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ABSTRACT GWAS and eQTL studies identified thousands of genetic variants associated with complex traits and gene expression.
Despite the important role of environmental exposures in complex traits, only a limited number of environmental factors were
measured in these studies. Measuring molecular phenotypes in tightly controlled cellular environments provides a more tractable
setting to study gene–environment interactions in the absence of other confounding variables. We performed RNA-seq and ATAC-seq
in endothelial cells exposed to retinoic acid, dexamethasone, caffeine, and selenium to model genetic and environmental effects on
gene regulation in the vascular endothelium—a common site of pathology in cardiovascular disease. We found that genes near regions
of differentially accessible chromatin were more likely to be differentially expressed [OR = (3.41, 6.52), p, 10216]. Furthermore, we
confirmed that environment-specific changes in transcription factor binding are a key mechanism for cellular response to environ-
mental stimuli. Single nucleotide polymorphisms (SNPs) in these transcription response factor footprints for dexamethasone, caffeine,
and retinoic acid were enriched in GTEx eQTLs from artery tissues, indicating that these environmental conditions are latently present in
GTEx samples. Additionally, SNPs in footprints for response factors in caffeine are enriched in colocalized eQTLs for coronary artery
disease (CAD), suggesting a role for caffeine in CAD risk. By combining GWAS, eQTLs, and response genes, we annotated environ-
mental components that can increase or decrease disease risk through changes in gene expression in 43 genes. Interestingly, each
treatment may amplify or buffer genetic risk for CAD, depending on the particular SNP or gene considered.
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THE vascular endothelium refers to the single layer of
cells lining blood vessels that form an interface between

the blood and the rest of the body. The endothelium plays
an important role in coagulation, thrombosis, leukocyte ex-
travasation, regulation of vascular tone, and angiogenesis
(Rajendran et al. 2013). Endothelial dysfunction has been
implicated in many pathological processes, including athero-
sclerosis, hypertension, tumor angiogenesis, wound healing,
and preeclampsia (Gimbrone and García-Cardeña 2016). For

many of these conditions, genome-wide association studies
(GWAS) have been instrumental in identifying a large num-
ber of genetic variants associated with disease (e.g., Nikpay
et al. 2015). However, the molecular mechanisms linking
each variant to the disease phenotype are largely unknown.
This is because common risk variants for complex traits tend
to fall in noncoding regions and affect regulatory mecha-
nisms that are not yet well characterized (Nica et al. 2010;
Gamazon et al. 2015; Gusev et al. 2016; Aguet et al. 2017).

DNase-seq and ATAC-seq (Boyle et al. 2008; Buenrostro
et al. 2013) are experimental approaches developed to profile
the chromatin landscape and can be used to identify active
regulatory elements. Transcription factors bound to chroma-
tin leave characteristic “footprints,” allowing for the identifi-
cation of many bound transcription factors in a single
experiment (Pique-Regi et al. 2011). ATAC-seq offers the
advantage of requiring a much smaller number of cells,
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allowing for increased multiplexing of experiments in small
volumes. This enables study of cell lines with differing genet-
ic backgrounds across environmental perturbations, such as
the addition of a drug or hormone. Current existing annota-
tions for genetic variants capture regulatory mechanisms in
only one arbitrary environment, and thus it is necessary to
annotate regulatory regions across multiple conditions. Com-
bining chromatin accessibility data with measures of gene
expression, such as RNA-seq, provides insights into the reg-
ulatory code governing gene expression. By comparing RNA-
and ATAC-seq in the presence/absence of perturbations, it
becomes possible to comprehensively study the cellular re-
sponse and link changes in chromatin accessibility and tran-
scription factor binding to changes in gene expression (Pacis
et al. 2015; Nédélec et al. 2016; Alasoo et al. 2018; Gate et al.
2018). The molecular basis of cellular response can be iden-
tified by leveraging genetic differences within and across in-
dividuals to pinpoint underlying regulatory elements. One
such approach that uses genetic variation is quantitative trait
loci (QTL) mapping, whereby genetic variants can be linked
to differences in gene expression (eQTL) (e.g., Stranger et al.
2007; Aguet et al. 2017) or chromatin accessibility (caQTL)
(Degner et al. 2012, among others). Results from these meth-
ods, which can be used individually or as complements to one
another, have been integrated with GWAS findings to suggest
a model in which genetic variants disrupt the chromatin ar-
chitecture, leading to differences in gene expression that af-
fect complex traits (Gamazon et al. 2015; Gusev et al. 2016;
Hormozdiari et al. 2016; Wen et al. 2017).

However, the effect of a genetic variant on a molecular
pathway, and, ultimately, on the disease condition, may be
modulated by environmental factors (Moyerbrailean et al.
2016b; Knowles et al. 2017, 2018). eQTL studies performed
on cells exposed to a stimulus can identify genetic variants
whose influence on gene expression response is modulated
by the environment, known as response eQTLs (reQTLs) (see
for example Maranville et al. 2011; Mangravite et al. 2013;
Nédélec et al. 2016; Alasoo et al. 2018; Knowles et al. 2018).
Known environmental risk factors for endothelial dysfunc-
tion include diabetes, smoking, obesity, high cholesterol,
and hypertension (Hadi et al. 2005). Dexamethasone, reti-
noic acid, caffeine, and selenium are four treatments that
have been associated with cardiovascular disease (CVD)
and/or endothelial dysfunction (Flores-Mateo et al. 2006;
Pan and Baker 2007; Walker 2007; Turnbull et al. 2017),
and that produce strong transcriptional responses in endo-
thelial cells (Moyerbrailean et al. 2016b). Dexamethasone is
a potent glucocorticoid that serves as a proxy for stress (Sap-
olsky et al. 2000), and excess may promote calcification
within arteriosclerotic lesions (Zhu et al. 2016). Retinoic acid
plays a crucial role in the development of the cardiovascular
system, and vascular endothelial cells are exposed to high
concentrations of retinoic acid and express retinoid receptors
(Saito et al. 2007). Caffeine, the most widely consumed stim-
ulant worldwide, promotes vasodilation in the endothelium
and has been the subject of numerous studies regarding its

