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Abstract——Despite the success of renin-angiotensin
system (RAS) blockade by angiotensin-converting
enzyme (ACE) inhibitors and angiotensin II type 1
receptor (AT1R) blockers, current therapies for
hypertension and related cardiovascular diseases
are still inadequate. Identification of additional
components of the RAS and associated vasoactive
pathways, as well as new structural and functional
insights into established targets, have led to novel
therapeutic approaches with the potential to
provide improved cardiovascular protection and
better blood pressure control and/or reduced adverse
side effects. The simultaneous modulation of several
neurohumoral mediators in key interconnected blood
pressure–regulating pathways has been an attractive
approach to improve treatment efficacy, and several

novel approaches involve combination therapy or dual-
acting agents. In addition, increased understanding of
the complexity of the RAS has led to novel approaches
aimed at upregulating the ACE2/angiotensin-(1-7)/Mas
axis to counter-regulate the harmful effects of
the ACE/angiotensin II/angiotensin III/AT1R axis.
These advances have opened new avenues for the
development of novel drugs targeting the RAS to
better treat hypertension and heart failure. Here
we focus on new therapies in preclinical and early
clinical stages of development, including novel
small molecule inhibitors and receptor agonists/
antagonists, less conventional strategies such as
gene therapy to suppress angiotensinogen at the
RNA level, recombinant ACE2 protein, and novel
bispecific designer peptides.

I. Introduction

Cardiovascular disease is responsible for more than
30% of all deaths worldwide, most of which occur in
developing countries (Benjamin et al., 2017). Hyperten-
sion is the main risk factor for cardiovascular disease;
despite the availability of more than 100 commercial
drugs and drug combinations for treating hypertension,
a substantial proportion of the hypertensive population
has uncontrolled or suboptimally controlled hyperten-
sion (Oparil and Schmieder, 2015). This contributes to
the growing global burden of cardiovascular disease
(Oparil et al., 2018). In addition, patients receiving
treatment may suffer from significant side effects such
as angiotensin-converting enzyme (ACE) inhibitor–induced
persistent cough and, more rarely, life-threatening angioe-
dema (Simon et al., 1992; Agah et al., 1997; Bas, 2017;
Stone and Brown, 2017). Suboptimal control of hyper-
tension is associated with target organ damage leading
to heart failure, ischemic heart disease, stroke, kidney
dysfunction, retinopathy, and vascular dementia, all of
which are major causes of disability and premature
death. Hence, there is a growing need for novel antihy-
pertensive and cardiovascular drugs that are effective,

affordable, and safe with no adverse side effects and
that reduce the need for the administration of multiple
drugs.

Blood pressure and cardiovascular function are reg-
ulated by multiple interacting systems, including in
large part the enzyme-catalyzed formation and degra-
dation of vasoactive peptides and hormones in over-
lapping regulatory systems (Fig. 1). Peptidases and
receptors within these systems are important drug
targets for the treatment of various cardiovascular
diseases, including hypertension, heart failure, and
coronary artery syndrome.

II. Vasoactive Systems Controlling Blood
Pressure and Cardiovascular Function

A. The Renin-Angiotensin System

The systemic renin-angiotensin system (RAS) plays
a central role in regulating extracellular fluid volume
and arterial vasoconstriction (Fig. 1). A reduction in
renal blood flow or blood sodium levels leads to the
release of renin into the circulation, mostly from renal
juxtaglomerular cells in thewalls of the afferent arterio-
les of the kidney (Davis and Freeman, 1976). Renin, an

ABBREVIATIONS: 3D, three-dimensional; Ac-SDKP, N-acetyl-Ser–Asp–Lys–Pro; ACE, angiotensin-converting enzyme; Ang, angiotensin;
ANP, atrial natriuretic peptide; APA, aminopeptidase A; APN, aminopeptidase N; APP, aminopeptidase P; ARB, angiotensin II receptor
blocker; ARNI, angiotensin receptor–neprilysin inhibitor; ASO, antisense oligonucleotide; AT1R, angiotensin II type 1 receptor; AT2R, an-
giotensin II type 2 receptor; B1R, B1 receptor; B2R, B2 receptor; BK, bradykinin; BNP, B-type natriuretic peptide; CNP, C-type natriuretic
peptide; DOCA, deoxycorticosterone acetate; EC33, (3S)-3-amino-4-sulfanyl-butane-1-sulfonic acid; ECE, endothelin-converting enzyme; ET,
endothelin; ETAR, endothelin receptor A; ETBR, endothelin receptor B; FDA, U.S. Food and Drug Administration; GalNAc, triantennary
N-acetylgalactosamine; GPCR, G protein–coupled receptor; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with
reduced ejection fraction; NEP, neprilysin (neutral endopeptidase); NP, natriuretic peptide; NPR, natriuretic peptide receptor; NT-proBNP,
N-terminal pro–B-type natriuretic peptide; PC18, (2S)-2-amino-4-methylsulfanyl butane thiol; pGC-A, particulate guanylyl cyclase A; RAS,
renin-angiotensin system; RB150, 4,4-dithio-{bis[(3S)-3-aminobutyl sulfonic acid]}; rhACE2, recombinant human angiotensin-converting en-
zyme 2; RISC, RNA-induced silencing complex; SAR, structure–activity relationship; SBP, systolic blood pressure; SHR, spontaneously
hypertensive rat; siRNA, small interfering RNA.
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aspartyl protease, is responsible for hydrolyzing the
serum globulin, angiotensinogen, releasing the peptide
angiotensin I (Ang I; Ang 1-10) (Page and Helmer,
1940). Ang I is then converted to the potent vasocon-
strictor, angiotensin II (Ang II; Ang 1-8), by the zinc
metalloprotease, ACE, which is highly expressed by
endothelial and epithelial cells in the vasculature,
kidneys, and lungs (Skeggs et al., 1956) and shed into
the circulation by unknown proteases (Ehlers et al.,
1996; Woodman et al., 2000). Ang II, the main vasoac-
tive peptide of angiotensin metabolites in the systemic
RAS, elicits its downstream physiologic and pathophys-
iological effects predominantly via the angiotensin II
type 1 receptor (AT1R), which is ubiquitously expressed
in the cardiovascular system. Binding to AT1R results
in vasoconstriction and aldosterone secretion, leading
to salt and water retention and ultimately increas-
ing arterial blood pressure. The RAS is regulated by
a negative feedback loop whereby Ang II reduces renin
gene transcription and renal renin secretion by inter-
acting directly with the juxtaglomerular cells (Naftilan
and Oparil, 1978), decreasing the flux through the
pathway. Ang II can also mediate vasodilatory effects
by binding to the angiotensin II type 2 receptor (AT2R).
However, this receptor is only expressed at very low
levels in the cardiovascular system of healthy adults.

The Ang II receptors are reviewed in de Gasparo et al.
(2000).

Drugs targeting various components of the systemic
RAS, including renin inhibitors, ACE inhibitors, and
angiotensin II type 1 receptor blockers (ARBs), are used
to treat cardiovascular diseases (Atlas, 2007; Mentz
et al., 2013). All of these drugs are primarily designed to
block and/or reduce the detrimental effects of Ang II.
There is, however, increasing evidence that in addition
to Ang II, many other angiotensin peptides including
Ang III (Ang 2-8), Ang 1-7, Ang 1-9, Ang 3-7, andAng 3-8
have important physiologic effects. Multiple amino-,
endo-, and carboxypeptidases are involved in producing
a range of angiotensinmetabolites (Fig. 2A), responsible
for the activation and/or inhibition of numerous recep-
tors that lead to downstream physiologic effects.

The cardiovascular protective peptide Ang 1-7 leads
to vasodilatory, antiproliferative, and anti-inflammatory
effects mediated via the G protein–coupled receptor
(GPCR) Mas (Santos et al., 2018). Ang 1-7 is produced
via the peptidase-mediated cleavage of Ang I, Ang 1-9, or
Ang II (Fig. 2A). Several peptidases can form Ang 1-7,
including neprilysin (NEP), ACE homolog ACE2, vas-
cular endothelium prolyl endopeptidase, and smooth
muscle thimet oligopeptidase (Welches et al., 1993;
Chappell et al., 1995; Vickers et al., 2002). Activation of

Fig. 1. Outline of the systems involved in blood pressure regulation. Vasoconstrictor and vasodilator peptides are shown in red and blue rectangles,
respectively. Vasopeptidases responsible for the production or degradation of vasoactive peptides are shown in colored spheres (ACE, APP, ECE, and
NEP). Production of the vasoconstrictor peptides Ang II and ET-1 (red rectangles) in the RAS and endothelin system, respectively, lead to
vasoconstriction, aldosterone secretion, and sodium retention. Bradykinin and NPs (ANP, BNP, and CNP) are potent vasodilatory peptides that
counter-regulate the effects of Ang II and ET-1. The vasoactive peptides mediate their physiologic effect via a range of receptors (AT1R, AT2R, B1R,
B2R, ETAR, ETBR, NPR-A, NPR-B, and NPR-C).
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the ACE2/Ang 1-7/Mas axis leads to cardiovascular
and renal-protective actions that counter-regulate the
harmful actions of the ACE/Ang II/AT1R pathway

(reviewed in Santos et al., 2013; Jiang et al., 2014; and
Patel et al., 2016) (Fig. 2B). There is also accumulating
evidence that additional receptors, including AT2R
(Walters et al., 2005; Ohshima et al., 2014; Shimada
et al., 2015) and Mas-related GPCR member D
(Gembardt et al., 2008; Lautner et al., 2013; Tetzner
et al., 2016), can function as Ang 1-7 receptors and that
receptors for Ang II and Ang 1-7 constitute an intricate
crossregulated signaling network (reviewed in Karnik
et al., 2017). A recent study suggested that Ang 1-7 acts
as a biased agonist of AT1R, promoting b-arrestin
activation while behaving as a competitive antagonist
for detrimental AT1R pathways initiated by Ang II
(Galandrin et al., 2016). In addition, Yu et al. (2016)
showed that the metabolite Ang 1-5 displays cardiopro-
tective properties, stimulating the release of the car-
dioprotective atrial natriuretic peptide (ANP) via the
Mas axis similarly to its parent peptide Ang 1-7. Ang 1-7
is currently in clinical trials to treat diabetic foot ulcers
and cancer based on its ability to stimulate wound
healing and hematopoietic progenitor cells, respectively
(Rodgers et al., 2015; Savage et al., 2016; Pinter et al.,
2018), further exemplifying the diverse functions of this
peptide and the RAS.

