F and C as

F ≔ J
− 1

3 F, C ≔ J
− 2

3C,

which represent the distortional parts of F and C, respectively. We denote the 

thermodynamic pressure of the continuum body as p. The mechanical behavior of an elastic 

material can be described by a Gibbs free energy G C, p . In [1], it is shown that the Gibbs 

free energy enjoys a decoupled structure,

G(C, p) = Gich(C) + Gvol(p),

where Gich and Gvol represent the isochoric and volumetric elastic responses. Under the 

isothermal condition, the energy equation is decoupled from the system, and it suffices to 

consider the following equations for the motion of the continuum body,

0 = du
dt − v,  in Ωx, (2.1)

0 = ρ(p)dv
dt − ∇x ⋅ σdev + ∇x p − ρ(p)b,  in Ωx, (2.2)

0 = β p dp
dt + ∇x ⋅ v  in Ωx . (2.3)

In the above, β(p) is the isothermal compressibility coefficient, ρ(p) denotes the density in 

the current configuration, and σdev represents the deviatoric part of the Cauchy stress. 

Equations (2.1) describe the kinematic relation between the displacement and the velocity, 

and equations (2.2) and (2.3) describe the balance of linear momentum and mass. The 

constitutive relations of the elastic material are represented in terms of the Gibbs free energy 

as follows,

ρ(p) ≔
dGvol

dp

−1
, βθ(p) ≔ 1

ρ
dρ
dp = −

∂2Gvol

∂ p2 /
∂Gvol

∂ p , σdev ≔ J−1F(ℙ:S)FT, (2.4)

wherein the projector ℙ and the fictitious second Piola-Kirchhoff stress S  are defined as
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ℙ ≔ 𝕀 − 1
3C−1 ⊗ C, S ≔ 2

∂ ρ0G

∂C
= 2

∂ ρ0Gich
∂C

,

𝕀 is the fourth-order identity tensor, and ρ0 is the density in the referential configuration. 

Interested readers are referred to [1] for a detailed derivation of the governing equations and 

the constitutive relations. The boundary Γx = ∂Ωx can be partitioned into two non-

overlapping subdivisions: Γx = Γx
g ∪ Γx

h, wherein Γx
g is the Dirichlet part of the boundary, and 

Γx
h is the Neumann part of the boundary. Boundary conditions can be stated as

u = g  on Γx
g, v = dg

dt  on Γx
g, σdev − pI n = h  on Γx

h . (2.5)

Given the initial data u0, v0, and p0, the initial conditions can be stated as

u(x, 0) = u0(x), v(x, 0) = v0(x), p(x, 0) = p0(x) . (2.6)

The equations (2.1)–(2.6) constitute an initial-boundary value problem for hyper-

elastodynamics.

3. Numerical formulation

In this section, we present the numerical formulation for the strong-form problem. The 

spatial discretization is based on a VMS formulation [1, 2], and the temporal scheme is 

based on the generalized-α scheme [1, 38]. A block factorization, originally introduced in 

[3], is performed to consistently reduce the size of the linear algebra problem in the Newton-

Raphson iterative algorithm.

3.1. Variational multiscale formulation

We consider a partition of Ωx by nel non-overlapping, shape-regular elements Ωx
e . The 

diameter of an element Ωx
e  is denoted by he, and the maximum diameter of the elements is 

denoted as h. Let Pk Ωx
e  denote the space of complete polynomials of order k on Ωx

e . The 

finite element trial solution spaces for the displacement, velocity, and pressure are defined as
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𝒮uh
= uh uh( ⋅ , t) ∈ C0 Ωx

nsd, t ∈ [0, T], uh Ωx
e

∈ Pk Ωx
e

nsd, uh( ⋅ , t) = g on Γx
g ,

𝒮vh
= vh vh( ⋅ , t) ∈ C0 Ωx

nsd, t ∈ [0, T], vh Ωx
e

∈ Pk Ωx
e

nsd, vh( ⋅ , t) = dg
dt  on Γx

g ,

𝒮ph
= ph ph( ⋅ , t) ∈ C0 Ωx , t ∈ [0, T], ph Ωx

e ∈ Pk Ωx
e ,

and the corresponding test function spaces are defined as

𝒱uh
= wuh

wuh
∈ C0 Ωx

nsd, wuh Ωx
e

∈ Pk Ωx
e

nsd, wuh
= 0 on Γx

g ,

𝒱vh
= wvh

wvh
∈ C0 Ωx

nsd, wvh Ωx
e

∈ Pk Ωx
e

nsd, wvh
= 0 on Γx

g ,

𝒱ph
= wph

wph
∈ C0 Ωx , wph Ωx

e
∈ Pk Ωx

e .

The semi-discrete formulation can be stated as follows. Find yh(t) := {uh(t), vh(t), ph(t)}T ∈ 
Suh ×Svh ×Sph such that for t ∈ [0, T],

0 = Bk wuh
; ẏh, yh ≔ ∫

Ωx
wuh

⋅
duh
dt − vh dΩx, (3.1)

0 = Bm wvh
; ẏh, yh ≔ ∫

Ωx
wvh

⋅ ρ ph
dvh
dt + ∇xwvh

:σdev − ∇x ⋅ wvh
ph − wvh

⋅ ρ ph bdΩx

− ∫
Γx

hwvh
⋅ hdΓx,

(3.2)

0 = Bp wph
; ẏh, yh ≔ ∫

Ωx
wph

β ph
dph
dt + ∇x ⋅ vh dΩx + ∑

e
∫

Ωx
e τM

e ∇xwph

⋅ ρ ph
dvh
dt − ∇x ⋅ σdev + ∇x ph − ρ ph b dΩx,

(3.3)
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for ∀ wuh
, wvh

, wph
∈ 𝒱uh

× 𝒱vh
× 𝒱ph

, with ẏh(t) ≔ duh/dt, dvh/dt, dph/dt T and yh(0) := 

{uh0, vh0,ph0}T. Here uh0, vh0, and ph0 the ℒ2 projections of the initial data onto the finite 

dimensional trial solution spaces. In the above and henceforth, the formulations for the 

kinematic equations, the linear momentum equations, and the mass equation are indicated by 

the subscripts k, m, and p respectively.

The terms involving τM
e  in (3.3) arise from the subgrid-scale modeling [1]. These terms 

improve the stability of the Galerkin formulation without sacrificing the consistency. The 

design of the stabilization parameter τM
e  is the crux of the design of the VMS formulation. In 

this work, the following choices are made,

τM
e = τM

e Insd
, τM

e = cm
he

cρ .

In the above, Insd
 is the second-order identity tensor; cm is a dimensionless parameter; c is 

the maximum wave speed in the solid body. For compressible materials, c is given by the 

bulk wave speed. Under the isotropic small-strain linear elastic assumption, c = (λ + 2μ)/ρ0
where λ and μ are the Lamé parameters. For incompressible materials, c = μ/ρ0 is the shear 

wave speed. We point out that, although the choices made above are based on a simplified 

material model, the stabilization terms still provide an effective pressure stabilization 

mechanism for a range of elastic and inelastic problems [1, 3, 39, 40, 41]. In this work, we 

fix cm to be 10−3 and restrict our discussion to the low-order finite element method (i.e. k = 

1).

3.2. Temporal discretization

Based on the semi-discrete formulation (3.1)–(3.3), we invoke the generalized-α method 

[38] for time integration. The time interval [0, T] is divided into a set of nts subintervals of 

size Δtn := tn+1−tn delimited by a discrete time vector tn n = 0
nts . The solution vector and its 

first-order time derivative evaluated at the time step tn are denoted as yn and ẏn; the basis 

function for the discrete function spaces is denoted as NA. With these notations, the residual 

vectors can be represented as

Rk ẏn, yn ≔ Bk NAei; ẏn, yn ,

Rm ẏn, yn ≔ Bm NAei; ẏn, yn ,

Rp ẏn, yn ≔ Bp NA; ẏn, yn .