association with CVD, with conflicting results (Ding et al.
2014; Turnbull et al. 2017). Selenium is a component of
selenoproteins which act as antioxidants, and selenium has
been used as a supplement to increase high-density lipopro-
tein (HDL) cholesterol (Rayman 2012).

Recently, the heterogeneity of the contexts represented in
complex datasets has been used as proxy for varying environ-
mental conditions (Knowles et al. 2017; Zhernakova et al.
2017) to identify gene-environment interaction (GxE) ef-
fects. The advantage of these approaches resides in the pos-
sibility of exploiting pre-existing large-scale eQTL studies
that profile gene expression in tissues from a heterogeneous
sample of individuals; however, the differences in environ-
mental conditions between individuals is not explicitly ascer-
tained. To characterize genetic and environmental risk
factors for cardiovascular disease, it is critical to investigate
gene regulation in a relevant cell type under controlled treat-
ment conditions. Here, we developed annotations of genetic
variants in key regulatory elements for gene expression re-
sponse to inform the role of GxE in coronary artery disease.

Materials and Methods

Cell culture

Human umbilical vein endothelial cells (HUVECs) were iso-
lated from human umbilical cord tissue collected shortly
following birth. Umbilical cord tissue specimens were
obtained from 14 healthy, full-term pregnant women,
admitted to DMC Hutzel Women’s Hospital (Detroit,
MI). All specimens for this study were collected following
guidelines approved by the institutional review board
(#013213 MP4E) of Wayne State University. Cord speci-
mens, between 10 and 30 cm in length, were first rinsed with
warm phosphate-buffered saline (PBS) and a blunt-ended
needle was inserted into the umbilical vein at one end of
the cord, and subsequently clamped in place. The cord was
then purged to remove any excess blood from the vein. The
other end of the cord was then sealed, in a manner identical
to the first end, and prewarmed 0.25% trypsin-EDTA (Gibco)
was then injected into the vein. Following a 20 min incuba-
tion at 37�, detached HUVECs were rinsed from the vein,
collected by centrifugation, counted, and seeded into an ap-
propriate vessel at 10,000 cells/cm2, in EGM-2 growth me-
dium (Lonza). Expanded cultures were cryopreserved prior
to be used in the experiments. For additional three HUVEC
lines from a previous study (Moyerbrailean et al. 2016b) we
collected ATAC-seq data and used previously published RNA-
seq data (dbGaP accession number phs001176.v1.p1).

Treatments

Treatment concentrations were the same as used in
Moyerbrailean et al. (2016b) and were derived from
the Clinical Guidelines Mayo Clinic Reference Levels
(http://www.mayomedicallaboratories.com) and the
CDC National Biomonitoring Report Reference Levels
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(http://www.cdc.gov/biomonitoring/). Concentrations
were 13 1026 M for dexamethasone, 13 1028 M for retinoic
acid, 1:163 1023 M for caffeine, and 13 1025 M for sele-
nium. Vehicle controls were included to represent the solvent
used to prepare the different treatments, either ethanol (1 ml
of ethanol per 10,000 ml of culturing media) or water.

Each individual cell line was treated on a separate day.
Culturing conditions were the same as those found in Moyer-
brailean et al. (2016b). Specifically, 3 days before treatment,
cells were plated (to passage 7) in eight wells in six-well
plates at 5000/cm2 in EGM-2. Following a 24 hr recovery
period, the medium was changed to a “starvation medium,”
composed of phenol-red free EGM-2, without Hydrocortisone
and Vitamin C, and supplemented with 2% CS-FBS. Cell star-
vation was continued for 48 hr prior to treatment. For each
individual cell line, control treatments were performed in
duplicate. Cells were treated for 6 hr, and were then collected
by scraping the plate on ice. For four cell lines, each well was
counted in order to remove 50,000 cells to be used for ATAC-
seq while the rest were used for RNA sequencing.

RNA library preparation

Treated cells were collected by centrifugation at 2000 rpm
and washed twice using ice-cold PBS. Collected pellets
were lysed on the plate, using Lysis/Binding Buffer
(Ambion), and frozen at 280�. Polyadenylated mRNAs
were subsequently isolated from thawed lysates using the
Dynabeads mRNA Direct Kit (Ambion) following the man-
ufacturer’s instructions. RNA-seq libraries were prepared
using a protocol modified from the NEBNext Ultradirec-
tional (NEB) library preparation protocol to use 96 Barcodes
from BIOOScientific added by ligation, as described in
Moyerbrailean et al. (2015). The individual libraries were
quantified using the KAPA real-time PCR system, following
the manufacturer’s instructions and using a custom-made
series of standards obtained from serial dilutions of the
phi-X DNA (Illumina). Libraries were pooled and sequenced
in multiple sequencing runs for an average of 50 M 300 bp
PE reads.