ACE2 also plays a role in the conversion of Ang I to
Ang 1-9 (albeit with much lower efficiency than conver-
sion of Ang II to Ang 1-7), an additional counter-
regulatory peptide that reduces adverse cardiovascular
remodeling, cardiomyocyte hypertrophy, and cardiac
fibrosis in various animal models of hypertension and
myocardial infarction after subcutaneous administra-
tion (Ocaranza et al., 2010, 2014; Flores-Muñoz et al.,
2011, 2012). These beneficial effects were blocked by
coadministration of an AT2R antagonist but not a Mas
antagonist, suggesting that these counter-regulatory
effects, independent of the ACE2/Ang 1-7/Mas axis, are
mediated through AT2R (Flores-Muñoz et al., 2011,
2012). In addition, Fattah et al. (2016) showed that gene
therapy with Ang 1-9 is cardioprotective in a murine
model of myocardial infarction. Ang 1-9 is also a com-
petitive inhibitor of ACE, thereby decreasing Ang II
levels and, like Ang 1-7, has been shown to potentiate
bradykinin effects via the B2 receptor (B2R) (Jackman

Fig. 2. (A) Angiotensin metabolism. Angiotensin peptides are shown as
colored spheres (AGT and Ang metabolites). Peptidases responsible for
peptide cleavage are indicated (ACE, ACE2, AP, CHY, DAP, and NEP).
Receptors for vasoactive peptides responsible for mediating vasoconstric-
tive and counteractive vasodilatory responses are indicated in colored
rectangles (AT1R, AT2R, and Mas). (B) Schematic showing the counter-
regulatory effects of the Ang 1-7/Mas, Ang 1-9/AT2R, and Ang II/AT2R
pathways on the Ang II/AT1R pathway. AGT, angiotensinogen; AP,
aminopeptidase; CHY, chymase; DAP, dipeptidyl aminopeptidase.

TABLE 1
Effects of antihypertensive drug classes on plasma vasoactive peptide levels and renin activity

Drug Class Ang I Ang II Ang 1-7 BK 1-9 ANP, BNP PRC PRA

ARB ↑ ↑↑ ↑ 5 5 ↑↑ ↑↑
ACEi ↑↑ ↓ ↑↑ ↑ 5 ↑↑ ↑↑
C-ACEi ↑↑ ↓ ↑ 5 5 ↑↑ ↑↑
NEPi ↑ ↑ ↓ ↑ ↑ 5 5
ACEi/NEPi ↑↑ ↓ ↑ ↑↑ ↑ ↑↑ ↑↑
ARNI ↑ ↑↑ 5 ↑ ↑ ↑↑ ↑↑
AGT-siRNA ↓↓ ↓↓ ↓↓ 5 5 ↑↑ ↓↓
DRI ↓↓ ↓↓ ↓↓ 5 5 ↑↑ ↓↓
APAi 5 5 5 5 5 5 5
rhACE2 ↑ ↓↓ ↑↑↑ 5 5 ↑↑ ↑↑

Upward arrows indicate upregulation, downward arrows indicate downregulation, and equal signs indicate no change. ACEi, ACE inhibitor; ACEi/NEPi, dual ACE and
NEP inhibitor; AGT-siRNA, angiotensinogen siRNA; APAi, amino peptidase A inhibitor; C-ACEi, C-domain–selective ACE inhibitor; DRI, direct renin inhibitor; NEPi, NEP
inhibitor; PRA, plasma renin activity; PRC, plasma renin concentration.

542 Arendse et al.



et al., 2002). Angiotensin metabolites, including Ang
1-7, Ang 3-7, and Ang 3-8, also display unique pharma-
cological effects in biologic processes beyond blood
pressure regulation and cardiovascular function, in-
cluding brain function, dopamine regulation, and in-
sulin secretion (Wright et al. 1993; Stragier et al., 2005;
Ferreira et al., 2007).
ARBs and ACE inhibitors alter the peptide fluxes

through the systemic RAS by elevating renin secretion,
although ACE inhibitors in particular lead to a prom-
inent increase in plasma levels of Ang 1-7, potentiat-
ing their antihypertensive and cardioprotective effects
(Table 1). ACE is the primary enzyme responsible for
the degradation of Ang 1-7 (Chappell et al., 1998), which
further explains the increase in Ang 1-7 and Ang 1-9
plasma levels associated with ACE inhibitors. An un-
desirable effect of ACE inhibition is the increase in
renin secretion and consequently the flux through the
RAS due to suppression of the Ang II–mediated nega-
tive feedback loop. These processes lead to decreased
pharmacologic efficacy of ACE inhibitors during long-
term treatment caused by incomplete inhibition of Ang
II formation while Ang I is abundantly present as
a substrate for ACE due to a high plasma renin activity.
This results in a new steady state where Ang II levels
are no longer suppressed, whereas Ang 1-7 levels are
elevated (Table 1). ACE inhibitors are very effective
in many cardiovascular diseases and are the first-line
treatment of heart failure, myocardial infarction, and
nephropathy unless ACE inhibitors are poorly toler-
ated. ARBs were not found to be superior to ACE
inhibitors for these conditions and are recommended
when ACE inhibitors are not tolerated (Pitt et al., 2000;
Dahlöf et al., 2002; Granger et al., 2003; Yusuf et al.,
2008). More recently, ACE2 activators, AT2R agonists,
and Mas agonists have been investigated in preclinical
models as antihypertensive agents to oppose harmful
effects of the RAS (Tamargo et al., 2015).

B. The Kinin System

The kinin system is a key hormonal pathway that
counter-regulates an overactive RAS. Kinin peptides, of
which the best-known member is bradykinin (BK 1-9),
are potent vasodilators and important inflammatory
mediators generated from kininogen precursors by the
serine protease, kallikrein (Fig. 1) (Regoli and Barabé,
1980; Kakoki and Smithies, 2009). Bradykinin causes
vasodilation, induces prostaglandin production, and
increases vascular permeability and fluid extravasa-
tion. Two kinin receptors have been identified: B1R
and B2R (Leeb-Lundberg et al., 2005). The vasodilatory
effects of bradykinin are predominantly mediated
through B2R, which is constitutively expressed in most
tissues and is abundant in vascular endothelial cells.
B1R is minimally expressed in healthy tissue but is
induced by tissue injury and plays a role in chronic pain
and inflammation.

Bradykinin is cleaved into inactive fragments by ACE
and several other peptidases, including aminopeptidase
P (APP), NEP, endothelin-converting enzyme (ECE)-1,
ACE2, carboxypeptidase N, and dipeptidyl peptidase IV
(Skidgel et al., 1984; Hoang andTurner, 1997; Kuoppala
et al., 2000; Fryer et al., 2008) (Fig. 3). ACE is the
major bradykinin-metabolizing enzyme in human blood
plasma (Kuoppala et al., 2000) and accordingly, treat-
ment with ACE inhibitors results in a substantial
increase in bradykinin levels, potentiating their vaso-
dilatory and antihypertensive effects. There is also
crosstalk between the RAS and the kinin system, and
the benefits of ACE inhibition can be partially
attributed to an intracellular inhibitor-induced
ACE-mediated signaling cascade that leads to changes
in gene expression and potentiation of the bradykinin
response by inhibiting the desensitization of B2R
(Benzing et al., 1999; Marcic et al., 1999; Tom et al.,
2001; Guimarães et al., 2011). Bradykinin potentiation
is, however, a double-edged sword: although the potent
vasodilatory effects of ACE inhibitors can be attributed
in part to increased levels of bradykinin, excessive
bradykinin potentiation seems to be associated with
the principle side effects caused by ACE inhibitors. The
major side effect is persistent cough. It was also thought
that ACE inhibitor–associated angioedema is due to
increased bradykinin (Israili and Hall, 1992; Fox et al.,
1996) but recent clinical studies donot support this (Straka
et al., 2017). Considering the functional interactions

Fig. 3. Bradykinin metabolism. Bradykinin peptides are shown as colored
spheres. Peptidases responsible for peptide cleavage are indicated (ACE,
ACE2, APP, CPN, DPPIV, and NEP). Bradykinin receptors B1R and B2R
are indicated in green rectangles. CPN, carboxypeptidase N; DPP-IV,
dipeptidyl peptidase IV.
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between the RAS and kinin systems, there is growing
interest in developing new drugs that target both
systems, which would have greater efficacy than target-
ing only one system.