The fully discrete scheme can be stated as follows. At time step tn, given ẏn, yn, the time step 

size Δtn, and the parameters αm, αf, and γ, find ẏn + 1 and yn+1 such that
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Rk ẏn + αm
, yn + α f

= 0, (3.4)

Rm ẏn + αm
, yn + α f

= 0, (3.5)

Rp ẏn + αm
, yn + α f

= 0, (3.6)

yn + 1 = yn + Δtn ẏn, + γΔtn ẏn + 1 − ẏn , (3.7)

ẏn + αm
= ẏn + αm ẏn + 1 − ẏn , (3.8)

yn + α f
= yn + α f yn + 1 − yn . (3.9)

The choice of the parameters αm, αf and γ determines the accuracy and stability of the 

temporal scheme. Importantly, the high-frequency dissipation can be controlled via a proper 

parametrization of these parameters, while maintaining second-order accuracy and 

unconditional stability (for linear problems). For first-order dynamic problems, the 

parameters are chosen as

αm = 1
2

3 − ϱ∞
1 + ϱ∞

, α f = 1
1 + ϱ∞

, γ = 1
1 + ϱ∞

,

wherein ϱ∞ ∈ [0, 1] denotes the spectral radius of the amplification matrix at the highest 

mode [38]. We adopt ϱ∞ = 0.5 for all computations presented in this work.

Remark 1. Interested readers are referred to [42] for the parametrization of the parameters 
for second-order structural dynamics. A recent study shows that using the generalized-α 
method for the first-order structural dynamics enjoys improved dissipation and dispersion 
properties and does not suffer from overshoot [43]. Moreover, using a first-order structural 
dynamic model is quite propitious for the design of a FSI scheme [1].
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3.3. A Segregated predictor multi-corrector algorithm

One may apply an inverse of the mass matrix at both sides of the equations (3.4) and obtain 

the following simplified kinematic equations,

Rk ẏn + αm
, yn + α f

≔ u̇n + αm
− vn + α f

= 0 . (3.10)

This procedure can be regarded as the application of a left preconditioner on the nonlinear 

algebraic equations. The new equations (3.10), together with (3.6) and (3.5), constitute the 

system of nonlinear algebraic equations to be solved in each time step. The Newton-

Raphson method with consistent linearization is invoked to solve the nonlinear system of 

equations. At the time step tn+1, the solution vector yn+1 is solved by means of a predictor 

multi-corrector algorithm. We denote yn+1,(l) :={un+1,(l), vn+1,(l), pn+1,(l)}T as the solution 

vector at the Newton-Raphson iteration step l = 0,⋯,lmax. The residual vectors evaluated at 

the iteration stage l are denoted as

R(l) ≔ Rk, (l), Rp, (l), Rm, (l)
T ,

Rk, (l) ≔ Rk ẏn + αm, (l), yn + α f , (l) ,

Rm, (l) ≔ Rm ẏn + αm, (l), yn + α f , (l) ,

Rp, (l) ≔ Rp ẏn + αm, (l), yn + α f , (l) .

The consistent tangent matrix associated with the above residual vectors is

K(l) =

Kk, (l), u̇ Kk, (l), v̇ Kk, (l), ṗ
Km, (l), u̇ Km, (l), v̇ Km, (l), ṗ
Kp, (l), u̇ Kp, (l), v̇ Kp, (l), ṗ

,

Wherein

Kk, (l), u̇ ≔ αm

∂Rk, (l) ẏn + αm, (l), yn + α f , (l)
∂u̇n + αm

= αmI,

Kk, (l), v̇ ≔ α f γΔtn

∂Rk, (l) ẏn + αm, (l), yn + α f , (l)
∂vn + α f

= − α f γΔtnI,

Kk, (l), ṗ ≔ O .
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As was realized in [3], this special block structure in the first row of K(l) can be utilized for a 

block factorization,

K(l) =

Kk, (l), u̇ Kk, (l), v̇ Kk, (l), ṗ

Km, (l), u̇ Km, (l), v̇ Km, (l), ṗ

Kp, (l), u̇ Kp, (l), v̇ Kp, (l), ṗ

=

αmI −α f γΔtnI O
Km, (l), u̇ Km, (l), v̇ Km, (l), ṗ

Kp, (l), u̇ Kp, (l), v̇ Kp, (l), ṗ

=

I O O
1

αm
Km, (l), u̇ Km, (l), v̇ +

α f γΔtn
αm

Km, (l), u̇ Km, (l), ṗ

1
αm

Kp, (l), u̇ Kp, (l), v̇ +
α f γΔtn

αm
Kp, (l), u̇ Kp, (l), ṗ

αmI −α f γΔtnI O
O I O
O O I

.

(3.11)

With (3.11), the solution procedure of the linear system of equations in the Newton-Raphson 

method can be consistently reduced to a two-stage algorithm [1, 3, 44]. In the first stage, one 

obtains the increments of the pressure and velocity at the iteration step l by solving the 

following linear system,

Km, (l), v̇ +
α f γΔtn

αm
Km, (l), u̇ Km, (l), ṗ

Kp, (l), v̇ +
α f γΔtn

αm
Kp, (l), u̇ Kp, (l), ṗ

Δv̇n + 1, (l)
Δ ṗn + 1, (l)

= −
Rm, (l) − 1

αm
Km, (l), u̇Rk, (l)

Rp, (l) − 1
αm

Kp, (l), u̇Rk, (l)

. (3.12)

In the second stage, one obtains the increments for the displacement by

Δu̇n + 1, (l) =
α f γΔtn

αm
Δv̇n + 1, l(l) − 1

αm
R(l)

k . (3.13)

To simplify notations in the following discussion, we denote

A(l) ≔ Km, (l), v̇ +
α f γΔtn

αm
Km, (l), u̇, B(l) ≔ Km, (l), ṗ, (3.14)

C(l) ≔ Kp, (l), v̇ +
α f γΔtn

αm
Kp, (l), u̇, D(l) ≔ Kp, (l), ṗ . (3.15)
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Remark 2. In [1], it was shown that R(l)
k = 0 for l ≥ 2 for general predictor multi-corrector 

algorithms; in [44], a special predictor is chosen so that R(l)
k = 0 for l ≥ 1.

Remark 3. In Appendix A, the detailed formula for the block matrices are given, and it can 
be observed that A(l) consists primarily of a mass matrix and a stiffness matrix; B(l) is a 
discrete gradient operator; C(l) is dominated by a discrete divergence operator; D(l) contains 
a mass matrix scaled with β and contributions from the stabilization terms.

Based on the above discussion, a predictor multi-corrector algorithm for solving the 

nonlinear algebraic equations in each time step can be summarized as follows.

Predictor stage: Set:

yn + 1, (0) = yn, ẏn + 1, (0) = γ − 1
γ ẏn .

Multi-corrector stage: Repeat the following steps for l = 1, …, lmax:

1. Evaluate the solution vectors at the intermediate stages:

yn + α f , (l) = yn + α f yn + 1, (l − 1) − yn , ẏn + αm, (l) = ẏn + αm ẏn + 1, (l − 1) − ẏn .

2. Assemble the residual vectors Rm,(l) and Rp,(l) using the solution evaluated at the 

intermediate stages.

3. Let R(l)
𝔩2 denote the 𝔩2 − norm of the residual vector. If either one of the 

following stopping criteria

R(l) 𝔩2
R(0) 𝔩2

≤ tolR, R(l) 𝔩2 ≤ tolA,

is satisfied for two prescribed tolerances tolR, tolA, set the solution vector at time 

step tn+1 as ẏn + 1 = ẏn + 1, l − 1  and yn+1 = yn+1,(l−1), and exit the multi-corrector 

stage; otherwise, continue to step 4.

4. Assemble the tangent matrices (3.14)–(3.15).

5. Solve the following linear system of equations for Δ ṗn + 1, (l) and Δv̇n + 1, (l),

A(l) B(l)
C(l) D(l)

Δv̇n + 1, (l)
Δ ṗn + 1, (l)

= −
Rm, (l)
Rp, (l)

. (3.16)

6. Obtain Δu̇n + 1, (l) from the relation (3.13).
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7. Update the solution vector as

yn + 1, (l) = yn + 1, (l) + γΔtnΔ ẏn + 1, (l), ẏn + 1, (l) = ẏn + 1, (l) + Δ ẏn + 1, (l) .

and return to step 1.

For all the numerical simulations presented in this work, we adopt the tolerances for the 

nonlinear iteration as tolR = tolA = 10−6 and the maximum number of iterations as lmax = 20.

4. Iterative linear solver

In the predictor multi-corrector algorithm presented above, the linear system of equations 

(3.16) is solved repeatedly, and this step constitutes the major cost for implicit dynamic 

calculations. In this section, we design an iterative solution procedure for the linear problem 

𝒜x = r, in which the matrix and vectors adopt the following block structure,

𝒜 ≔ A B
C D , x ≔

xv
xp

, r ≔
rv
rp

.