ATAC-seq library preparation

We followed the protocol by Buenrostro et al. (2013) to lyse
50,000 cells and prepare ATAC-seq libraries, with the excep-
tion that we used the Illumina Nextera Index Kit (Cat
#15055290) in the PCR enrichment step. For three of the
four individual cell lines (LP-001, LP-002 and H288-L), the
cells were not lysed with 0.1% IGEPAL CA-630 before adding
the transposase to begin the ATAC-seq protocol. Individual
library fragment distributions were assessed on the Agilent
Bioanalyzer and pooling proportions were determined using
the qPCR Kapa library quantification kit (KAPA Biosystems).
Library pools were run on the Illumina NextSeq 500 Desktop
sequencer in the Luca/Pique-Regi laboratory. Barcoded li-
braries of ATAC-seq samples were pooled and sequenced in
multiple sequencing runs for an average coverage of 130 M
reads.

Alignment of RNA-seq and ATAC-seq

Reads were aligned to the GRCh37 human reference genome
using HISAT2 (Kim et al. 2015) (https://ccb.jhu.edu/software/
hisat2/index.shtml, version hisat2-2.0.4), and the hu-
man reference genome (GRCh37) with the following
options:

HISAT22x,genome. 21,fastq R1:gz.

22,fastq R2:gz.

where ,genome. represents the location of the genome file
(genome_snp for ATAC-seq alignment, genome_snp_tran
for RNA-seq alignment), and ,fastqs_R1.gz. and
,fastqs_R2.gz. represent that sample’s fastq files.

Themultiple sequencing runsweremerged foreachsample
using samtools (version 2.25.0). We removed PCR duplicates
and further removed reads with a quality score of ,10
(equating to reads mapped to multiple locations) for the
RNA-sequencing analysis, only.

Differential gene expression analysis

To identify differentially expressed (DE) genes, we
used DESeq2 (Love et al. 2014) (R version 3.2.1, DESeq2
version 1.8.1). Gene annotations from Ensembl version
75 were used and transcripts with ,20 reads total were
discarded. Bedtools coverage was utilized to count reads
with -s to account for strandedness and -split for BED12
input. The counts were then utilized in DESeq2 to deter-
mine changes in gene expression under the different treat-
ment conditions. Multiple test correction was performed
using the Benjamini-Hochberg procedure (Benjamini and
Hochberg 1995) with a significance threshold of 10%. A
gene was considered DE if at least one of its transcripts
was DE and had an absolute log2 fold change . 0:25. The
model corrected for the library preparation batch and the
sample of origin.

Gene ontology analysis

For each treatment, we tested upregulated and downregu-
lated genes separately for enrichment of biological processes
gene ontology terms using the Fisher’s test on the AmiGO
2 web browser (http://amigo.geneontology.org/amigo).
Multiple test correction was performed using the Benja-
mini-Hochberg procedure with a significance threshold of
5% (BH-FDR).

Identification of differentially accessible regions
following treatment

To identify differentially accessible regions, we used DESeq2
(Love et al. 2014) (R version 3.2.1, DESeq2 version 1.8.1).
We separated the genome into 300 bp regions and bedtools
coverage was used to count reads in these regions. A total of
508,140 regions with .0.25 reads per million (high accessi-
bility regions) were then utilized in DESeq2 using the follow-
ing model:
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Chromatin  accessibility � treatment (1)

Yjn ¼
X

t
bM
jt Mtn

where Yjn represents the internal DESeq2 mean of normalized
counts of all samples normalized by sequencing depth for re-
gion j and experiment n,Mtn is the treatment indicator, andbM

jt
parameter is the treatment effect. Differentially accessible re-
gions (DAR) following exposure to dexamethasone, retinoic
acid, caffeine, and selenium, were determined at BH
FDR , 10%. We annotated the genomic context of these
DARs using chromHMM (Ernst and Kellis 2012), which
characterizes chromatin states on the basis of histone
marks. We downloaded the precomputed HUVEC anno-
tations from ENCODE (ENCODE Project Consortium 2012).
Enrichments were performed with the Fisher’s Exact test.
DARswere then compared to gene annotations from Ensembl
version 75 to identify those that were within 50 kb of a
transcription start site, and a Fisher’s exact test was used to
test for enrichment of DARs near DE genes.

Overlap of DE genes and DARs across treatments

We used UpSetR (Conway et al. 2017) to visualize DE genes
and DARs shared across treatments. To calculate correlations
across treatments, we subset genes or regions of chromatin

that were differentially expressed or accessible in any treat-
ment and computed Spearman correlations on the log-fold
change.

Transcription factor binding footprints

To detect which transcription factors have footprints in each
condition we adapted CENTIPEDE (Pique-Regi et al. 2011) to
use the fragment length information contained in the ATAC-
seq in the footprint model, and to jointly use in parallel the
treatment and control conditions in order to ensure that the
same footprint shape is used for the same motif in both
conditions.