C. The Natriuretic Peptide System

Natriuretic peptides (NPs) are a family of structurally
related signaling molecules that signal through activa-
tion of guanylyl cyclases. They have natriuretic and
vascular smooth muscle–relaxing activity and regulate
cardiovascular, skeletal, and kidney function. In gen-
eral, NPs are cardiovascular protective and lower blood
pressure, maintain fluid volume homeostasis, and re-
duce cardiovascular fibrosis (reviewed in Pandey, 2005).
There are three forms of NPs, ANP, B-type natriuretic
peptide (BNP), and C-type natriuretic peptide (CNP),
all of which are processed from preprohormones to
mature forms that contain a C-terminal disulphide ring
structure. ANP is expressed and stored primarily in
granules in the atria, but it is expressed at lower levels
in other tissues, including the ventricles and kidney.
ANP release is primarily stimulated by atrial wall
stretching (de Bold et al., 1986; Edwards et al., 1988)
but can also be stimulated by cardiac transmural
pressure as well as various hormone stimuli (Lachance
et al., 1986; Stasch et al., 1989; Soualmia et al., 1997),
such as endothelin, Ang 1-9, and Ang 1-7. Although BNP
was originally isolated from the brain and is commonly
referred to as brain NP, it is predominantly expressed in
the ventricles of the heart, where it is transcriptionally
regulated by cardiac wall stretching. BothANP andBNP
plasma levels can be elevated up to 100-fold in patients
with heart failure (Cody et al., 1986; Raine et al., 1986;
Mukoyama et al., 1991; Maisel et al., 2002; Abassi et al.,
2004). In contrast, CNP is found at low levels in the
heart, and its plasma levels are generally unchanged
during heart failure (Wei et al., 1993). Rather, CNP is
expressed at high concentrations in chondrocytes, where
it regulates bone growth (Hagiwara et al., 1994). In
addition, CNP is believed to be an endothelium-derived
hyperpolarizing factor, mediating relaxation in the
vascular wall (Villar et al., 2007).
The complexity of the NP system is further increased

by the presence of three types of natriuretic peptide
receptors (NPRs). The classification and specific roles
of these receptors have been extensively reviewed
(Pandey, 2005). Briefly, NPR-A [particulate guanylyl
cyclase A (pGC-A)] and NPR-B are transmembrane
guanylate cyclases and are primarily responsible for
the physiologic effects of NPs. ANP and BNP activate
NPR-A and CNP activates NPR-B, leading to the pro-
duction of second-messenger cGMP. NPR-C serves as
a clearance receptor for all three peptides indiscrimin-
ately,mediatingNP internalization followed by lysosomal
degradation. In addition to receptor-mediated clearance,
all three NPs are cleared rapidly from the extracellular
matrix by NEP (Potter, 2011), a glycosylated neutral zinc

endopeptidase expressed at high levels in the proximal
tubule cells of the kidney.

Because of the counter-regulatory actions of the NPs
on detrimental Ang II/AT1R effects, augmentation
of the NP system has been explored as an additional
therapeutic strategy for the treatment of hypertension
and cardiovascular disease. Intravenous administra-
tion of recombinant forms of ANP and BNP can improve
the clinical status of patients with heart failure (Colucci
et al., 2000; Suwa et al., 2005; Hata et al., 2008;
O’Connor et al., 2011), but increased rates of hypoten-
sion and short half-lives have restricted their routine
clinical use. NP analogs (M-ANP, cenderitide-NP, and
PL-3994 (Hept-cyclo(Cys-His-Phe-d-Ala-Gly-Arg-d-Nle-
Asp-Arg-Ile-Ser-Cys)-Tyr-[Arg mimetic]-NH(2)), which
are more resistant to enzymatic degradation and act as
NPR agonists, are currently undergoing clinical testing.
The other approach investigated extensively to increase
circulating NP levels is NEP inhibition. Under normal
conditions, NPR-C andNEPmake similar contributions
to NP clearance (Okolicany et al., 1992; Charles et al.,
1996); however, in pathologic conditions, in which NP
levels are elevated and clearance receptors may be
saturated, NEP plays a more significant role and
inhibition of NEP is sufficient to elevate NP levels
(Hashimoto et al., 1994). Nevertheless, despite the
successful development of potent NEP inhibitors effec-
tive at increasing NP levels, NEP inhibition has only
proved useful for blood pressure control and cardiovas-
cular function when combined with inhibition of the
RAS (reviewed in Campbell, 2017) and is discussed in
more detail below.

D. The Endothelin System

The endothelin system (Fig. 1) functions together
with the RAS to maintain blood pressure and vascular
tone. Preproendothelin-1 is a precursor of proendothelin-
1, produced largely by endothelial cells, and is processed
by furan convertase to the 38-amino-acid peptide big
endothelin-1 (Itoh et al., 1988; Denault et al., 1995). Big
endothelin-1 is then cleaved by another zinc metal-
lopeptidase, ECE-1 (Takahashi et al., 1993), to produce
endothelin-1 (ET-1), a 21-amino-acid vasoactive peptide
(Yanagisawa et al., 1988; Kimura et al., 1989) that
mediates its potent vasoconstrictor actions via the
GPCRs endothelin receptors A and B (ETAR and ETBR,
respectively) (Jandeleit-Dahm, 2006; Motte et al.,
2006), which, much like the angiotensin receptors
AT1R and AT2R, exert opposing effects on vasoregula-
tion and cell growth. ETAR mediates the predominant
responses associated with pathologic conditions, includ-
ing potent prolonged vasoconstriction as a result of
irreversible ET-1 binding (Rubanyi and Polokoff, 1994;
Kedzierski and Yanagisawa, 2001). In contrast, endothe-
lial ETBR mediates nitric oxide–mediated vasorelaxa-
tion and functions as a clearance receptor, facilitating
removal of ET-1 from the circulation for lysosomal
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degradation (Bremnes et al., 2000). There are multiple
complex interactions between the RAS and the endothe-
lin systems, including a positive dual-feedback system:
Ang II increases expression of preproendothelin-1
mRNA and functional ECE-1 activity, leading to an
increase in ET-1 levels (Imai et al., 1992; Barton et al.,
1997; Rossi et al., 1999). However, in some clinical
conditions such as preeclampsia, ET-1 activation was
associated with reduced levels of renin and aldosterone
and increased mean arterial pressure (Verdonk et al.,
2015). The natriuretic and endothelin systems are also
linked by a feedback mechanism whereby ET-1 stim-
ulates the release of NPs, which in turn suppress the
actions of the endothelin system (Stasch et al., 1989).
ET-1 is degraded by NEP (Vijayaraghavan et al., 1990);
thus, the vasodilatory effect of elevated NP levels
caused by NEP inhibitors may be counter-regulated by
increased levels of ET-1.
The endothelin system has been a target for thera-

peutic intervention due to its pathophysiological role
in hypertension, pulmonary arterial hypertension,
heart failure, renal disease, and diabetes. ETAR/ETBR
and selective ETAR antagonists, such as bosentan,
macitentan, and ambrisentan, are used clinically for
the treatment of pulmonary arterial hypertension, but
their use is associated with side effects, including
edema, anemia, increased risk of heart failure, and
hepatic transaminitis (Wei et al., 2016; Packer et al.,
2017). Based on the dual-feedback system linking the
endothelin system and the RAS, dual AT1R/ETAR
antagonists have been developed and tested in the clinic
for pulmonary arterial hypertension, essential hyper-
tension, and chronic kidney disease (Murugesan et al.,
2002, 2005; Neutel et al., 2008; Komers and Plotkin,
2016; Komers et al., 2017); however, it is still to be
established whether the protective benefits outweigh
the risk of adverse reactions. ECE-1 inhibitors as well
as dual ECE-1/NEP inhibitors have also been devel-
oped but showed poor efficacy in humans (Dickstein
et al., 2004).

E. General Biochemical Features of Vasoactive Peptide
Hormone Cascades

Biochemical processes involved in the generation
of vasoactive hormones and peptides are complex and
involve the mechanisms of hormone formation and
secretion. For the peptide cascades addressed in this
article, two distinct mechanisms that can be described
in terms of stoichiometric relations and localization of
the corresponding precursor hormones. Whereas endo-
thelins and NPs are typically generated by intracellu-
lar processing or membrane-bound enzymes locally in
tissues (Russell andDavenport, 1999), angiotensins and
bradykinins are derived from primarily liver-secreted
precursor peptides that are abundantly present in
plasma, serving as a virtually inexhaustible source for
the formation of active hormone molecules throughout

the body. Angiotensinogen levels in human plasma
range between 50 and 150 mg/ml (1–3 mM); women have
much higher plasma angiotensinogen concentrations,
especially during pregnancy (Verdonk et al., 2015).
Plasma concentrations for the bradykinin precursors,
low molecular weight and high molecular weight kini-
nogen, were reported to be in the low micromolar range
(Kleniewski, 1979; Lalmanach et al., 2010). Therefore,
plasma concentrations of both the bradykinin and
the angiotensin precursor are more than 100,000-fold
higher than plasma concentration for BK 1-9 and Ang I,
which are reported to be in the low picomolar range.
This allows for virtually unlimited hormone synthesis
within the plasma compartment. However, formation of
bradykinin and angiotensin in the circulation is de-
termined by the tightly regulated concentration and
activity of the enzymes kallikrein and renin. Ang I and
BK 1-9 are continuously produced by plasma renin
and kallikrein throughout the body while being simul-
taneously converted to other downstream metabolites
by a variety of soluble proteases including ACE and
aminopeptidases, representing the major metabolic
pathways in human plasma. Although the enzymatic
composition of plasma is similar throughout the body,
local peptide hormone levels can be different due to
tissue expression of enzymes and receptors producing,
converting, or binding certain peptide metabolites and
thereby modifying the baseline peptide hormone profile
that is established by intrinsic peptide formation within
the plasma compartment.