Since its inception, GMRES is among the most popular iterative methods for solving sparse 

nonsymmetric matrix problems. With a proper preconditioner 𝒫, the convergence rate of 

iterative methods like GMRES can be significantly expedited. Roughly speaking, in the 

GMRES iteration, one constructs the Krylov subspace and search for the solution that 

minimize the residual in this Krylov subspace by the Arnoldi algorithm [33, 34]. To 

construct the Krylov subspace, one applies 𝒜𝒫−1 to the residual vector in order to enlarge 

the Krylov subspace. This procedure corresponds to first solving a linear system of 

equations associated with 𝒫 and then performing a matrix-vector multiplication associated 

with 𝒜. Often times, to reduce the computational burden, the GMRES algorithm is restarted 

every m steps. Within this work, this algorithm is denoted as GMRES(𝔪).

In Section 4.1, we perform a diagonal scaling for 𝒜 with the purpose of improving the 

condition number [24, 31, 45]. In Section 4.2, we introduce the block factorization of 𝒜 and 

present the SCR algorithm. In Section 4.3, we present the coupled approach with a particular 

focus on the SIMPLE preconditioner. In Section 4.4, the nested block preconditioning 

technique is introduced as a combination of the SCR approach and the coupled approach.

4.1. Symmetrically diagonal scaling

Before constructing an iterative method, we first apply a symmetrically diagonal scaling to 

the matrix 𝒜. This approach is adopted to improve the condition number of the matrix 

problem and is sometimes referred to as a “pre-preconditioning” technique [45]. We 

introduce 𝒲 as a diagonal matrix defined as follows,
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𝒲ii ≔ 𝒜ii
− 1

2,  if  𝒜ii ≥ ϵdiag

1.0,  if  𝒜ii < ϵdiag

.

In the above definition, ϵdiag is a user-specified tolerance to avoid undefined or unstable 

numerical operations. In this work, we set ϵdiag = 1.0 × 10−15. Applying 𝒲 as a left and right 

preconditioner simultaneously, we obtain an altered system as

𝒜*x* = r*, (4.1)

Wherein 𝒜* ≔ 𝒲𝒜𝒲, x* ≔ 𝒲−1x, and r* = 𝒲r. The iterative methods discussed in the 

subsequent sections are applied to the above system. Once x* is obtained from (4.1), one has 

to perform x = 𝒲x* to recover the true solution. In the remainder of Section 4, we focus on 

solving (4.1), and for notational simplicity, the superscript * is neglected.

4.2. Schur complement reduction

Recall that 𝒜 adopts the block factorization

𝒜 = ℒ𝒟𝒰 =
I O

CA−1 I
A O
O S

I A−1B
O I

, (4.2)

wherein S ≔ D – CA−1 B is the Schur complement of A. Applying ℒ−1 on both sides of the 

equation 𝒜x = r, one obtains

A B
O S

xv
xp

=
I O

CA−1 I

−1 rv
rp

=
I O

−CA−1 I

rv
rp

=
rv

rp − CA−1rv
.

The upper triangular block matrix problem can be solved by a back substitution. 

Consequently, the solution procedure for 𝒜x = r can be summarized as the following 

segregated algorithm [24, 25, 26].

Algorithm 1

Solution procedure for 𝒜x = r based on SCR.

1: Solve for an intermediate velocity xv from the equation

Axv = rv . (4.3)

2: Update the continuity residual by rp rp − Cxv .
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3: Solve for xp from the equation

Sxp = rp . (4.4)

4: Update the momentum residual by rv rv − Bxp .

5: Solve for xv from the equation

Axv = rv . (4.5)

For hyper-elastodynamics problems, it is reasonable to apply GMRES preconditioned by 

AMG for (4.3) and (4.5). The stopping condition for solving with A includes the tolerance 

for the relative error δA
r , the tolerance for the absolute error δA

a , and the maximum number of 

iterations nA
max. In (4.4), the Schur complement is a dense matrix due to the presence of A−1 

in its definition. It is expensive and often impossible to directly compute with S. Recall that 

in a Krylov subspace method, the search space is iteratively expanded by performing matrix-

vector multiplications. Although the algebraic form of S is impractical to obtain, its action 

on a vector is readily available through the following “matrix-free” algorithm [24, 26].

Algorithm 2

The multiplication of S with a vector xp.

1: Compute the matrix-vector multiplication x p Dxp .

2: Compute the matrix-vector multiplication xp Bxp .

3: Solve for xp from the linear system

Axp = xp . (4.6)

4: Compute the matrix-vector multiplication xp Cxp .

5: return x p − xp .

In Algorithm 2, the action of S on a vector is realized through a series of matrix-vector 

multiplications, and the action of A−1 on a vector is achieved by solving the linear system 

(4.6). This solver is located inside the solution procedure of (4.4), and we call it the inner 
solver. The stopping condition of the inner solver includes the tolerance for the relative error 

δA
r , the tolerance for the absolute error δA

a , and the maximum number of iterations nA
max.

With Algorithm 2, one can construct a Krylov subspace for S and solve the equation (4.4). 

However, without preconditioning, GMRES may stagnate or even break down. More 
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importantly, each matrix-vector multiplication given in Algorithm 2 involves solving a linear 

system (4.6), and this inevitably makes the matrix-vector multiplication quite expensive. To 

mitigate the number of this expensive matrix-vector multiplications, we solve (4.4) with 

S ≔ D − C(diag(A))−1B as a right preconditioner [46]. If the time step size is small, A is 

dominated by the mass matrix, and S acts as an effective preconditioner for solving (4.4). On 

the other side, if the time step size is large, A is dominated by the stiffness matrix. The 

situation then is analogous to the Stokes problem, where the Schur complement is spectrally 

equivalent to an identity matrix. We may reasonably expect that an unpreconditioned 

GMRES using Algorithm 2 is sufficient for solving (4.4). Still, using S may accelerate the 

convergence rate. Therefore, we solve (4.4) by GMRES, where the stopping criteria include 

the tolerance for the relative error δA
r , the tolerance for the absolute error δA

a , and the 

maximum number of iterations nA
max.

4.3. Coupled approach with block preconditioners

The block factorization (4.2) also inspires the design of a preconditioner for 𝒜. Following 

the nomenclature used in [16], we use H1 and H2 to denote the approximations of A−1 in the 

Schur complement and the upper triangular matrix 𝒰, respectively. This results in a block 

preconditioner expressed as

𝒫 =
I O

CA−1 I
A O
O D − CH1B

I H2B
O I

=
A AH2B
C D − C H1 − H2 B . (4.7)

The two approximated sparse matrices are introduced so that the spectrum of 𝒜𝒫−1 has a 

clustering around {1}. With the block preconditioner, one can apply the Krylov subspace 

method directly to solve 𝒜x = r, and the bases of the Krylov subspace are constructed by 

applying 𝒜𝒫−1 on a vector. The action of 𝒫−1 is achieved through a procedure similar to 

the Algorithm 1. The differences are that the inner solver is not needed and one does not 

need to solve the equations associated with the sub-matrices to a high precision. The Krylov 

subspace method is typically used with a multigrid [17, 32] or a domain decomposition [47] 

preconditioner to solve with the sub-matrices. Consequently, the algebraic definition of 𝒫
varies over iterations, and one has to apply a flexible method, like the Flexible GMRES 

(FGMRES) [34], as the iterative method for 𝒜x = r. Choosing H1 = H2 = diag(A)−1 leads to 

the SIMPLE preconditioner 𝒫SIMPLE [17, 16],

𝒫SIMPLE  ≔
I O

CA−1 I
A O
O S

I (diag(A))−1B
O I

= A Adiag(A)−1B
C D

.

The SIMPLE preconditioner is an algebraic analogue of the Semi-Implicit Method for 

Pressure Linked Equations (SIMPLE) [18]. It introduces a perturbation to the pressure 

operator in the linear momentum equation. This preconditioner and its variants are among 
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the most popular choices for problems in CFD [32, 48], FSI [47], and multiphysics problems 

[49, 50].

Remark 4. There are cases when the symmetry of A is broken, and using the SIMPLE-type 
preconditioner leads to poor performance. It is the case in CFD with large Reynolds 
numbers. To take into account of the off-diagonal entries of A, sophisticated preconditioners, 
like the LSC preconditioner [22], have been developed. Those preconditioners have been 
shown to be robust with respect to the Reynolds number using inf-sup stable discretizations 
of the CFD problem (i.e., D = O). Note that, for the stabilized methods, the LSC 
preconditioner may not converge [32].