As in CENTIPEDE,we need to start from candidate binding
sites for a given motif model. For each transcription factor we
scan the entire human genome (hg19) for matches to its DNA
recognitionmotif usingpositionweightmatrix (PWM)models
from TRANSFAC and JASPAR as previously described (Pique-
Regi et al. 2011). Then for each candidate location l we col-
lect all the ATAC-seq fragments which are partitioned into
four bins depending on the fragment length: (1) [39–99],
(2) [100–139], (3) [140–179], (4) [180–250]. For each frag-
ment, the two Tn5 insertion sites were calculated as the po-
sition 4 bp after the 59-end in the 59 to 39 direction. Then, for
each candidate motif, a matrix X was constructed to count
Tn5 insertion events: each row represented a sequencematch

Figure 1 Changes in gene expression and chromatin accessibility in HUVECs treated with dexamethasone, retinoic acid, caffeine, and selenium. (A)
Diagram of artery layers and study design. HUVECs were treated separately with four compounds and vehicle controls prior to RNA- and ATAC-seq
(Materials and Methods). (B) QQ-plot of P-values from DESeq2 analysis of gene expression in response to retinoic acid. The purple dots represent genes
within 50 kb of a DAR, while the gray dots represent genes not within 50 kb of a DAR. (C) Enrichment of DE genes within 50 kb of a DAR. Odds ratio
was estimated using Fisher’s exact test, and for all treatments P,2:23 10216.

654 A. S. Findley et al.



to motif in the genome (motif instance), and each column a
specific cleavage site at a relative base pair and orientation
with respect to the motif instance. We built a matrix fXlg4l¼1
for each fragment length bin, each using a window half-size
S = 150 bp resulting in ð23 SþWÞ32 columns, whereW is
the length of the motif in base pair.

Finally, we fit the CENTIPEDEmodel in a subset of�5000
instances to learn footprint shapes for each factor as in
Moyerbrailean et al. (2016a). Then we used CENTIPEDE
to analyze the remaining motif instances in the genome
and kept those with a CENTIPEDE posterior probability
higher than 0.99 to denote locations where the transcription
factors are bound, also referred to as “footprints.” We fur-
ther subset these bound transcription factor sites by includ-
ing only transcription factors that were active genome-wide
in any condition, defined by a significant enrichment (Fish-
er’s exact test, FDR , 10%) of binding sites in high accessi-
bility regions (see above) compared to a randomly selected
set of 500,000 chromatin regions genome-wide (not high
accessible regions). There were 882 active factors across all
treatments.

Identification of response factors and genetic variants in
their binding sites

In order to identify transcription factors that are impor-
tant for response to treatments, we calculated enrichment
scores for each active motif in regions of differentially
accessible chromatin using a Fisher’s exact test. We defined
motifs that were significantly enriched or depleted in open-
ing or closing chromatin (BH FDR , 10%; Table S3 and
Table S4).

For the enrichment analysis with TORUS, we relaxed
the threshold for response factors to nominal significance
(P-value , 0:05) to get better estimates for the confidence
intervals for the enrichment parameters. For each tissue
and in each treatment, we then annotated each single nu-
cleotide polymorphism (SNP) from the 1000 Genomes proj-
ect (1000 Genomes Project Consortium 2015) as (1) not in
a footprint for a treatment response factor; (2) in a foot-
print for a treatment response factor (Table S2). SNPs in
footprints are generally enriched in eQTLs (Wen et al.
2016). Thus, to account for this treatment-independent ef-
fect, we also generated an annotation for SNPs in active
footprints in either control condition, which should repre-
sent a baseline annotation of candidate regulatory vari-
ants. We note that the controls are largely redundant,
sharing .93% similarity.

Enrichment of GTEx eQTL and CAD variants in footprints
for response factors

To identify treatments for which GTEx eQTLs (Aguet et al.
2017) are enriched in footprints for response factors, we
focused on the three artery tissues present in GTEx: tibial,
coronary, and aorta. GTEx identified 11,945, 4378, and
9203 genes with an eQTL (eGenes) in the tibial artery,
coronary artery, and aorta tissues, respectively. We then
used the Torus package (Wen et al. 2016) with the “-est”
option to calculate the enrichment of eQTLs in response
factors for each treatment. Torus quantitatively assesses
the enrichment of molecular annotations (e.g., SNPs in re-
sponse factors) in GWAS or eQTL datasets. TORUS is based
on a hierarchical model, where the prior probability of
association for each SNP in a locus is modeled with a lo-
gistic function that has one hyper-parameter for each cat-
egory (i.e., nonresponse factor control footprint, response
factor footprint, and distance to the transcription start site
as overall baseline). The confidence interval for each en-
richment parameter is estimated using a profile likelihood
procedure. In this analysis, the summary statistics for all
SNPs that can be imputed and tested in the eQTL or GWA
study are used, regardless of SNP P-value. Here we used
the annotations generated above for SNPs in footprints for
response factors and control. As additional annotation, we
included distance of the SNP to the transcriptional start
site of the gene.

We meta-analyzed the enrichments for each treatment
across tissues using a fixed effects model with inverse
variance weights. For the CAD enrichment, we used
the same annotations as above on the summary statistics
of the CAD GWAS, minus the distance of the SNP to the
transcriptional start site of a gene. GWAS SNPs were par-
titioned into blocks based on linkage disequilibrium (LD)
pattern.

Genotyping and colocalization

We performed colocalization as previously described us-
ing enloc (Wen et al. 2017). Briefly, enloc integrates QTL
annotations into GWAS analysis by calculating the enrich-
ment of QTL in complex trait-associated genetic vari-
ants, which is then used to identify colocalized SNPs
between the two annotations. We performed the colocali-
zation between the CARDIoGRAM CAD summary statis-
tics and eQTLs from all GTEx tissues independently.
We considered the lead SNP from a locus with a cumula-
tive posterior inclusion probability (PIP) of .0.5 to be
colocalized; 168 SNPs colocalize, corresponding to
139 genes.