Drugs interfering with proteases involved in hormone
metabolism directly affect formation and degradation
rates of peptide products and substrates. Depending on
the site of target expression, pharmacodynamic effects
might be seen in plasma or limited to tissue sites, which
requires careful selection of analytic approaches when
aiming to establish relationships between pharmacody-
namics and physiologic effects.

III. Therapeutic Targets of the Renin-
Angiotensin System and Associated Pathways

ACE inhibitors, the first drugs targeting the RAS,
have been used effectively for the treatment of a wide
range of indications related to hypertension, cardiovas-
cular disease, and renal disease for over 30 years. Since
the discovery of the first ACE inhibitors and later the
development of ARBs, there has been growing interest
in the development of inhibitors that target other struc-
turally related vasopeptidases as well as other receptors
for vasoactive peptides. Driven largely by the success of
RAS blockade but also the observation that suppression
of the RAS does not, in many cases, lead to an adequate
reduction in blood pressure, extensive effort has gone
into developing therapies that target multiple vasoac-
tive pathways controlling blood pressure and cardio-
vascular function.
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A. Angiotensin-Converting Enzyme

ACE (also known as peptidyl dipeptidase; EC 3.4.15.1)
is a type I membrane-anchored zinc dipeptidyl carboxy-
peptidase responsible for the cleavage of a diverse set of
substrates, including angiotensin peptides, bradykinin,
substance P, and gonadotropin-releasing hormone or
luteinizing hormone-releasing hormone. ACE exists as
two isoforms, somatic ACE and testes ACE, that are
transcribed from the same gene in a tissue-specific
manner. Somatic ACE is a 1227-amino-acid protein
that is expressed widely, particularly in endothelial and
epithelial cells. Testes ACE is a smaller form consisting
of 701 amino acids expressed only in sperm cells. Both
isoforms consist of a heavily glycosylated ectodomain
that can be shed from the membrane. Plasma ACE is
derived from endothelial ACE by shedding a 1203-
amino-acid isoform of 150–180 kDa. The concentration
of ACE in human plasma is reported to range between
36 and 288 ng/ml (260–2076 pM), which is an almost
200-fold molar excess compared with Ang I, its major
substrate within the RAS (Fagyas et al., 2014). Despite
this excess of enzyme over its substrate, soluble ACE
likely has limited impact on tissue Ang II levels, which
might be more dependent on the local conversion of Ang
I to Ang II by endothelial ACE in direct proximity to
AT1R (Danser et al., 2007). The ectodomain of somatic
ACE consists of two homologous catalytically active
domains, theN andC domains, whereas the ectodomain
of testes ACE consists of only the C domain (Soubrier
et al., 1988). Crystal structures of individual N and C
domains reveal that they are ellipsoid in shape and
mostly a-helical (Natesh et al., 2003; Corradi et al.,
2006). The catalytic zinc ion is buried deep in the active-
site cavity and a chloride ion is typically observed at
each of the two chloride binding sites. The active site
contains the conserved HEXXH zinc binding motif,
containing the two histidine residues that coordi-
nate the zinc ion together with a conserved glutamate
residue and a water molecule that is displaced upon
ligand coordination (Williams et al., 1994). The N and C
domains display distinct but overlapping substrate
specificity and physiologic functions, differences in

chloride dependence, and distinct glycosylation pat-
terns (Wei et al., 1992; O’Neill et al., 2008). Both
domains catalyze the degradation of bradykinin with
similar efficiency and both N-domain and C-domain
knockout mice show similar bradykinin plasma levels
as wild-typemice (van Esch et al., 2005; Bernstein et al.,
2011), suggesting that bradykinin cleavage by one
domain can effectively compensate for the absence of
the other domain. In contrast, the C domain is the
primary site for Ang II formation and is essential and
sufficient for controlling blood pressure in vivo (Junot
et al., 2001; van Esch et al., 2005; Fuchs et al., 2008;
Bernstein et al., 2011; Burger et al., 2014). The N
domain is the primary site for the clearance of the
tetrapeptide N-acetyl-Ser–Asp–Lys–Pro (Ac-SDKP)
(Azizi et al., 1999; Junot et al., 2001; Fuchs et al.,
2004), a potent anti-inflammatory and antifibrotic
peptide. Consequently, it may be desirable to selectively
target individual domains, and several domain-specific
residues within the active site have been identified that
are important for conferring domain selectivity (Fig. 4)
(Watermeyer et al., 2008, 2010; Kröger et al., 2009). To
date, there aremore than 30 structures of the individual
domains in complex with a variety of peptides and
inhibitors.

B. Angiotensin-Converting Enzyme 2

Another important peptidase in the RAS is ACE2
(also known as ACE-related carboxypeptidase; EC
3.4.17.23), a type I membrane-anchored zinc carboxy-
peptidase (Donoghue et al., 2000; Tipnis et al., 2000).
ACE2 cleaves multiple substrates including vasoactive
peptides involved in the pathology of cardiovascular
disease. ACE2 converts Ang II to Ang 1-7 by removing
the C-terminal phenylalanine residue (Tipnis et al.,
2000; Vickers et al., 2002) and is thus a major compo-
nent of the counter-regulatory axis of the RAS (Santos
et al., 2013, 2018). ACE2 also acts on Ang I to produce
Ang 1-9, albeit with lower efficiency. This ACE2-
dependent formation of Ang 1-9 is particularly relevant
during ACE inhibition, where Ang I is abundantly
present as a substrate in humans and ACE2 treatment
might result in a profound increase of Ang 1-9 (Basu

Fig. 4. A schematic diagram of ACE active sites [Schechter and Berger nomenclature (Schechter and Berger, 1967)] showing the subsite binding
pockets accommodating the residues on either side of the ZBG of peptide substrates. ACE domain-specific amino acid residues important for conferring
domain selectivity are shown within the relevant subsites of the ACE active site.
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et al., 2017). In addition to these angiotensin peptide
substrates within the RAS, it is very likely that Ang III
andAng IV, sharing their C terminuswith the preferred
ACE2 substrate Ang II, serve as additional ACE2
substrates, but this still needs to be demonstrated in vivo.
Other ACE2 substrates include des-Arg9-bradykinin,
apelin-13, and dynorphin A-(1-13) (Vickers et al.,
2002); in addition to its catalytic functions, ACE2 also
has noncatalytic functions, acting as a functional
receptor for the coronavirus that causes severe acute
respiratory syndrome (Li et al., 2003, 2005) and
playing a role in amino acid transport (Kowalczuk
et al., 2008).
ACE2 is predominantly localized on endothelial cells

and is widely expressed within tissues, including
the heart, kidneys, testes, brain, intestine, and lungs
(Tipnis et al., 2000). ACE2 is an 805-amino-acid protein
with a single catalytic domain that shares ;60% and
;40% sequence identity with the N and C domains of
somatic ACE, respectively. The transmembrane region
and cytoplasmic tail of ACE2 is distinct from ACE,
sharing close homology with collectrin, a molecular
chaperone of a renal amino acid transporter B0AT1
(Danilczyk et al., 2006) and ACE2 indeed acts as
a chaperone for the same amino acid transporter in
the small intestine where collectrin is not expressed
(Kowalczuk et al., 2008). Like ACE, the glycosylated
ectodomain of ACE2 is shed from the membrane and
released into circulation: ACE2 is shed by the disintegrin
and metalloprotease ADAM 17 (Lambert et al., 2005),
although the enzymes responsible for ACE shedding
have not yet been identified.
In humans, circulating ACE2 is not detectable in

healthy individuals and its presence is highly associ-
ated with cardiovascular risk factors. In a study in-
volving 534 healthy subjects, ACE2 activity was
detectable in 40 subjects only, whereas soluble ACE2
levels were below the assay detection limit of 2.7 pM in
the remaining 494 subjects. The 40 subjects having
mean ACE2 levels of 33.0 pM showed a stronger
exposure to cardiovascular risk factors including ab-
dominal adiposity, hypertension, and elevated fasting
glucose and lipid levels (Rice et al., 2006). Serum ACE2
activity is increased in patients with heart failure while
correlating with the severity of heart failure (Epelman
et al., 2008) and was reported to predict the combined
clinical endpoint of all-cause mortality, heart failure
hospitalization, and heart transplantation in a cohort of
113 stable patients with chronic systolic heart failure
(Epelman et al., 2009).
The catalytic domain of ACE2 consists of two sub-

domains linked together by a hinge region. Comparison
of inhibitor-bound and free X-ray structures reveals
that a hinge-bendingmotion, resulting in changes to the
relative position of the subdomains, is important for
catalysis (Towler et al., 2004). These structures have
also revealed insights into the observed selectivity of