4.4. Flexible GMRES algorithm with a nested block preconditioner

The SIMPLE preconditioner can be viewed as the SCR approach built based on an inexact 

block factorization. Its main advantage is that the application of this preconditioner is 

inexpensive. However, for certain problems, this inexact factorization misses some key 

information of the original matrix, and stagnation of the solver is observed. We want to 

leverage the robustness of the SCR approach built from the exact block factorization by 

using it as a right preconditioner, denoted as 𝒫SCR The action of 𝒫SCR
−1  on a vector is given 

by Algorithm 1, in which the equations (4.3)–(4.5) are solved with prescribed tolerances. 

The algebraic form of 𝒫SCR is defined implicitly through the solvers in Algorithm 1 and 

varies over iterations. Assuming that the three equations (4.3)–(4.5) are solved exactly, the 

spectrum of 𝒜𝒫SCR
−1  will be {1}, and the solver will converge in one iteration. Because the 

preconditioner varies over iterations, we invoke FGMRES as the iterative method for 𝒜x = r. 
The stopping condition of the FGMRES algorithm includes the tolerance for the absolute 

error δa, the tolerance for the relative error δr, and the maximum number of iterations nmax.

The FGMRES iteration for 𝒜 serves as the outer solver which tries to minimize the residual 

of 𝒜x = r Inside this FGMRES iteration, the application of 𝒫SCR is achieved through 

Algorithm 1, and one needs to solve with the block matrices A and S at this stage. We call it 

the intermediate solver. When solving with the Schur complement, its action on a vector is 

defined by Algorihtm 2, which necessitates using the inner solver to solve with A. The three 

levels of solvers are illustrated in Figure 1 with different colors.

Remark 5. In the construction of the proposed block preconditioners, the full ℒ𝒟𝒰
factorization of 𝒜 is utilized. One can surely use only part of the factorization to devise 
different preconditioners. For example, the diagonal part 𝒟 is an efficient candidate for the 
Stokes equations [19, 51]. Assuming exact arithmetic, itgives convergence within 4 
iterations. Using the upper triangular part 𝒟𝒰 often gives a good balance between the 
convergence rate and the computational cost [52], as it leads to convergence within 2 
iterations [53, 54], assuming exact arithmetic. In our case, the full ℒ𝒟𝒰 block factorization 
gives the fastest convergence rate. We prefer this because the solution of the Schur 
complement equation is often the most expensive part of the overall algorithm. Therefore, in 
comparison with an upper triangular block preconditioner, we pay the price of solving the 
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matrix problem A twice with the purpose of mitigating the number of the solution procedure 
for the Schur complement.

Remark 6. In the above algorithm, the nested block preconditioner 𝒫SCR can be regarded as 

a result of an inexact factorization of 𝒜. The inexactness is due to the approximation made 
by the solvers in the intermediate and inner levels. The preconditioner is thus defined by the 

tolerances of these solvers. Using strict tolerances apparently makes 𝒫SCR closer to 𝒜. 

However, this is impractical since this makes the algorithm as expensive as the SCR 
approach. On the other extreme, one may solve (4.4) by applying the preconditioner S  once 
without invoking the inner solver. This makes the algorithm as simple as the coupled 
approach with the SIMPLE preconditioner and potentially endangers the robustness. We 
adjust the tolerances to tune the preconditioner, noting there is a lot of leeway in the choice 
of the tolerance value ranging from strict to loose. The effect of the tolerances of the 
intermediate and inner solvers will be studied in Section 5.

Remark 7. Choosing a good preconditioner for the Schur complement is critical for the 
performance of the proposed nested block preconditioner. In our experience, using a scaled 
pressure mass matrix gives satisfactory results as well [55]. For compressible materials, this 
preconditioner does not need to be explicitly assembled, and one can use D directly (See 
Appendix A). In this work, we focus on D − C (diag (A))−1 B, since this choice apparently 
is a better approximation of S. In [56], a sparse approximate inverse is utilized to construct 
the preconditioner for the Schur complement, which is worth of future study.

5. Numerical Results

In our work, the outer solver is FGMRES(200) with nmax = 200 and δa = 10−50. In the 

intermediate level, (4.3) and (4.5) are solved by GMRES(500) preconditioned by AMG with 

nA
max = 500 and δA

a = 10−50. The equation (4.4) is solved by GMRES(200), with nS
max = 200

and δS
a = 10−50. We use the AMG preconditioner constructed from S . In the inner level, the 

linear system is solved via GMRES(500) preconditioned by AMG with nI
max = 500 and 

δI
a = 10−50. We use the BoomerAMG [57] from the Hypre package [58] as the parallel AMG 

implementation. The settings of the BoomerAMG are summarized in Table 1. With the 

above settings, the accuracy of the solution is dictated by δr, and the convergence rate is 

controlled by the tolerances δA
r , δS

r , and δI
r.

To provide baseline examples, we solve the system of equations (4.1) by two different 

preconditioners. As the first example, we solve the the system of equations by 

FGMRES(200) using 𝒫SIMPLE with nmax=200 and δa = 10−50. In this preconditioner, the 

settings of the linear solver (including the Krylov subspace method, the preconditioners, and 

the stopping criteria) associated with A and S are exactly the same as the ones used in the 

nested block preconditioner. The accuracy of the solver is determined by δr, and the 
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performance of the preconditioner is controlled by δA
r  and δS

r  Notice that, in this 

preconditioner, δS
r  is the tolerance for solving with the matrix S.

As another baseline example, we choose to solve the linear system by GMRES(200) 

preconditioned by a one-level additive Schwarz domain decomposition preconditioner [59]. 

The maximum number of iterations is fixed at 10000, and the tolerance for the absolute error 

is fixed at 10−50. In this preconditioner, each processor is assigned with a single subdomain, 

and an incomplete LU factorization (ILU) with a fill-in ratio 1.0 is invoked to solve the 

problem on the subdomains. This preconditioner is purely algebraic and is usually very 

competitive for medium-size parallel simulations. However, as will be shown in the 

numerical examples, the one-level domain decomposition preconditioner is not a robust 

option. Also, as the problem size and the number of subdomains grows, more iterations are 

needed to propagate information across the whole domain. In our implementation, the 

restricted additive Schwarz method from PETSc [60] is utilized as the domain 

decomposition preconditioner; the PILUT routine from Hypre [58] is used as the solver for 

the subdomain algebraic problem.

All numerical simulations are performed on the Stampede2 supercomputer at Texas 

Advanced Computing Center (TACC), using the Intel Xeon Platinum 8160 node. Each node 

contains 48 cores, with 2.1GHz nominal clock rate and 192GB RAM per node (4 GB RAM 

per core).

5.1. Compression of a block

The compression of a unit block was proposed as a benchmark problem for nearly 

incompressible solids [36]. The geometrical configuration and the boundary conditions are 

illustrated in Figure 2. The problem is discretized in space by a uniform structured 

tetrahedral mesh generated by Gmsh [61], and we use Δx to denote the edge length of the 

mesh. The original benchmark problem was proposed in the quasi-static setting, and a ‘dead’ 

surface load H is applied on a quarter portion of the top surface, pointing in the negative z-

direction with magnitude |H| = 320 MPa. In this work, the problem is investigated in the 

dynamic setting by gradually increasing the load force as a linear function of time. The 

material is described by a Neo-Hookean model, whose Gibbs free energy function takes the 

form

G(C, p) = μ
2ρ0

( trC − 3) + p p2 + κ2 − p2
2κρ0

− κ
2ρ0

ln p2 + κ2 − p
κ .

Following [36], the material parameters are chosen as μ = 80.194 MPa, κ = 400889.806 

MPa, and ρ0 =1.0 × 103 kg/m3. The corresponding Poisson’s ratio ν is 0.4999. In Section 

5.1.3, we examine the robustness of the preconditioner with regard to varying material 

moduli. In the following discussion, the governing equations have been non-dimensionalized 

by the centimetre-gram-second units. Note that the edge length of the cube is 1 mm = 0.1 

cm. Then the number of elements in each direction of the cube is given by 1/(10Δx).
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5.1.1. Performance with varying inner solver accuracy—In this test, we 

investigate the impact of the accuracy of the inner solver on the overall iterative method. We 

fix the mesh size to be Δx = 1/640 and the time step size to be Δt = 10−1. The simulation is 

performed with 8 CPUs, with approximately 131072 equations assigned to each CPU. In this 

study, we choose δr = 10−8, and we consider two settings for the intermediate solver: 

δA
r = δS

r = 10−10 and δA
r = δS

r = 10−6 We collect the statistics of the solver in the first time 

step with varying values of δI
r (Table 2). The results associated with δI

r = 100 are obtained by 

solving Sxp = r p in step 3 of Algorithm 1. This choice corresponds to choosing H1 = diag 

(A)−1 and H2 = A−1 in (4.7) for 𝒫, making it similar to the SIMPLE preconditioner.