To identify polymorphic colocalized SNPs in our dataset,
DNA was isolated from umbilical cords and sent to be geno-
typed using ultralow sequencing performed by Gencove. In
our dataset, 21 of the colocalized SNPs (corresponding to
14 eGenes) are polymorphic, and, therefore, can be tested for
reQTL.

Table 1 Number of differentially expressed genes and differentially
accessible regions

Treatment DE genes DARs

Retinoic acid 4,874 222
Dexamethasone 2,879 133
Caffeine 5,790 1038
Selenium 10,329 196
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reQTL mapping

For reQTL mapping of the colocalized GTEx and CAD GWAS
SNPs, we tested all 21 SNPs for reQTLs, corresponding to
33 gene-SNPpairs.Weused a linearmodel to identify reQTLs,
testing for the effect of genotype dosage on quantile-normal-
ized gene expression fold change between treatment and
control. We generated an empirical null distribution by per-
muting sample labels, and corrected the treatment P-values
based on the ranks observed in the permutation. We per-
formed 2820 permutations, corresponding to 3x the number
of tests in the treated samples.

TWAS

We used GAMBIT (https://github.com/corbinq/GAMBIT)
to conduct a TWAS on the CARDIoGRAM GWAS using the
three artery tissues from GTEx as reference gene expres-
sion sets. Using a threshold of p,1025, there were 44, 17,
and 49 genes significantly associated with CAD for
the tibial artery, coronary artery, and aorta, respectively,
for a total of 74 unique genes in at least one of the three
arteries.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Raw sequencing data, including RNA-seq
on all 17 individuals, ATAC-seq on 4 individuals, and geno-
types for all 17 individuals, have been deposited in the NCBI
dbGaP (https://www.ncbi.nlm.nih.gov/gap/) under study ID
phs001176.v3.p1.Supplemental text, Supplemental Mate-
rial, Figure S1, and Tables S1–S8 are available at http://
genome.grid.wayne.edu/FUNGEI/data_tables/.

Results

Exposure of endothelial cells to environmental
perturbations leads to changes in gene expression and
chromatin accessibility

To determine the impact of genetic variation on endothelial
cell response to environmental perturbations, we treated
human umbilical vein endothelial cells (HUVECs) from
17 unrelated, healthy donors with four compounds (dexa-
methasone, retinoic acid, caffeine, and selenium) and two
vehicle controls. These treatments have been associated with
cardiovascular disease and/or endothelial dysfunction
(Flores-Mateo et al. 2006; Pan and Baker 2007; Walker
2007; Turnbull et al. 2017) and have been shown in a pre-
vious study (Moyerbrailean et al. 2016b) to produce strong
transcriptional responses in HUVECs. We then assessed
changes in gene expression with RNA-seq in all samples
and chromatin accessibility with ATAC-seq in four samples
at 6 hr following treatment (Figure 1A).

Each treatment caused significant transcriptional re-
sponses, with .2500 differentially expressed genes in
each environment (Benjamini-Hochberg (BH) FDR, 10%,
jlog2FCj. 0:25) (Table 1). By gene ontology analysis,
we identified an enrichment of differentially expressed genes
implicated in biological processes relevant for endothelial
function. For example, response to wounding is enriched in
genes downregulated in response to dexamethasone, and
regulation of blood vessel diameter is enriched in genes
downregulated in response to retinoic acid (Table S1).

Across the four samples for which ATAC-seq was obtained,
we identified between 133 and 1038 DARs in a given treat-
ment condition (Table 1). The smaller number of DARs com-
pared with DE genes could be due to the timescale at which

Figure 2 Shared DE genes and DARs across treatments. (A) DE gene sharing. Vertical bars indicate the number of genes differentially expressed in each
group of treatments. Inset heatmap depicts the Spearman correlation of the logFC of all DE genes between treatments. (B) DAR sharing. Vertical bars
indicate the number of DARs in each group of treatments. Inset heatmap depicts the Spearman correlation of the logFC of all DARs between treatments.
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we measured response, the increased stochasticity of chro-
matin opening and closing relative to gene expression, and/
or insufficient statistical power. We used chromHMM (Ernst
and Kellis 2012) chromatin states derived from ENCODE
HUVECs histone marks (Dunham et al. 2012) to annotate
DARs. We found an enrichment of DARs in strong enhancer
regions in dexamethasone, retinoic acid, and selenium (OR=
5.31, 3.89, and 3.51, respectively. P , 2:23 10216 for all).
However, caffeine DARs are only slightly enriched in strong
enhancers (OR¼ 1:15, P¼ 0:018). Instead, DARs in caffeine
are most enriched for active promoters (OR ¼ 2:5,
P , 2:23 10216). This difference between treatments could
indicate that different types of factors are involved in each
response.

We compared the degree to which transcriptional and
chromatin changes were shared across treatments by over-
lapping DE genes and DARs, respectively, across treatments
(Figure 2). Thousands of DE genes are shared by at least two
treatments, with 312 genes being differentially expressed
across all four. Due to the reduced number of DARs, we have
less power to detect sharing across treatments (Figure 2B). As
a complementary approach, we calculated the correlation of
the log-fold change across all treatments for genes differen-
tially expressed (Figure 2A) and regions differentially acces-
sible (Figure 2B) in any condition.