ACE2 relative to ACE, showing that a single amino
acid substitution in ACE2 hinders the S29 subsite. This
explains why ACE2 acts as a carboxypeptidase rather
than a peptidyl dipeptidase like ACE and why conven-
tional ACE inhibitors such as lisinopril and captopril do
not inhibit ACE2. Structure-based methods have been
used to develop allosteric ACE2 activators by exploiting
conformational differences observed in ACE2 crystal
structures (Hernández Prada et al., 2008; Gjymishka
et al., 2010). These activators bind to surface-binding
pockets in the hinge region, locking the protein in an
active conformation. ACE2 activators have shown anti-
hypertensive and cardioprotective effects in a range of
rodent models (Santos et al., 2018). Other approaches to
increase ACE2 activity, with the aim of activating the
ACE2/Ang 1-7/Mas axis, have included viral overexpres-
sion of ACE2 (Grobe et al., 2007) and oral or intravenous
administration of recombinant ACE2 (Shenoy et al.,
2014) (discussed inmoredetail in sectionVII). In addition
to its effect on alternative RAS activation, ACE2 effi-
ciently degrades Ang II, which in turn reduces the
detrimental effects of Ang II/AT1R signaling, explaining
why recombinant ACE2 has shown efficacy inmanyAng
II infusion models. Importantly, understanding the
dynamics of the RAS in response to ACE2 administra-
tion or activation in vivo aswell as the crosstalk of ACE2
with other pharmacologic treatments targeting the RAS
may be of major importance to achieve therapeutic
efficacy in complex pathologic settings in vivo.

C. Neprilysin

NEP (also known as neutral endopeptidase 24.11,
enkephalinase, or CD10; EC 3.4.24.11) is a type II
membrane-anchored zinc-dependent endopeptidase
originally purified from the brush borders of rabbit
kidneys (Kerr and Kenny, 1974). This widely expressed
enzyme is tethered to the cell surface and has a large
C-terminal extracellular catalytic domain responsible
for the cleavage of a variety of physiologically active
peptides includingNPs, Ang I, Ang II, bradykinin, ET-1,
adrenomedullin, enkephalins, substance P, insulin,
gastrin, and amyloid-b peptide (Malfroy et al., 1978;
Roques et al., 1980, 1993; Erdös and Skidgel, 1989;
Turner andTanzawa, 1997; Iwata et al., 2001; Shirotani
et al., 2001).

Several crystal structures of the soluble ectodomain
in complex with various inhibitors have provided in-
sight into the structure and specificity of NEP (Oefner
et al., 2000, 2004, 2007; Sahli et al., 2005; Glossop et al.,
2011; Schiering et al., 2016). The ectodomain consists of
two a-helical lobes linked by interlacing polypeptide
chains. The large lobe is structurally similar to zinc-
dependent bacterial endopeptidases such as thermoly-
sin, and it contains the catalytic zinc binding motif
HEXXH and other conserved motifs and residues in-
volved in zinc coordination, catalysis, and ligand bind-
ing (Oefner et al., 2000). The smaller lobe, absent in
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related bacterial enzymes, acts as a molecular sieve,
limiting the size of ligands to about 3000 Da (Oefner
et al., 2000). NEP has a large flexible active site with
broader substrate specificity than ACE. The prime side
of the binding pocket is primarily responsible for sub-
strate potency and selectivity. The S19 pocket displays
the most stringent specificity and preferentially binds
aromatic or other large hydrophobic groups (Llorens
et al., 1980; Roques et al., 1980). The large S29 subsite,
extending into the solvent region, has broader specific-
ity. There is fluidity between the S19 and S29 subsites,
with the side chains of residues dividing the two pockets
shifting to accommodate large groups at either site.
Consequently, however, the simultaneous binding of
large groups at both subsites is unfavorable and would
require a substantial induced fit requiring backbone
motion (Oefner et al., 2004).

D. Endothelin-Converting Enzyme-1

ECE-1 (EC 3.4.24.71), named for its role in the
hydrolysis of endothelins, is widely distributed in
mammalian tissue, with particularly high levels of
expression in the cardiovascular, reproductive, and
endocrine systems (Korth et al., 1999). ECE-1 belongs
to the same family of proteins as NEP and their
ectodomains have overlapping specificity and a high
degree of structural similarity, with an overall sequence
identity of 40% (Bur et al., 2001). There is one crystal
structure of ECE-1 available, which shows phosphor-
amidon bound within the active site (Schulz et al.,
2009), revealing that the NEP and ECE-1 active sites
share a high degree of conservation. Structure–activity
relationship (SAR) studies on a series of phosphinic
inhibitors by Jullien et al. (2010) revealed the following
differences in ECE-1 and NEP specificity: 1) ECE-1 can
tolerate a bulky group at the S19 and S29 sites, whereas
NEP can only tolerate a bulky group at one of these
sites; and 2) ECE-1 can tolerate a stereocenter in the S
or R configuration at Ca in the P19 position, whereas
NEP can only tolerate a stereocenter in the S configu-
ration at this position.

E. Aminopeptidase A

Aminopeptidase A (APA; EC 3.4.11.7) is a 160-kDa
homodimeric type II membrane-bound monozinc ami-
nopeptidase. APA hydrolyzes the N-terminal glutamate
or aspartate residue from peptidic substrates such as
Ang II or cholecystokinin-8 in vitro (Nagatsu et al.,
1970; Healy and Wilk, 1993) and in vivo in the brain
(Migaud et al., 1996; Zini et al., 1996) and its activity
is enhanced by Ca21 (Glenner et al., 1962). APA is
expressed in various tissues such as the intestinal and
renal brush border epithelial cells and vascular endo-
thelium and within the brain (Lojda and Gossrau,
1980). This enzyme has also been identified in several
brain nuclei involved in the control of body fluid
homeostasis and cardiovascular functions (Zini et al.,

1997). Using the crystal structure of leukotriene-A4
hydrolase (EC 3.3.2.6) (Thunnissen et al., 2001) as
a template and functional information collected from
site-directed mutagenesis studies on APA, a three-
dimensional (3D) model of the mouse APA ectodomain
from residues 79 to 559, including the active site of the
enzyme, was built (Rozenfeld et al., 2002). In thismodel,
the zinc atom is coordinated by the two histidine
residues (His 385 and His 389) of the consensus
sequence HEXXH, Glu 408, and a water molecule
(Wang and Cooper, 1993; Vazeux et al., 1996). Analysis
of the APA 3D model complexed with an APA inhibitor,
4-amino-4-phosphobutyric acid (GluPO3H2) (Lejczak
et al., 1993) showed that Tyr 471 is involved in
transition state stabilization (Vazeux et al., 1997). The
model also demonstrated an interaction between the
N-terminal amine of GluPO3H2 and two glutamate
residues of APA: Glu 352 in the GAMEN motif con-
served among monozinc aminopeptidases and Glu 215,
which is responsible for APA exopeptidase specificity
(Vazeux et al., 1998; Rozenfeld et al., 2003). Ca21 was
then introduced into the 3D model of APA and was
localized at the bottom of the S1 subsite where it
interacts with the acidic side chains of Asp 213 and
Asp 218, ensuring acidic APA substrate specificity (Goto
et al., 2007; Claperon et al., 2008). The crystal structure
of human APA (residues 76–956) was recently resolved
(Yang et al., 2013) and a comparison of this structure
with the 3D homology mouse APA model showed
a perfect overlap for the APA active site and the same
structural organization of the S1 subsite. The S1 subsite
of APA displays the most stringent specificity and was
optimally blocked by an acidic amino-acid residue such
a glutamate, leading to the development of the first
specific and selective APA inhibitor, EC33 [(3S)-3-
amino-4-sulfanyl-butane-1-sulfonic acid] (Chauvel
et al., 1994). The S19 subsite is hydrophobic, whereas
the S29 subsite preferentially recognizes negatively
charged residues derived from aspartic acid, leading to
the design of APA inhibitors with subnanomolar in-
hibitory potency (David et al., 1999).