In our numerical experiments, we observe that with the choice of δA
r = δS

r = δI
r = 10−10, the 

outer solver converges in less than two iterations on average. In fact, we also experimented 

with stricter tolerances and observed convergence of the outer solver in one iteration. (We do 

not report this because this stricter choice requires larger size of the Krylov subspace which 

is incompatible with our current settings.) This result corroborates the fact that the full ℒ𝒟𝒰
block preconditioner gives convergence in one iteration with exact arithmetic.

In the literature, the choice for the inner solver accuracy is under debate. In [24], it is 

suggested that the inner solver should be more accurate than its upper-level counterpart (i.e., 

δI
r ≤ δS

r  in our case) to guarantee accurate representation of the Schur complement. 

Meanwhile, it is shown in≤[62] that the Krylov methods are in fact very robust under the 

presence of inexact matrix-vector multiplications. In our test, as we gradually release the 

tolerance δI
r, it is observed that the inner solver converges with fewer iterations while the 

outer solver requires more iterations to reach convergence to compensate for the inaccurate 

evaluations of the Schur complement. As δI
r gets larger than δS

r , initially the overhead is low. 

As the tolerance further increases, the outer solver requires more iterations and the overall 

cost of the solver grows correspondingly. For the two cases, the break-even points are 

achieved with δI
r = 10−6 and 10−4, respectively. Examining the number of iterations for the 

outer solver, we observe a steady growth of n once δI
r grows larger than δS

r . Though it is hard 

to predict the optimal choice of δr
I for general cases, we observe that a choice of δI

r = δS
r  is 

safe for robust performances; a slightly relaxed tolerance for the inner solver (e.g. 

δI
r = 102δS

r) is beneficial for efficiency. We also note that nS is insensitive to the inner solver 

accuracy as long as δI
r < 100.

For comparison, we also examined the solver performance without the inner solver. We 

solve with S instead of S in (4.4) directly. This corresponds to a highly inaccurate evaluation 

of the Schur complement. We see that the iteration number n, the averaged iteration number 

for the intermediate solver nS, and the CPU time of the outer solver increase significantly. 

The severe degradation of solver performance signifies the importance of an accurate 

evaluation of the Schur complement.
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5.1.2. Performance with varying intermediate solver accuracy—In this example, 

we examine the effect of varying intermediate solver tolerances on the solver performance. 

We consider a uniform mesh with Δx = 1/640, with two time step sizes: Δt = 10−1 and 10−5. 

We choose δr = 10−8 for the outer solver. We set δA
r = δS

r = δI
r and vary their values from 10−8 

to 10−2. To make comparisons, the same problem is simulated with the SIMPLE 

preconditioner and the additive Schwarz preconditioner. In the SIMPLE preconditioner, we 

solve the equations associated with A and S with δA
r = δS

r = 10−8. The convergence is 

monitored for the first time step, which is usually the most challenging part of dynamic 

calculations. The convergence history of the linear solver in the first nonlinear iteration is 

plotted in Figure 3. It can be seen that the accuracy of the intermediate solvers affects the 

convergence rate of the linear solver. When the equations in the intermediate level are solved 

to a high precision, the convergence rate of the outer solver is steep. As one looses the 

tolerances for the intermediate solvers, the proposed algorithm requires more iterations for 

convergence. Yet, even for the tolerance as loose as 10−2, the convergence rate is still much 

steeper than that of the SIMPLE preconditioner. The average time for solving the matrix 

problem per nonlinear iteration is reported in the figures as well. We observe that when 

choosing a strict tolerance for the intermediate and inner solvers, although convergence is 

achieved with fewer iterations, the cost per iteration is high and the overall time to solution 

is correspondingly high. A looser tolerance renders the application of the nested block 

preconditioner more cost-effective, and the overall algorithm is faster. In comparison with 

the SIMPLE and additive Schwarz methods, the proposed nested block preconditioning 

technique is fairly competitive.

5.1.3. Performance with varying material properties—In this example, we vary 

the material properties and study the robustness of the proposed preconditioner. The 

Poisson’s ratio ν varies from 0.0 to 0.5, spanning the range relevant to most engineering and 

biological materials. The shear modulus μ is taken as 80.194 × η MPa, wherein η is a non-

dimensional number. Correspondingly, the compression force is adjusted by multiplying 

with the scaling factor η for values of 10−2,100, and 102. The stopping condition for the 

linear solver is δr = 10−8, and we choose δA
r = δS

r = δI
r = 10−6. The mesh size is fixed to be 

Δx = 1/480, and the problem is simulated with 8 CPUs. The time step size is Δt = 10−1 and 

we integrate the problem up to T = 1.0. We use a relatively large time step size here to make 

the matrix A dominated by the stiffness matrix. The statistics of the solver performance are 

collected over ten time steps (Table 3).

For all cases, the number of iterations for the outer solver maintains around two. In fact, it is 

only for the case of ν = 0.5 and η = 10−2 that the outer solver needs slightly more than two 

iterations. The number of iterations for solving with A in (4.3) and (4.5) is maintained 

around 47, and hence can be regarded as independent with respect to the material property. 

The number of iterations for solving (4.4) increases with increasing the Poisson’s ratio. This 

can be explained by looking at S = D − CA−1B. The matrix D is dominated by the mass 

matrix scaled with a factor of β. As ν approaches 0.5, the isothermal compressibility 

coefficient β goes to zero. Consequently, the well-conditioned matrix D diminishes, and the 

condition number of the Schur complement gets larger. This is reflected in the increase of nS
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as ν goes from 0.0 to 0.5 for all three shear moduli. On the other hand, nS increases as the 

material gets softer, and this trend is pronounced as the Poisson’s ratio gets larger. This can 

be explained by looking at A−1 in the Schur complement. For large time steps, A contains a 

significant contribution from the stiffness matrix, and the inverse of the stiffness matrix is 

proportional to 1/μ. It is known that diag (A) is not a good candidate for approximating the 

stiffness matrix, and this is magnified for softer materials due to the factor 1/μ.

5.1.4. Parallel performance—We investigate the efficiency of the method by 

evaluating the fixed-size scalability performance. The spatial mesh size is Δx = 1/1280, with 

about 8.39 × 106 degrees of freedom. The time step size is fixed at 10−5, and we integrate 

the problem in time up to T = 10−4. The stopping criterion for the FGMRES iteration is δr = 

10−3; the tolerances for the intermediate and inner solvers are δA
r = δS

r = δI
r = 10−3. The 

communication speed of MPI messages between nodes is typically slower than that within a 

single node. To rule out the discrepancy of the communication speed, we run this test by 

assigning only one CPU per node. This means that the MPI messages are communicated 

purely by the cluster network. We observe that the efficiency of the numerical simulation is 

maintained at a high level (around 90%), and the average number of FGMRES iterations 

maintains at 2.0 for a wide range of processor counts (Table 4).

To compare the performance of different preconditioners, we also perform a weak scaling 

test of the solver, with δr = 10−3. Tolerances are set to δA
r = δS

r = δI
r = 10−3 for the nested 

block preconditioner and to δA
r = δS

r = 10−3 for the SIMPLE preconditioner. The 

computational mesh is progressively refined and each CPU is assigned approximately 5.53 × 
104 equations. We simulate the problem with two different time step sizes: Δt = 10−1 and 

10−5. The statistics of the solver performance are collected for ten time steps (Table 5). We 

observe that the iteration counts for the outer solver using the nested block preconditioner 

are independent of mesh refinement. At large time steps, A is dominated by the stiffness 

matrix and its solution procedure requires more iterations. In the meantime, the Schur 

complement has a better condition number and converges with fewer iterations. At small 

time steps, the situation is opposite. The matrix A is dominated by the mass matrix, and it 

can be solved with fewer iterations. The mesh refinement has an impact on the intermediate 

solvers, and we observe an increase of the number of iterations in nA and nS. For the outer 

solver, n is maintained around a constant value, suggesting the outer solver is insensitive to 

the mesh refinement. The averaged CPU time TL for the linear solver grows with mesh 

refinement, which is primarily attributed to the AMG preconditioner adopted. Indeed, there 

are known bottlenecks of the parallel AMG preconditioner [35, 63], which prohibits ideal 

weak scalability of TL. For the SIMPLE preconditioner, the iteration counts and the CPU 

time grow faster than those of the nested block preconditioner. The additive Schwarz method 

converges faster per iteration. However, the number of iterations for convergence is much 

higher. For the finest mesh, the additive Schwarz method fails to converge in 10000 

iterations. The proposed nested block preconditioner gives the most robust and efficient 

performance.
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5.2. Tensile test of an anisotropic fibre-reinforced hyperelastic soft tissue model

In this example, we apply the proposed preconditioning technique to an anisotropic 

hyperelastic material model, which has been used to describe arterial tissue layers with 

distributed collagen fibres. The isochoric and volumetric parts of the free energy are

Gich(C) = Gich
g (C) + ∑

i = 1, 2
Gich

f i (C), Gvol(p) = p
ρ0

,

Gich
g (C) = μ

2ρ0
(trC − 3), Gich

f i (C) =
k1

2k2ρ0
e
k2Ei

2
− 1 ,

Ei ≔ Hi:C − 1, Hi ≔ kdI + 1 − 3kd ai ⊗ ai .