To investigate the relationship between differential chro-
matin accessibility and transcriptional response, we calcu-
lated the enrichment of DE genes within 50 kb of a DAR. DE
genes in all treatments were significantly enriched near DARs
identified in the same treatment. The greatest enrichments
were found for dexamethasone and retinoic acid with odds
ratios of 3.35 and 3.99, respectively (Figure 1, B and C and
Figure S1; Fisher’s exact test; P , 5:63 1028). The signifi-
cant enrichment for DE genes among DARs in dexametha-
sone and retinoic acid could be due to their mechanism of
action, specifically that both treatments are known to work
largely through specific nuclear receptors that bind the DNA
and influence gene expression directly. Overall these results
suggest that changes in chromatin accessibility are an impor-

tant mechanism through which cells regulate gene expres-
sion in response to environmental perturbation.

Specific transcription factors regulate response
to treatment

In addition to informing on open chromatin, ATAC-seq data
can be analyzed to characterize the transcription factor land-
scape governing response to treatment. This is particularly
important given that the vast majority of genetic variants
found to influence complex traits act through gene regulatory
regions. In order to identify transcription factors controlling
response to each treatment, we used CENTIPEDE (Pique-Regi
et al. 2011) to perform footprinting analysis on the ATAC-seq
data. Across all conditions, we identified a total of 882 active
transcription factors, defined as those with motifs that have
CENTIPEDE footprints and are associated with open chroma-
tin (Materials and Methods, Table S7). We hypothesized that
transcription factors that are important in the regulation of a
particular treatment will be more likely to be found in DARs.
The factors with the greatest enrichments in DARs are shown
in Figure 3. We refer to these enriched factors as response
factors. We identified 293 factors with footprints in regions
that become more accessible after treatment, and 38 factors
in regions that are less accessible after treatment (Table 2).
For well-studied treatments, like retinoic acid and dexameth-
asone, our approach identified transcription factors known to
be central to the regulation of gene expression in response to
those treatments. For example, the top retinoic acid response
factor was the retinoic acid receptor (Figure 3B). For dexa-
methasone, the androgen receptor (AR), glucocorticoid re-
ceptor (GR), and progesterone receptor (PR) have similar
binding sites, and likely all represent sites of GR binding
(Schoenmakers et al. 2000; Severson et al. 2018). While
for these treatments, we have prior information on the ma-
jor mechanisms that regulate the cellular response, for caf-
feine and selenium less is known, and our data can be used
to identify the relevant factors (Table S3 and Table S4).
Caffeine acts as a phosphodiesterase inhibitor, which in-
creases intracellular cyclic AMP (cAMP) (Essayan 2001).

Figure 3 Identification of re-
sponse factors. Topmost enriched
transcription factor footprints in
DARs in each condition. For sele-
nium, the top factors are enriched
in regions of closing chromatin.
For all other treatments, the top
factors are enriched in regions of
opening chromatin.

CAD, GxE and Gene Regulation 657



One of the top caffeine response factors in opening chroma-
tin is CREB (cAMP response element-binding protein). In
response to selenium treatment the top enriched factors
are in regions that become less accessible after treatment
(Figure 3).

Identifying latent environmental factors in large-scale
eQTL datasets from vascular tissues

Large-scale efforts to identify expression eQTLs, such as GTEx
(Aguet et al. 2017), have discovered genetic regulators of
gene expression in many different tissues, including three
types of artery. However, GTEx samples likely represent a
composite of different environmental exposures. Here, we
propose that latent, unobserved environmental factors con-
tribute to eQTL effects detected in GTEx, and that some of
these eQTLs may represent cases of significant interaction
effects in specific environmental contexts. To indirectly test
this hypothesis, we considered that interactions with latent
environments represented by our four in vitro treatments
(retinoic acid, caffeine, selenium, and dexamethasone)
would be enriched in response factor binding sites. We used
centiSNPs (Moyerbrailean et al. 2016b), an extension of the
CENTIPEDE framework, to annotate SNPs in response factor
footprints, as these SNPs are most likely to disrupt transcrip-
tion factor binding and modify the transcriptional response.
We found that out of 4,104,579 SNPs in footprints for active
factors, 56% are in footprints for response factors for at least
one of the treatments. We then estimated enrichments for
our treatment-specific annotations in eQTLs from the artery
samples in GTEx. Using the EM-DAP1 algorithm imple-
mented in the software package TORUS (Wen et al. 2016),
we found enrichment of eQTLs in footprints for dexametha-
sone, retinoic acid, and caffeine response factors, but not for
selenium (Figure 4A). These results suggest that exposure to
retinoic acid, caffeine, and dexamethasone (or a closely re-
lated factor; e.g., cortisol elevated by stress) are represented
as latent environments in the GTEx samples and can modu-
late eQTL effects.

Latent environments in coronary artery disease

To identify which conditions may be enriched for putative
latent GxE in coronary artery disease (CAD),weperformed an
enrichment analysis for SNPs in footprints for response factors
using CAD GWAS data (Nikpay et al. 2015) (Figure 4B).
Among the treatment conditions we explored, we found a
strikingly high enrichment of 14.5-fold for CAD-associated
variants that are found in caffeine response factor footprints.

This enrichment is also significantly higher than that found
for footprints that are identified in the control condition,
which represent regulatory variants that do not interact with
the treatments considered here. This suggests a large number
of latent GxE effects in cardiovascular disease risk.