F. Angiotensin II Receptors

AT1R and AT2R are members of the seven-
transmembrane domain superfamily of GPCRs and
have a 34% nucleic acid sequence homology. The single
AT1R gene in humans is located on chromosome 3 and
encodes a 359-amino-acid protein. In rodents, however,
there are two subtypes, AT1R a and AT1R b (located on
chromosomes 17 and 2, respectively), which are highly
conserved in the coding region (Sandberg et al., 1992).
AT1R is widely expressed and well conserved be-
tween species (de Gasparo et al., 2000). Ang II activates
a number of signaling pathways, such as G protein–
mediated (Gq and Gi), Janus kinase/signal transducers
and activators of transcription, and mitogen-activated
protein kinase or extracellular signal-regulated kinase
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pathways, causing hypertension, endothelial dys-
function, vascular remodeling, and end organ dam-
age. In addition, there is G protein–independent
signaling through the adapter proteins b-arrestin 1
and b-arrestin 2 that can have distinct functional and
physiologic consequences (Rajagopal et al., 2010).
AT1R conformations stabilized by b-arrestin–biased
peptide agonists differ from Ang II–induced confor-
mations. These agonists have had a significant impact
on AT1R pharmacology and alter the intracellular
trafficking of the receptor in addition to the activa-
tion of the b-arrestin–mediated signaling pathway
(Namkung et al., 2016).
AT1R forms homo- and heterodimers with other

GPCRs and many of these dimers have been linked to
altered ability to activate G protein and/or b-arrestin
(AbdAlla et al., 2000; Hansen et al., 2004; Tóth et al.,
2018). Ang II and Ang III have a similar binding affinity
for AT1R and AT2R, and thus the expression of these
receptors regulates which receptor subtype mediates
responses to Ang II and Ang III (Rabey et al., 2010;
Bosnyak et al., 2011). Moreover, crosstalk between
AT1R and AT2R results in stimulation of one receptor
modulating the expression of the other (AbdAlla
et al., 2001).
The high-resolution crystal structure of human AT1R

in complex with its selective antagonist ZD7155 [5,7-
Diethyl-3,4-dihydro-1-[[2’-(1H-tetrazol-5-yl)[1,1’-biphenyl]-
4-yl]methyl]-1,6-naphthyridin-2(1H)-one] (precursor to the
antihypertensive candesartan) has provided fundamen-
tal insights into the structure–function relationship of
the receptor (Zhang et al., 2015). Surprisingly, three
residues (Arg 167, Tyr 35, and Trp 84) that have not
previously been shown to make interactions with
ligands made important contacts with the antagonist.
In addition, mutagenesis and docking studies revealed
residues that were critical for peptide and nonpep-
tide binding. Exploitation of these interactions paves
the way for new mechanistic studies and therapeutic
strategies.
The AT2R gene, located on human chromosome X,

encodes the 363-amino-acid GPCR with a molecular
mass of 41 kDa (Kambayashi et al., 1993). In contrast to
AT1R, the activation of phosphatases such as mitogen-
activated protein kinase phosphatase 1 and protein
phosphatase 2 is an important signaling mechanism for
AT2R (Kang et al., 1995; Yamada et al., 1996). Further-
more, AT2R couples to Gi proteins and stimulates ion
channel currents (Kang et al., 1994). The crystal
structures of the AT2R in complex with AT2R and
AT1R/AT2R ligands showed helix 8 in a noncanonical
position that stabilizes the active state of the GPCR.
Moreover, interaction of H8 with H5 and H6 prevented
binding of G proteins and b-arrestins, providing a mo-
lecular basis for its alternative G-protein signaling
(Zhang et al., 2017). Although the signaling mechanism
of AT2R is not fully understood, there are similarities

between the AT2R and Mas signaling, such as the
involvement of SH2-containing protein tyrosine phos-
photases SHP-1/SHP-2 and phosphoinositide 3-kinase/
AKT/endothelial nitric oxide synthase (Seguin et al.,
2012). In addition, AT2R and Mas can form hetero-
dimers and Ang 1-7 effects are blocked by AT2R
antagonists. Physiologically, the levels of AT2R expres-
sion are low; however, expression levels have been
found to be higher during development, disappearing
in adult rats except in the brain, ovary and uterus (Cook
et al., 1991; Millan et al., 1991; Pucell et al., 1991; Song
et al., 1992; Lenkei et al., 1997), and liver and kidney of
rats compared with those in neonates (Yu et al., 2010).
Gene expression of AT2R is regulated by numerous
factors, including intracellular calcium and protein
kinase C (Kijima et al., 1996), interleukin-1b and
insulin (Kambayashi et al., 1996), and multiple growth
factors (Ichiki et al., 1995). AT2R mediates a variety of
protective actions such as immune modulation and
antifibrotic, anti-inflammatory, neuroprotective, neuro-
regeneration, antihypertensive, and antiapoptotic actions
(Namsolleck et al., 2014; Steckelings et al., 2017). Thus,
a number of AT2R agonists have been developed for
therapeutic intervention and will provide important in-
formation about the future prospect of drugs targeting the
AT2R (Santos et al., 2019).

G. Mas Receptor

Mas (also called MAS1 proto-oncogene) was the first
identified member of the Mas-related GPCR subfamily
of proteins and consists of seven transmembrane
domains typical of GPCRs (reviewed in Bader et al.,
2014, 2018). It was first described as an oncogene, based
on a human oncogene assay in which the human MAS
gene was purified from a tumor that was induced in
a nude mouse by injecting the animal with NIH 3T3
cells cotransfected with DNA purified from a human
tumor (Young et al., 1986). However, further studies
showed that Mas can only transform cells when artifi-
cially overexpressed (Rabin et al., 1987; van’t Veer et al.,
1993), suggesting that it is not an oncogene as initially
reported. Mas was originally proposed to be the func-
tional receptor for Ang II (Jackson et al., 1988), but
this was also later disproved by subsequent signaling
experiments (Ambroz et al., 1991), cloning of AT1R
(Murphy et al., 1991; Sasaki et al., 1991), and the
discovery that Mas and AT1R interact directly, explain-
ing the indirect involvement of Mas in Ang II signaling
(Kostenis et al., 2005). In 2003, Mas was identified as
the functional receptor of Ang 1-7 responsible for the
beneficial physiologic effects of Ang 1-7 (Santos et al.,
2003), making it a key component of the counter-
regulatory axis of the RAS and a potential target for
therapeutic intervention. Subsequent studies provided
additional evidence supporting this, showing that the
specific labeling of tissues/cell lines by labeled Ang 1-7 is
lost in Mas-deficient animals/cells (Tallant et al., 2005;
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Fraga-Silva et al., 2008; Leal et al., 2009). However,
recent extensive biochemical studies were unable to
support the direct interaction between Ang 1-7 andMas
(Gaidarov et al., 2018), bringing into question whether
Ang 1-7 is indeed the endogenous agonist of this
receptor. In addition to Ang 1-7, several putative Mas
agonists including AVE 0991 [3-ethyl-1-[3-[4-[(5-formyl-
4-methoxy-2-phenylimidazol-1-yl)methyl]phenyl]-5-(2-
methylpropyl)thiophen-2-yl]sulfonylurea] (Wiemer et al.,
2002) and CGEN-856S [amino acid sequence: FLGY-
SIYLNRKRRGDPAFKRRLRD] (Pinheiro et al., 2004;
Savergnini et al., 2010) and antagonists A-779 (D-Ala7
Ang 1-7) (Santos et al., 1994) and D-Pro7 Ang 1-7 (Santos
et al., 2003) have been used to study the actions of Mas,
although a rigorous analysis of theirMas binding affinity is
lacking. These Mas agonists have shown a range of
cardioprotective effects in animal models (reviewed by
Bader et al., 2014, 2018). Other endogenous peptides able
to act as Mas agonists have also been reported (Jankowski
et al., 2011; Tirupula et al., 2014; Yu et al., 2016) and like
many other GPCRs, Mas displays biased agonism with
different ligands activating different downstream path-
ways (Bader et al., 2014; Karnik et al., 2015). Potential
downstream signaling pathways ofMas stimulated by Ang
1-7 and related analogs include the phospholipase A2
pathway to generate arachidonic acid (Santos et al., 2003)
and the phosphoinositide 3-kinase/AKT pathway lead-
ing to the activation of endothelial nitric oxide syn-
thase (Sampaio et al., 2007; Lopez Verrilli et al., 2012;
Savergnini et al., 2013; Than et al., 2013). Ang 1-7
activation of Mas in glomerular mesangial cells is
cAMP dependent and is thought to mediate a protective
action in experimental models of renal injury (Liu et al.,
2012). Mas-mediated activation of the phospholipase
C/Ca21 signaling pathway has been reported for other
agonists, including the endogenous ligand neuropeptide
FF, but not for Ang 1-7 (Shemesh et al., 2008; Zhang
et al., 2012; Tirupula et al., 2014). Mas is expressed at
the highest levels in the brain and testis and has
been found at low levels in a wide range of other
organs; the functions of Mas and other GPCRs in
various tissue was reviewed in Bader et al. (2014).
There are currently no high-resolution structures of
any of the Mas-related GPCRs.

IV. Targeting Angiotensin-Converting Enzyme,
Neprilysin, and Endothelin-Converting Enzyme-

1 with Vasopeptidase Inhibitors

The structural similarity between ACE, NEP, and
ECE-1 and overlapping substrate specificity has en-
abled the development of single molecules that target
two or even three of these enzymes. Remarkably, the
design of current-generation ACE inhibitors as well as
vasopeptidase inhibitors that have entered clinical
trials to date has been achieved with limited knowledge
of the sequences and 3D structures of the enzymes.