In the above, Gich
g  models the groundmatrix via an isotropic Neo-Hookean material, with μ 

being the shear modulus; Gich
gi  models the ith family of collagen fibres by an exponential 

function. In Gich
gi , ai is a unit vector that describes the mean orientation of the ith family of 

fibres in the reference configuration. The parameter kd ∈ [0, 1/3] is a structural parameter 

that characterizes the dispersion of the collagen fibres. For ideally aligned fibres, the 

dispersion parameter kd is 0, while for isotropically distributed fibres, it takes the value 1/3. 

The parameter k1 is a material parameter that describes the stiffness of the fibre, and k2 is a 

non-dimensional parameter. The volumetric energy Gvol indicates that the model is fully 

incompressible. Interested readers are referred to [37] for detailed discussions of the 

histology and constitutive modeling of the arterial layers. In the numerical study, we perform 

a tensile test for the tissue model. Following [37], the geometry of the specimen has length 

10.0 mm, width 3.0 mm, and thickness 0.5 mm. The material parameters are μ = 7.64 kPa, 

k1 = 996.6 kPa, k2 = 524.6. Assuming that the fibre orientation has no radial component, the 

unit vector is characterized completely by φ, the angle between the circumferential direction 

and the mean fibre orientation direction (see Figure 4 (a)). For the circumferential specimen, 

φ = 49.98°; for the axial specimen, φ = 40.02°. On the loading surface, traction force is 

applied and the face is constrained to move only in the loading direction. Symmetry 

boundary conditions are properly applied, and we only consider one-eighth of the specimen 

in the simulations.

Before studying the solver performance, we perform a simulation with 3.5 million 

unstructured linear tetrahedral elements to examine the VMS formulation for this material 

model. In this study, the tensile test is performed in a dynamic approach. The loading force 

is applied as a linear function of time and reaches 2 N in 100 seconds. We set the density of 

the tissue as 1.0 g/cm3. The tensile load-displacement curves for the circumferential and 

axial specimens with kd = 0.0 and 0.226 are plotted in Figure 4 (b). We observe that before 

the fibres align along the loading direction, the groudmatrix provides the load carry capacity 
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and the material response is very soft. When the fibres rotate to align with the loading 

direction, they take over the load burden, the material becomes stiffer, and the stiffness 

grows exponentially. For the axial specimen, the mean orientation of the fibres are closer to 

the loading direction, and hence it stiffens earlier than the circumferential specimen. 

Compared with the dispersed case, the specimen with perfectly aligned fibres (i.e., kd = 0.0) 

needs a significant amount of rotation before they can carry load. In Figure 5 (a) and (b), the 

Cauchy stresses in the tensile direction for the circumferential and axial specimens with kd = 

0.226 at the tensile load 1.0 N are illustrated. The value of a1 · Ca2∥Fa1∥∥Fa2∥characterizes 

the current fibre alignment, and it is illustrated in Figure 5 (c) and (d) for the circumferential 

and axial specimens. The maximum values in these specimens are 0.347 and 0.459, 

respectively. Correspondingly, the angles between the current mean fibre direction and the 

circumferential direction are 34.85° and 31.34°, respectively. In the following discussion, the 

problem has been non-dimensionalized by the centimetre-gram-second units. Except the 

study performed in Section 5.2.3, we adopt the axial specimen with the dispersion parameter 

kd = 0.226 as the model problem for the study of the solver performance.

5.2.1. Performance with varying inner solver accuracy—In this test, we study the 

impact of the inner solver accuracy on the iterative solution algorithm. We fix the mesh size 

to be 1/400 and the time step size to be 10−5. The simulation is performed with 8 CPUs. In 

this test, the settings of the linear solver are identical to the study performed in Section 5.1.2. 

The statistics of the solver are collected for the first time step of the simulation with varying 

values of δI
r (Table 6). The impact of the inner solver accuracy is similar to what was 

observed in Section 5.1.1. It is confirmed that using the inner solver may significantly 

improve the convergence rate of the linear solver. In both cases, the optimal performance in 

terms of time to solution is achieved by setting δI
r = 102δS

r .

5.2.2. Performance with varying intermediate solver accuracy—We examine the 

solver performance for anisotropic hyperelastic materials with varying tolerances for the 

intermediate solvers. The mesh size is fixed to be Δx = 1/400, and the time step sizes are 

fixed to be Δt = 10−1 and 10−5. The simulations are performed with 8 CPUs. We choose δr = 

10−8 and vary the values of δA
r = δS

r = δI
r from 10−8 to 10−2. The SIMPLE preconditioner and 

the additive Schwarz preconditioner are also simulated for comparison. In the SIMPLE 

preconditioner, the block matrices A and S are solved with δA
r = δS

r = 10−8. The convergence 

history of the linear solver in the first nonlinear iteration is plotted in Figure 6. We observe 

that the nested block preconditioner performs robustly with a strict choice of the 

intermediate and inner solver tolerances. When the tolerances for the intermediate and inner 

solvers are loose (10−2) and the time step is large (Δt = 10−1), the convergence rate of the 

nested block preconditioner slows dramatically and is slower than the SIMPLE 

preconditioner. It should be emphasized that the SIMPLE preconditioner uses a very strict 

tolerance (δA
r = δS

r = 10−8) here. We also note that the additive Schwarz preconditioner fails 

to converge to the prescribed tolerance in 10000 iterations when Δt = 10−1.
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5.2.3. Performance with varying fibre orientations and dispersions—In this 

test, we examine the robustness of the solver with different collagen fibre orientations and 

dispersions. The structure of the arterial wall is described by the collagen fibre mean 

orientation φ and the dispersion parameter kd. We vary the value of φ from 20° to 80°, and 

the value of kd from 0.1 to 0.3. The rest material properties are kept the same as the ones 

used in the previous studies. The simulations are performed with Δx = 1/100 on 8 CPUs. 

The time step size is Δt = 10−1, and we simulate the problem up to T = 1.0 to collect 

statistics of the solver performance. The stopping condition for the FGMRES iteration is δr 

= 10−8, and we choose δA
r = δS

r = δI
r = 10−6. The averaged number of iterations and the 

averaged CPU time for one nonlinear iteration is reported in Table 7.

We observe that the outer solver converges in around three iterations regardless of the 

structural properties. In the intermediate level, the linear solver for S is not sensitive to the 

two structural parameters; the linear solver for A is affected by both parameters. The 

dispersion parameter kd has a significant impact on the performance of the solver associated 

with A. For the case of kd = 0.1, the solver for A requires slightly more than 200 iterations 

for convergence; for the case of kd = 0.3, the number of iterations drops to around 100. As 

the dispersion parameter grows, there are more fibres providing stiffness. Thus, the trend of 

nA is in agreement with the observations made in Section 5.1.3.