To further investigate the role of gene expression changes
induced by environmental perturbations in CAD risk, we used
Transcriptome Wide Association Study (TWAS). TWAS
(Gamazon et al. 2015; Barbeira et al. 2018; Gusev et al.
2018) is an approach based on Mendelian randomization
that was developed to infer the causal relationship between
gene expression and complex trait variation, using genetic
information (genotypes) as instrumental variables. Impor-
tantly, TWAS assigns a direction of effect of gene expression
on the trait (i.e., whether increased or decreased expression
is associated with trait risk). We have performed a TWAS on
the CARDIoGRAM GWAS using the three artery tissues from
GTEx as reference gene expression sets using the GAMBIT
software (https://github.com/corbinq/GAMBIT). There
were 44, 17, and 49 genes significantly associated with
CAD (p, 1025) for the tibial artery, coronary artery, and
aorta, respectively, for a total of 74 unique genes in at least
one of the three arteries; 43 of these genes were differentially
expressed in at least one condition in our data. For these
genes, we compared the TWAS z-score to the change in gene
expression in each condition for which the gene is differen-
tially expressed (Figure 4D). Positive TWAS z-scores indicate
that increased expression of the gene is associated with in-
creased risk of CAD. Building on the conceptual framework
established by Marigorta et al. (2017) for coherent and in-
coherent genetic effects, we consider instances where the
TWAS effect and gene expression response act in the same
direction to be concordant, indicating that the treatment ef-
fect on that gene amplifies the genetic CAD risk (i.e., treat-
ment increases gene expression, and increased gene
expression is associated with increased CAD risk). Neither
concordant nor discordant effects predominate for any treat-
ment, indicating that the effect of these treatments on CAD
risk is not broadly protective or harmful. Rather, it is a com-
posite of effects at many genes, which can be additive to the
genetic effect, or, as we show below, can be further influenced
by interactions with genetic factors (GxE).

To furtherdissect themolecularmechanism forGxE inCAD
risk, we integrated GTEx artery eQTLs with the GWAS sum-
mary statistics and GxE effects in gene expression in our data.
We first performed colocalization of GTEx eQTLs with CAD
GWAS hits using enloc (Wen et al. 2017) (Materials andMeth-
ods) and identified 168 SNP-gene pairs; 40 GTEx tissues had
at least one colocalized eQTL. The most represented tissues
for colocalized SNPs were the aorta and tibial artery, with
56 and 28 colocalized SNPs, respectively (Table S5). Of the
colocalized genes, 14 can be tested for reQTL in our data and
6 have a reQTL in at least one of the treatment conditions
considered (permutation P , 0.05, see Table S6). Although
with our sample size we do not have the power to detect
genome-wide significant signals, we provide examples of

Table 2 Number of response factors enriched in opening and closing
chromatin and SNPs in response factors footprints

Treatment
Opening chroma-

tin
Closing chroma-

tin
Annotated

SNPs

Retinoic acid 17 0 438,507
Dexamethasone 15 0 218,793
Caffeine 261 16 1,887,282
Selenium 0 22 710,611
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our reQTLs (Figure 5). The reQTL forMAT2A acts in different
directions depending on the treatment. In Figure 5, A and B,
we showMAT2A has a negative reQTL effect following treat-
ment with selenium. However, the reQTL effect is positive
following treatment with retinoic acid (first panel of Figure
5C).

We now develop a conceptual framework that integrates
TWAS, gene expression changes, and reQTLs to illustrate how
genetic variation modulates the effect of an environmental
exposure on a complex trait (Figure 6). We describe eight
possible scenarios, which can be divided into four groups
(Figure 6A) based on the relationships between TWAS and
treatment effect direction, and treatment and reQTL effect
direction. A positive TWAS value indicates that increased
expression of the gene is associated with increased risk. A
positive gene expression change indicates that the treatment
increases gene expression. The treatment effect can act in the
same direction as the TWAS effect, indicating that the treat-
ment increases risk (Groups 1 and 2), or they can act in
opposite directions, where the treatment buffers risk (Groups
3 and 4).

Because our reQTLs originated from GWAS-eQTL colocal-
ization, we have polarized the reQTL effect to the CAD risk
allele. Therefore, a positive reQTL effect indicates that the risk
allele causes an increased change in gene expression relative
to the nonrisk allele following exposure to a treatment. The

reQTL and treatment effect can act in the same direction,
indicating that the risk allele amplifies the environmental
effect (Groups 1 and 4), or opposite direction, buffering the
environmental effect (Groups 2 and 3).

Of the 10 reQTL we identified, six are in Groups 1 and 3,
where the reQTL increases disease risk by amplifying harmful
environmental effects (Group 1) or buffering protective en-
vironmental effects (Group 3) (Figure 6B). The remaining
four are in Groups 2 and 4, where the reQTL decreases dis-
ease risk by buffering harmful environmental effects (Group
2) or enhancing protective environmental effects (Group 4).
These results show that environmental effects on disease
risk are contingent on the individual’s genotype, with certain
exposures amplifying a specific genetic risk but buffering
others.

Discussion

Vascular endothelial dysfunction has been implicated in a
variety of cardiovascular and noncardiovascular diseases.
Herewehave characterized the transcriptional and chromatin
landscape in endothelial cells exposed to dexamethasone,
retinoic acid, caffeine, and selenium.