Rather, the first ACE inhibitors were designed based on
the expected functional homology of ACE with carboxy-
peptidase A (Cushman et al., 1977). Despite this mis-
conception, ACE inhibitors are a successful class of
drugs in cardiovascular disease, although failure to
appreciate the two-domain structure of ACE has con-
tributed, at least in part, to the adverse event profile of
these drugs. Development of NEP inhibitors dates to
the 1980s and was largely based on the homology
between NEP and the better characterized bacterial
metalloendopeptidase thermolysin. Several selective
NEP inhibitors have been described, including thio-
rphan (Roques et al., 1980), ecadotril, candoxatril, and
sacubitril, but these inhibitors showed poor efficacy in
the clinic (Ando et al., 1995; Cleland and Swedberg,
1998). Although it had been ascertained that NEP
inhibition leads to elevated NP, adrenomedullin, and
bradykinin levels, which have vasorelaxant, natri-
uretic, and cardioprotective actions, clinical studies also
confirmed thatNEP inhibition increased Ang II andET-
1 levels, which possibly counteract the therapeutic
effects (Ferro et al., 1998; Weber, 2001; Roksnoer
et al., 2015). Given that Ang I is a better NEP substrate
than Ang II (Rice et al., 2004), Ang II is increased in the
presence of NEP inhibitors primarily by increasing Ang
I levels (allowing more Ang I to II conversion by ACE)
and secondly by blocking NEP-mediated Ang II degra-
dation. The next progression from this was to establish
whether the additional suppression of Ang II production
(and later ET-1) would be effective. This was supported
by a study demonstrating that combining an NEP
inhibitor with an ACE inhibitor reduced blood pressure
in hypertensive rats to a greater extent than either
inhibitor administered alone (Seymour et al., 1991). A
similar result was later reported in humans (Favrat
et al., 1995), setting the stage for the development of
dual ACE/NEP vasopeptidase inhibitors, a new class of
drugs for the treatment of hypertension.

A. Dual Angiotensin-Converting Enzyme/
Neprilysin Inhibitors

The dual ACE/NEP inhibitors were the first vaso-
peptidase inhibitors to enter clinical trials. They were
developed to simultaneously block the ACE-mediated
formation of the vasoconstrictor Ang II and the NEP-
mediated degradation of NP vasodilators. Eleven dual
ACE/NEP inhibitors have been tested to varying
extents in the clinic (Dimitropoulos et al., 2010). Of
these, omapatrilat progressed the furthest but eventu-
ally failed to obtain U.S. Food and Drug Administration
(FDA) approval after large phase III clinical trials, due
to a reported increased risk of angioedema.

The early dual inhibitors were designed rationally
based on specific ACE and NEP inhibitors. Combining
a P19 benzyl group, known to be important for NEP
inhibition, with a P29 proline group as seen in the first
ACE inhibitors (e.g., captopril) led to a series of potent
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mercaptoacyl dipeptides with dual inhibitory activity
(Robl et al., 1994; Turcaud et al., 1995). Further SAR
studies to optimize for in vivo activity led to conforma-
tionally restricted dipeptide mimetics and, eventually,
omapatrilat, a 7,6-fused bicyclic thiazepinone (Robl
et al., 1997). Omapatrilat displayed potent inhibition
in the low nanomolar range against both ACE and NEP
in vitro, as well as chronic potent antihypertensive and
cardioprotective effects in experimental models of hy-
pertension and heart failure (Robl et al., 1997, 1999;
Trippodo et al., 1998; Intengan and Schiffrin, 2000;
Pu et al., 2002).
Early preliminary clinical data were also promising:

tested doses of omapatrilat showed more potent anti-
hypertensive effects than any other drug class tested
and appeared to be effective in improving cardiac
function in patients with heart failure. However, there
were concerns about omapatrilat-associated angioe-
dema. To further study the efficacy and safety of
omapatrilat, large randomized clinical trials were un-
dertaken to assess the efficacy and safety profile of
omapatrilat in patients with hypertension and heart
failure, compared with the conventional ACE inhibitor
enalapril (Coats, 2002). The OCTAVE (Omapatrilat
CardiovascularTreatmentAssessmentVersusEnalapril)
trial, including more than 25,000 hypertensive patients,
showed antihypertensive efficacy of omapatrilat but,
disappointingly, the rate of angioedema was 3-fold
higher than observed for enalapril (2.17% vs. 0.68%)
and cases of angioedema tended to occur earlier and be
more severe in the omapatrilat group (Kostis et al.,
2004). OVERTURE (Omapatrilat Versus Enalapril
Randomized Trial of Utility in Reducing Events) was
carried out in 5770 patients and showed that omapa-
trilat was as good as, but no better than, enalapril at
reducing primary endpoint events in patients with
heart failure (Packer et al., 2002). Although the inci-
dence of angioedema was lower in OVERTURE than
OCTAVE, the rate of angioedema was still higher in the
omapatrilat group (0.8% vs. 0.5%). Based on the OVER-
TURE and OCTAVE trials, the FDA concluded that the
benefits of treating patients with hypertension or heart
failure with omapatrilat did not outweigh the risks
(Zanchi et al., 2003).
Since both ACE and NEP contribute to the break-

down of bradykinin, and bradykinin accumulation is
associated with angioedema (Fox et al., 1996; Molinaro
et al., 2002), it was thought that the increased risk of
this serious, potentially life-threatening complication
would also affect other dual ACE/NEP inhibitors,
halting the development of this once-promising class
of drugs. Although it is conceivable that changing the
relative levels of ACE and NEP inhibition could im-
prove the efficacy and safety profiles of these dual
inhibitors, and some promising early-stage clinical
trials of other inhibitors were reported in the years
after the omapatrilat studies (Azizi et al., 2006; Johnson

et al., 2006), large-scale trials of other inhibitors have
not been conducted. It is also worth noting that
omapatrilat had off-target effects that may have con-
tributed to its poor side effect profile, which could differ
from off-target effects of other inhibitors in this class.
After omapatrilat’s failure in the clinic, it was discov-
ered that omapatrilat inhibits a third zinc metallopep-
tidase involved in bradykinin inactivation, APP (Ki of
0.25 mM) (Sulpizio et al., 2005; Fryer et al., 2008). Fryer
et al. (2008) showed that bradykinin is degraded in rats
with an enzyme rank efficacy of ACE . APP .. NEP,
suggesting that APP inhibition may contribute signifi-
cantly to the increase in kinin-mediated side effects
observed for omapatrilat. More recent enzyme and
structural data has confirmed that omapatrilat is a non-
selective potent inhibitor of both ACE domains, inter-
acting with conserved residues within the N and C
domain active sites (Cozier et al., 2018). Dual ACE/NEP
inhibitors also result in the elevation of other peptides
such as ET-1 which, like bradykinin, increase endo-
thelial nitric oxide levels, which may also contribute
to angioedema and other adverse effects, including
flushing.

B. Dual Neprilysin/Endothelin-Converting
Enzyme-1 Inhibitors

Dual NEP/ECE-1 inhibitors were also explored to
increase the efficacy of NEP inhibition: the inhibition of
ECE-1 prevents the formation of ET-1, thereby avoiding
the accumulation of ET-1 observed during the inhibi-
tion of NEP, the primary enzyme responsible for ET-1
degradation (Fig. 1). The discovery that phosphorami-
don inhibited ECE-1 in addition to NEP initiated
the development of other NEP/ECE-1 dual inhibitors
(Xu et al., 1994; Kukkola et al., 1995). However, the
most advanced dual ECE-1/NEP inhibitor daglutril
(SLV 306), despite effectively elevating plasma NP
and big ET-1 levels in a dose-dependent manner, was
ineffective at lowering systemic blood pressure in
clinical studies (Dickstein et al., 2004), suggesting that
effective antihypertensive treatment must incorporate
blockade of the RAS.

C. Triple Angiotensin-Converting Enzyme/
Neprilysin/Endothelin-Converting
Enzyme-1 Inhibitors

Another strategy is to simultaneously block the RAS,
NP degradation, and ET-1 formation with triple ACE/
NEP/ECE-1 inhibitors. These inhibitors are expected to
show improved efficacy over dual inhibitors, reduc-
ing the need for polypharmacy, but once again safety
issues are a concern. The most extensively studied triple
vasopeptidase inhibitor, CGS-35601 [L-tryptophan, N-
[[1-[[(2S)-2-mercapto-4-methyl-1-oxopentyl]amino]-cyclo-
pentyl]carbonyl]], isana-mercaptodipeptidewithacentral
cyclic non-natural amino acid and a P29 tryptophan
that is accommodated in the S29 site of all three enzymes.
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CGS-35601 showed good efficacy in various rat models
of hypertension; in addition, although treatment
resulted in significant accumulation of bradykinin,
nitric oxide levels were substantially reduced compared
with treatment with omapatrilat (Daull et al., 2005,
2006b). It is yet to be shown whether the decrease in
plasma ET-1 concentration and associated reduction in
nitric oxide release can compensate for elevated brady-
kinin levels. Even though preclinical testing of CGS-
35601 in rats showed no toxic effects (Daull et al.,
2006a), no triple vasopeptidase inhibitors have yet been
tested in humans. The effect of these broad-spectrum
inhibitors on vasopeptide levels will need to be carefully
evaluated due to the complexity of these interconnected
pathways. Off-target effects will also need to be mini-
mized to ensure that the activity of additional enzymes
involved in kinin inactivation, such as APP and car-
boxypeptidase N, is not affected.
Adverse reactions associatedwith ACE inhibitors and

vasopeptidase inhibitors are likely due to undesired
effects on peptide levels besides Ang II, particularly
bradykinin, but other peptides such as ET-1, substance
P, and so forth may also contribute. Adverse effects
occur in up to 28% of patients (Steckelings et al., 2001;
Weber and Messerli, 2008), which is astounding consid-
ering that ACE inhibitors have been routinely used to
treat large numbers of patients for decades. Although
current evidence suggests that vasopeptidase inhibitors
are potentially more effective than conventional ACE
inhibitors, the safety profile remains a concern.
ACE inhibitors and vasopeptidase inhibitors that

target both the N and C domains of ACE were tested
clinically prior to knowledge of the different roles of
these ACE domains. Now that it is well established that
the C domain is predominantly responsible for Ang II
formation in vivo and that both domains inactivate
bradykinin at a similar rate, selectively inhibiting the C
domain has the potential to reduce the accumulation
of bradykinin levels and other peptides cleaved by the
N domain during ACE inhibitor treatment.
Multiple crystal structures of inhibitors in complex

with the individual ACE N and C domains, NEP, and
ECE-1 have provided molecular insights into enzyme
specificity and function. This, together with increased
knowledge of the integrated network between the RAS,
NPS, kallikrein-kinin system, and endothelin system
and several decades of SAR studies on these enzymes,
provides a strong foundation for the design of next-
generation inhibitors.