5.2.4. Parallel performance—We compare the performance of different 

preconditioners by performing a weak scaling test. The tolerance for the linear solver is set 

to be δr = 10−3. In the nested block preconditioner, we set δA
r = δS

r = δI
r = 10−3, and we use 

δA
r = δS

r = 10−3 for the SIMPLE preconditioner. The computational mesh is progressively 

refined and each CPU is assigned with approximately 6.0×104 equations. We simulate the 

problem with two different time step sizes: Δt = 10−1 and 10−5. The statistics of the solver 

performance are collected for five time steps, and the results are reported in Table 8. The 

number of iterations at the intermediate level shows a similar trend to the isotropic case 

studied in Section 5.1.4. The difference is that, for the anisotropic material, the solver for A 
requires more iterations to converge when the time step size is large. The degradation of the 

AMG preconditioner for anisotropic problems is known, and using a higher complexity 

coarsening, like the Falgout method, will improve the performance [57]. Notably, for large 

time steps, the additive Schwarz preconditioner just cannot deliver converged solutions 

within 10000 iterations, regardless of the spatial mesh size. Examining the results, the 

proposed nested block preconditioner gives the most robust and efficient performance for 

most of the cases considered.

6. Conclusions

In this work, we designed a preconditioning technique based the novel hyper-elastodynamics 

formulation [1]. This preconditioning technique is based on a series of block factorizations 

in the Newton-Raphson solution procedure [1, 3, 44] and is inspired from the 

preconditioning techniques developed in the CFD community [27, 28, 29, 30]. It uses the 

Schur complement reduction with relaxed tolerances as the preconditioner inside a Krylov 
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subspace method. This strategy enjoys the merits of both the SCR approach and the fully 

coupled approaches. It shows better robustness and efficiency in comparison with the 

SIMPLE and the additive Schwarz preconditioners. Tuning the intermediate and the inner 

solvers allows the user to adjust the nested algorithm for specific problems to attain a 

balance between robustness and efficiency. In this work, to make the presentation coherent, 

we adopted the same solver at the intermediate and the inner levels. In practice, one is 

advised to flexibly apply the most efficient solver at the inner level. For example, one may 

symmetrize the matrix in (4.6) [30] and use the conjugate gradient method as the inner 

solver. In our experience, this will further reduce the computational cost. In all, the 

methodology developed in this work provides a sound basis for the design of effective 

preconditioning techniques for hyper-elastodynamics.

There are several promising directions for future work. (1) Improvements will be made to 

design a better preconditioner for the Schur complement. It is tempting to consider using the 

sparse approximate inverse method to construct this preconditioner [64]. (2) Geometric 

multigrid preconditioners will be developed to replace the AMG preconditioner. This is 

expected to further improve the scalability of the proposed solution method. (3) This 

preconditioning technique will be extended to inelastic calculations [39, 40] as well as FSI 

problems [1].
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Appendix A.: Consistent linearization

We report the explicit formulas of the residual vectors and tangent matrices used in the 

Newton-Raphson solution procedure at the iteration step l. For notational simplicity, the 

subscript (l) is neglected in the following discussion.

Rm = Rm, A
i , (A.1)

Rm, A
i = ∫

ΩX
NAJρv̇i + NA, IPiI − NA, iJ p − NAJρbidΩX − ∫

ΓX
H NAHidΓX, (A.2)

Rp = Rp, A , (A.3)
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Rp, A = ∫
ΩX

JNA βṗ + v j, i dΩX + ∑
e
∫

ΩX
e τM

e NA, i ρJv̇i − PiJ, J + J p, i − ρJbi dΩX . (A.4)

In the above, we used the following notation conventions,

NA, I ≔
∂NA
∂XI

, NA, i ≔
∂NA
∂XI

=
∂NA
∂XI

∂XI
∂xi

=
∂NA
∂XI

FIi
−1, p, i = p, IFIi

−1, PiI ≔ JσiI
devFI j

−1 .

Note that ρ = ρ(p) and β = β(p) are given by the constitutive relations, and Hi := hi ° φt.

A = AAB
i j , (A.5)

AAB
i j = αm∫ΩX

JρNANBdΩXδi j +
α f γΔtn

2

αm
∫ΩX

NA, I SIJδi j + 𝔸iI jJ
ich NB, JdΩX

+
α f γΔtn

2

αm
∫ΩX

J pNA, I FI j
−1FJi

−1 − FIi
−1FJ j

−1 NB, JdΩX

+
α f γΔtn

2

αm
∫ΩX

NAρJ v̇i − bi NB, jdΩX,

B = BAB
i , (A.6)

BAB
i = α f γΔt∫ΩX

ρ, pJ v̇i − bi NANB − JNA, iNBdΩX,

C = CAB
j , (A.7)
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CAB
j = αm∑

e
∫

ΩX
e τM

e ρJNA, jNBdΩX + α f γΔt∫
ΩX

JNANB, jdΩX

+
α f γΔtn

2

αm
∫

ΩX
JβṗNANB, j + JNA vi, iNB, j − vi, jNB, i dΩX

−
α f γΔtn

2

αm
∑

e
∫

ΩX
e τM

e NA, jNB, i ρJv̇i − PiI, I + J p, i − ρJbi dΩX

+
α f γΔtn

2

αm
∑

e
∫

ΩX
e τM

e JNA, i p, iNB, j − p, jNB, i dΩX

+
α f γΔtn

2

αm
∑

e
∫

ΩX
e τM

e NA, iNB, jρJ v̇i − bi dΩX

−
α f γΔtn

2

αm
∑

e
∫

ΩX
e τM, i

e NA, i SMNδi j + 𝔸iM jN
ich NB, MNdΩX,

(A.8)

D = DAB , (A.9)

DAB = αm∫ΩX
JβNANBdΩX + α f γΔt∫

ΩX
Jβ, p ṗNANBdΩX

+ α f γΔt∑
e
∫

ΩX
e JτM

e NA, iNB, i + ρ, p v̇i − bi NA, iNB dΩX .

(A.10)

In AAB
i j  and CAB

j , we used the following notation,

𝔸iI jJ
ich ≔

∂Gich
∂FiI ∂F jJ

.
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Highlights

• A nested block preconditioning technique is developed for hyper-

elastodynamics.

• The Schur complement reduction is used as a block preconditioner.

• The intermediate and inner solvers can be tuned for robustness and efficiency.

• An anisotropic fibre-reinforced arterial wall model is studied with the method.
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Figure 1: 
Implementation of the FGMRES with the nested block preconditioner. The green color 

represents the outer solver; the blue color represents the intermediate solver; the grey color 

represents the inner solver.
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Figure 2: 
Three-dimensional compression of a block: (left) geometry of the referential configuration 

and the boundary conditions; (right) pressure profile in the current configuration with Δx = 

1/3840.

Liu and Marsden Page 35

J Comput Phys. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Convergence history for Δt = 10−1 (left) and 10−5 (right). The horizontal dashed black line 

indicates the prescribed stopping criterion for the relative error, which is 10−8 here. In the 

case of Δt = 10−1, the SIMPLE method converges in 21 iterations, and the additive Schwarz 

method converges in 2644 iterations. In the case of Δt = 10−5, the SIMPLE method 

converges in 71 iterations, and the additive Schwarz method converges in 2030 iterations. 

The numbers indicate the averaged time per nonlinear iteration in seconds.
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Figure 4: 
Three-dimensional tensile test of an iliac adventitial strip: (a) geometry of the referential 

configuration; (b) computed load-displacement curves of the circumferential (blue) and axial 

specimens (red) with (κ = 0.226, solid curves) and without (κ = 0.0, dashed curves) 

dispersion of the collagen fibres.
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Figure 5: 
Three-dimensional tensile test: Cauchy stress in the loading direction are plotted for the 

circumferential (a) and axial (b) specimens. The mean orientation of the collagen fibres in 

the current configuration are plotted for the circumferential (c) and axial (d) specimens.
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Figure 6: 
Convergence history for Δt = 10−1 (left) and 10−5 (right). The horizontal dashed black line 

indicates the prescribed stopping criterion for the relative error, which is 10−8 here. In the 

case of Δt = 10−1, the block preconditioner with tolerance 10−2 converge in 90 iterations, the 

SIMPLE method converges in 45 steps, and the additive Schwarz method failed to converge. 

In the case of Δt = 10−5, the SIMPLE method converges in 46 iterations, and the additive 

Schwarz method converges in 1070 iterations. The numbers indicate the averaged time per 

nonlinear iteration in seconds.
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Table 1:

Settings of the BoomerAMG preconditioner [58].

 Cycle type V-cycle

 Coarsening method HMIS

 Interpolation method Extended method (ext+i)

 Truncation factor for the interpolation 0.3

 Threshold for being strongly connected 0.5

 Maximum number of elements per row for interp. 5

 The number of levels for aggressive coarsening 2

J Comput Phys. Author manuscript; available in PMC 2020 April 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu and Marsden Page 41

Table 2:

The impact of the accuracy of the inner solver on the performance of the linear solver. The CPU time is 

collected for the linear solver only; l  represents the total number of nonlinear iterations; n represents the total 

number of FGMRES iterations; nA epresents the averaged number of iterations for solving with A in (4.3) and 

(4.5); nS represents the averaged number of iterations for solving (4.4); nI represents the averaged number of 

iterations for solving (4.6).