While all of these treatments cause significant changes in
gene expression and chromatin accessibility, they act through
variedpathways.Dexamethasoneandretinoic acidare steroid

Figure 4 Latent environments in GTEx and CAD risk. (A) Enrichment of GTEx eQTLs in SNPs within response factor footprints for each treatment. (B)
Enrichment of coronary artery disease risk loci in SNPs within response factor footprints for each treatment. (C) For the genes shown in (D), number of
concordant (treatment changes gene expression in the same direction as TWAS risk) and discordant (vice versa) gene/treatment pairs. (D) Comparison of
logFC of gene expression vs. CAD TWAS z-score. A positive logFC indicates that the treatment increases gene expression. A positive TWAS value
indicates that increased expression of the gene is associated with CAD risk.
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hormones, whose action at the molecular and transcriptional
level has been well-studied (Oakley and Cidlowski 2013; di
Masi et al. 2015). Caffeine and selenium have been investi-
gated at the molecular level, particularly with regard to caf-
feine’s role in inhibiting the breakdown of cAMP and
selenium’s role as a cofactor (Echeverri et al. 2010; Roman
et al. 2014). However, the regulators of gene expression re-
sponse to these compounds are less characterized, especially
in endothelial cells. We were able to confirm with retinoic
acid and dexamethasone that our approach in analyzing
ATAC-seq data identifies biologically relevant response fac-
tors, as we found enrichment of known intracellular steroid
receptors like the retinoic acid receptor and glucocorticoid
receptor. Upon extension of this framework to caffeine and
selenium, we identified key response factors for these treat-
ments that were previously unknown (e.g., Sp2 for caffeine).

Combining the ATAC-seq data with known genetic varia-
tion in human populations, we have generated a set of anno-
tations for genetic variants in the footprints of treatment
response factors (1300 motifs genome-wide) that may affect
binding, and, therefore, gene expression response in the
different conditions considered. Using this annotation in

combination with large-scale genetic studies of gene expres-
sion (GTEx) and CAD risk (Cardiogram), we detected poten-
tial latent environmental effects and assigned a putative
mechanism of action for variants associated with these mo-
lecular and organismal traits, through disruption of transcrip-
tion factor binding. We found that dexamethasone, retinoic
acid, and caffeine were enriched in GTEx eQTLs from three
different arteries in our response factor annotations. This is
not surprising given the widespread use of caffeine in the
general population and the expression of the glucocorticoid
receptor and retinoic acid receptor in most GTEx tissues
(Aguet et al. 2017). Interestingly, we did not find an enrich-
ment for the selenium annotation, which is expected con-
sidering that we are exposed to only limited amounts of
selenium on a daily basis. Our observation that genetic loci
associated with risk of coronary artery disease are highly
enriched in the binding sites of transcription factors that reg-
ulate response to caffeine, suggests that caffeine, or a com-
pound that activates a similar regulatory response,
modulates coronary artery disease risk. This is an intriguing
finding given the extensive number of studies that have ex-
plored the link between caffeine, coffee consumption, and

Figure 5 reQTLs. (A) Boxplot depicting logFC for selenium reQTL forMAT2A (B) Same reQTL as in (A), but with trendlines representing gene expression
in the treatment and control conditions. (C) All reQTLs. Colors indicate gene expression in the treatment condition (blue, dexamethasone; red, caffeine;
orange, selenium; purple, caffeine; black, control).
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heart disease (Ding et al. 2014; Grosso et al. 2017; Turnbull
et al. 2017).

Here, we developed a novel conceptual framework that
combines information on specific environmental perturba-
tions collected in vitro with large-scale heterogeneous data-
sets interrogating genetic effects on both molecular and
organismal phenotypes. While our study demonstrates that
there is a significant enrichment for genetic associations in
context specific regulatory annotations, our small sample size
had limited power to directly validate these latent GxE ef-
fects. Nevertheless, this approach can be used to guide the
design of future studies to directly test for GxE. Increasing the
sample size would likely have resulted in a greater number of
genome-wide significant reQTLs, but there is a trade-off be-
tween sample size and the number of environmental condi-
tions which can be assayed in one experiment. For example,
one of the first studies of reQTLs identified 26 reQTLs in
120 LCLs in response to dexamethasone (Maranville et al.
2011). More recently, 503 and 244 reQTLs were identified
for Salmonella and Listeria in 175 macrophages (Nédélec
et al. 2016). In a panel of 45 iPSC-derived cardiomyocyte
lines treated with varying concentrations of doxorubicin,
447 reQTL were discovered (Knowles et al. 2018), while
387 reQTL were discovered in 86 iPSC-derived macrophage
lines treatedwith interferon gamma and Salmonella infection
(Alasoo et al. 2018). Based on these and other studies, it is
difficult to determine an ideal sample size, as power to iden-
tify reQTLs depends on the stimulus considered and the
method used.

We show that, in principle, we can leverage molecular
phenotyping data in response to tightly controlled treatments
to characterize the complex interplay between genotypes and
environment and their role in complex traits, highlighting the
importance of latent environmental exposures in large-scale
datasets. When considering CAD risk, both concordant and
discordantGxE effects on gene expression are observed across
multiple genes without either trend predominating. This
would indicate that the effect of these treatments on CAD
risk is not broadly protective or harmful when all genes are
considered. Environmental effects therefore may explain the
discrepancies between transcriptional risk scores and genetic
risk scores (Marigorta et al. 2017), and the limited portability
of genetic risk scores even within populations (Mostafavi
et al. 2019). In the context of precision medicine, these latent
environmental exposures need to be accounted for when pre-
dicting genetic risk for diseases, as genetic effects measured
in large datasets may indeed represent GxE, and, conse-
quently, accurate prediction of genetic risk can be achieved
only by accounting for these interactions.
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