δI
r

CPU time (sec.) l n nA nS nI

δA
r = δS

r = 10−10
100 4.86 × 103 4 477 74.52 33.89 -

10−2 9.02 × 102 4 17 75.62 22.29 29.31

10−4 8.08 × 102 4 11 75.30 22.27 45.00

10−6 6.97 × 102 4 8 75.19 23.13 55.82

10−8 8.11 × 102 4 8 75.19 22.13 65.15

10−10 8.47 × 102 4 7 74.86 23.29 74.62

δA
r = δS

r = 10−6
100 4.87 × 103 4 664 55.60 21.29 -

10−2 6.30 × 102 4 18 56.68 13.74 30.35

10−4 5.10 × 102 4 11 56.30 13.73 46.14

10−6 5.12 × 102 4 9 56.06 14.11 56.91

10−8 6.01 × 102 4 9 56.17 14.44 65.62

10−10 6.82 × 102 4 9 56.17 14.56 74.87
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Table 3:

The performance of the linear solver with varying material properties. n represents the averaged number of 

FGMRES iterations; nA represents the averaged number of iterations for solving with A in (4.3) and (4.5); nS

represents the averaged number of iterations for solving (4.4); TL represents the averaged CPU time for one 

nonlinear iteration in seconds; ν represents the Poisson’s ratio; η is a non-dimensional scaling factor for the 

shear modulus.

n nA, nS TL η = 10−2 η = 100 η = 102

ν = 0.0 2.0 [46.9, 15.9] (46.6) 2.0 [48.1, 16.0] (48.3) 2.0 [47.9, 15.3] (46.2)

ν = 0.1 2.0 [48.5, 19.0] (49.2) 2.0 [48.4, 17.9] (50.3) 2.0 [48.1, 15.5] (46.5)

ν = 0.2 2.0 [48.3, 20.2] (52.8) 2.0 [48.0, 19.9] (52.9) 2.0 [48.3, 16.8] (47.0)

ν = 0.3 2.0 [47.9, 23.1] (56.4) 2.0 [41.1, 21.5] (57.9) 2.0 [48.5, 17.7] (48.6)

ν = 0.4 2.0 [47.4, 28.5] (66.4) 2.0 [48.2, 25.8] (65.5) 2.0 [48.6, 19.2] (50.6)

ν = 0.5 2.2 [47.1, 36.3] (101.2) 2.0 [47.4, 24.6] (66.3) 2.0 [46.5, 20.3] (48.6)
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Table 4:

The strong scaling performance. n represents the averaged number of FGMRES iterations for solving (3.16). 

TA and TL represent the timings for matrix assembly and linear solver, respectively. The efficiency is 

computed based on the total time.

Proc. n TA (sec.) TL (sec.) Total (sec.) Efficiency

2 2.0 3.13 × 103 2.16 × 104 2.49 × 104 100%

4 2.0 1.57 × 103 1.09 × 104 1.26 × 104 99%

8 2.0 8.49 × 102 5.58 × 103 6.48 × 103 96%

16 2.0 4.38 × 102 2.96 × 103 3.43 × 103 91%

32 2.0 2.33 × 102 1.62 × 103 1.87 × 103 83%

64 2.0 1.10 × 102 8.37 × 102 9.56 × 102 81%

128 2.0 5.65 × 101 3.84 × 102 4.49 × 102 87%
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Table 5:

Comparison of the averaged iteration counts and CPU time in seconds for the nested block preconditioner 

𝒫SCR, the SIMPLE preconditioner, and the additive Schwarz preconditioner. NC stands for no convergence. 

For the Δx = 1/3840 case, the additive Schwarz preconditioner failed to converge in 10000 iterations.

1
Δx Proc. 𝒫SCR SIMPLE Additive Schwarz

n nA nS TL n TL n TL

Δt = 10−1

480 8 2.3 31.7 6.7 19.7 13.3 21.6 1114.4 20.4

960 64 2.5 43.1 7.4 50.2 17.9 63.6 3368.9 106.8

1920 512 2.7 55.4 9.1 108.0 25.0 153.6 8642.4 305.4

3840 4096 2.9 68.8 9.6 220.8 47.6 504.2 NC NC

Δt = 10−5

480 8 2.3 4.6 16.1 5.3 22.7 6.3 916.0 17.0

960 64 2.0 6.9 26.4 18.5 38.6 31.6 2133.9 67.4

1920 512 2.0 9.1 34.3 52.8 65.7 71.0 9669.1 315.0

3840 4096 2.2 11.3 42.0 139.0 101.2 221.4 NC NC
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Table 6:

The impact of the accuracy of the inner solver on the performance of the linear solver. The CPU time is 

collected for the linear solver only; l  represents the total number of nonlinear iterations; n represents the total 

number of FGMRES iterations; nA represents the averaged number of iterations for solving with A in (4.3) and 

(4.5); nS represents the averaged number of iterations for solving (4.4); nI represents the averaged number of 

iterations for solving (4.6).

δI
r

CPU time (sec.) l n nA nS nI

δA
r = δS

r = 10−10
100 7.56 × 101 1 47 16.81 19.81 -

10−2 7.19 × 101 1 9 15.78 58.56 1.95

10−4 6.52 × 101 1 5 15.30 58.80 3.75

10−6 6.20 × 101 1 3 14.33 58.33 7.81

10−8 5.83 × 101 1 2 13.75 59.50 11.85

10−10 7.55 × 101 1 2 13.75 60.00 15.19

δA
r = δS

r = 10−6
100 4.38 × 101 1 47 7.83 12.02 -

10−2 4.20 × 101 1 9 8.17 34.22 1.97

10−4 3.67 × 101 1 5 7.90 34.40 3.40

10−6 4.73 × 101 1 4 7.50 35.75 7.37

10−8 6.87 × 101 1 4 7.00 35.75 11.50

10−10 8.23 × 101 1 4 7.00 35.75 15.47
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Table 7:

The performance of the nested block preconditioner with varying fibre orientations and dispersions. n
represents the averaged number of FGMRES iterations; nA represents the averaged number of iterations for 

solving with A in (4.3) and (4.5); nS represents the averaged number of iterations for solving (4.4); T

represents the averaged CPU time for one nonlinear iteration in seconds; φ is the collagen fibre mean 

orientation; kd is the dispersion parameter.

n nA, nI TL kd = 0.1 kd = 0.2 kd = 0.3

φ = 20° 3.0 [214.1, 17.6] (4.8 × 101) 3.0 [161.2, 18.0] (3.4 × 101) 3.0 [103.4, 19.7] (2.1 × 101)

φ = 40° 3.0 [241.3, 17.7] (5.8 × 101) 3.0 [176.8, 18.4] (4.1 × 101) 2.9 [105.7, 20.5] (2.1 × 101)

φ = 60° 2.8 [221.4, 17.8] (4.6 × 101) 2.9 [169.1, 19.2] (3.7 × 101) 2.9 [104.5, 20.9] (2.1 × 101)

φ = 80° 2.9 [220.8, 18.1] (5.3 × 101) 3.0 [168.2, 19.8] (4.1 × 101) 3.0 [103.0, 20.9] (2.2 × 101)
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Table 8:

Comparison of the averaged iteration counts and CPU time in seconds for the nested block preconditioner 

𝒫SCR the SIMPLE preconditioner, and the additive Schwarz preconditioner. NC stands for no convergence. 

For the Δt = 10−1 case, the additive Schwarz preconditioner failed to achieve convergence in 10000 iterations.

1
Δx Proc. 𝒫SCR SIMPLE Additive Schwarz

n nA nS TL n TL n TL

Δt = 10−1

200 8 6.2 207.1 10.3 579.3 54.1 888.5 NC NC

400 04 7.8 331.3 10.5 2062.7 102.5 6262.8 NC NC

600 216 10.3 389.4 11.1 3204.1 140.5 8051.3 NC NC

Δt = 10−5

200 8 4.0 2.3 15.5 9.7 22.6 9.4 485.6 10.8

400 64 4.1 3.1 18.6 29.2 45.3 53.3 986.3 47.76

600 216 5.9 3.9 20.3 119.8 71.3 202.5 1453.0 431.6
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