V. Angiotensin-Converting Enzyme
C-Domain–Selective Vasopeptidase Inhibitors

A. C-Domain–Selective Angiotensin-Converting
Enzyme Inhibitors

Knowledge of the ACE sequence and 3D structures of
the individual domains has facilitated the development

of both N- and C-domain–selective ACE inhibitors.
N-domain–selective inhibitors may prove useful for
indications such as fibrosis, where it would be beneficial
to inhibit N-domain–specific Ac-SDKP formation with-
out affecting blood pressure (Dive et al., 1999; Douglas
et al., 2014; Fienberg et al., 2018). In vitro mutagenesis
studies, in which C-domain–specific residues are sys-
tematically mutated to their N-domain counterparts
(or vice versa), have provided valuable information on
residue–inhibitor interactions important for conferring
domain selectivity (Watermeyer et al., 2008; Kröger,
et al., 2009; Watermeyer et al., 2010) (Fig. 4).

Several inhibitors, typically derivatives of nonselec-
tive ACE inhibitors, have been developed that show
greater than two orders of magnitude selectivity for
the C domain in vitro. These compounds include the
ketomethylene inhibitors kAWand kAF (Nchinda et al.,
2006b; Watermeyer et al., 2008) derived from the
moderately C-selective compound kAP (Almquist et al.,
1980; Deddish et al., 1998), phosphinic inhibitor RXPA380
(Georgiadis et al., 2003; Kröger, et al., 2009), and carbox-
ylic inhibitor LisW (Nchinda et al., 2006a; Watermeyer
et al., 2010), derived from the conventional inhibitor
lisinopril (Fig. 5). Crystal structures of these inhibitors
in complex with the C domain reveal that a bulky
hydrophobic residue that binds to the S29 pocket is
a common feature of these inhibitors, typically conferring
;30- to 70-fold of the observed C-domain selectivity
(Corradi et al., 2007; Watermeyer et al., 2008, 2010).
Mutational data suggest that cooperative effects of a num-
ber of C-domain–specific residues within the S29 subsite
contribute to the selectivity of these compounds, but
additional residues in other subsites also play a role.
Several bradykinin-potentiating peptides, the first com-
pounds identified for their antihypertensive properties,
also display C-domain selectivity (Cotton et al., 2002).
The structures of the most selective bradykinin-
potentiating peptide, BPPb, in complex with the C
domain (Masuyer et al., 2012) and N domain, together
with mutagenesis studies, have provided a structural
basis for the selectivity of these peptides (Sturrock
et al., 2019), providing additional insights for the
design of selective inhibitors.

Ex vivo and in vivo studies with LisW, the most
extensively studied C-domain–selective inhibitor, have
further confirmed that C-domain–selective inhibition is
pharmacologically relevant, resulting in unique vaso-
peptide metabolism profiles compared with nonselec-
tive ACE inhibitors. A study in hypertensive mice that
express active human renin showed that LisW reduced
blood pressure and Ang II levels similarly to lisinopril
without increasing bradykinin levels (Burger et al., 2014).
Another study in rat myocardial infarction determined
the pharmacodynamic effects of LisW on angiotensin
metabolites and Ac-SDKP levels (Sharp et al., 2015).
Lisinopril, but not LisW, decreasedAng 1-5/Ang 1-7 ratios
and Ac-SDKP levels. This confirms that LisW inhibits
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the C domain selectively, since Ang 1-7 and Ac-SDKP are
N-domain–selective substrates (Deddish et al., 1998).
Based on the in vivo data for LisW, C-domain–selective

ACE inhibitors offer hope for a new generation of ACE
inhibitors with improved safety but are unlikely to offer
improved efficacy unless combined with other drugs. This
class of inhibitors is yet to be tested in the clinic.

B. Dual Angiotensin-Converting Enzyme
C-Domain–Selective/Endothelin-Converting
Enzyme-1 Inhibitors

Jullien et al. (2010) have taken this concept one step
further, developing dual ACEC-domain–selective/ECE-
1 inhibitors. These inhibitors are designed to inhibit the
formation of vasoconstrictors Ang II and ET-1, while
leaving the ACE N domain and NEP free to degrade
bradykinin (Jullien et al., 2010). Structure-based design,
initially based on the structures of theC-domain–selective
inhibitor RXPA380 and dual NEP/ECE-1 inhibitor phos-
phoramidon, led to a series of phosphinic tripeptides. The
stereochemistry of the bulky bicyclic P19 residue proved to
be important for discriminating betweenECE-1 andNEP,

as illustrated by the differences in inhibition constants
observed for compounds FI and FII (Fig. 6). The unusual
R configuration of the P19 residue in FII was highly
selective for ECE-1 over NEP and maintained potent
ACE C-domain activity.

The crystal structures of both the ACE C domain and
N domain in complex with these compounds unexpect-
edly reveal that the bulky P19 group is accommodated by
the S29 pocket in all four structures, highlighting the
fluidity between the S19 and S29 pockets and the S29
pocket’s ability to accommodate conformationally di-
verse, bulky hydrophobic groups (Fig. 6) (Akif et al.,
2011; Masuyer et al., 2014). Another surprising finding
was that an additional FII inhibitor molecule occupied
the C-domain active site, binding on the nonprime side
of the first molecule. FII, the most promising dual ACE
C-domain–selective/ECE-1 inhibitor, displayed 230-fold
C-domain selectivity and 480-fold selectivity for ECE-1
over NEP. Administration of FII to hypertensive rats
resulted in antihypertensive effects (Jullien et al.,
2010), but the effect of FII on bradykinin levels and
metabolism of other vasoactive peptides was not reported.

Fig. 5. (A) Chemical structures of C-domain–selective inhibitors and the corresponding in vitro inhibition constants for the N and C domains. (B)
Overlay of C-domain–selective inhibitors bound to the active site of the C domain from crystal structures [PDB codes 3BKK (kAF), 3BKL (kAW), 2OC2
(RXPA380), and 3L3N (LisW)]. (C) Overlay of crystal structures of ACE N and C domains in complex with lisinopril is shown in yellow (N domain) and
green (C domain) (PDB codes 2C6N and 1O86 respectively) and the ACE C domain in complex with LisW in purple (PDB code 3L3N). C-domain unique
residues are shown in cyan with corresponding N-domain residues in orange. Cdom, C domain; Ndom, N domain; PDB, Protein Data Bank.
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This compound displays high selectivity for the C
domains over the N domain, but it still inhibits the
N domain in the nanomolar range, and there is only
a 10-fold difference between theKi for theN domain and

ECE-1. Confirmation that this inhibitor results in
a distinct peptide metabolism profile compared with
conventional dual ACE/ECE-1 inhibitors in vivo is also
still to be reported.

Fig. 6. (A) Chemical structures of C-domain–selective phosphinic tripeptides FI and FII, showing residue positions relative to the zinc
binding group together with the in vitro inhibition data for NEP, ECE-1, and ACE N and C domains. (B) FI and FII bound to the active sites
of the ACE N and C domains: FI bound to the N domain and C domain in green and cyan, respectively; FII bound to the N domain and C
domain shown in yellow and black, respectively. C-domain unique residues within the active site are shown in cyan with corresponding
N-domain residues in orange.
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C. Dual Angiotensin-Converting Enzyme
C-Domain–Selective/Neprilysin Inhibitors

It may be unnecessary to leave both the ACE N
domain and NEP free to degrade bradykinin: since ACE
is the primary bradykinin-metabolizing enzyme (Fryer
et al., 2008), the N domain may compensate sufficiently
for the C domain in preventing the buildup of danger-
ous levels of bradykinin. Consequently, dual ACE
C-domain–selective/NEP inhibitors could offer a prom-
ising alternative for the treatment of hypertension and
cardiovascular disease by potentiating NP levels in
addition to blocking Ang II formation.

VI. Angiotensin Receptor–Neprilysin Inhibitors:
A Current Perspective

There are parallels between dual ACE C-domain–
selective/NEP inhibitors and the dual-acting angio-
tensin-receptor/NEP inhibitor (LCZ696 or sacubitril/
valsartan, called Entresto; Novartis, East Hanover,
NJ), a novel drug formulation containing equimolar
amounts of the ARB valsartan and the NEP inhibitor
sacubitril, which is a prodrug. Sacubitril/valsartan is
the first in a new class of drugs that combines NEP
inhibition together with Ang II receptor blockade (Gu
et al., 2010; Ruilope et al., 2010; McMurray et al., 2013;
Vardeny et al., 2014). Similar to dual ACE C-domain–
selective/NEP inhibitors, this drug combination serves
to enhance NEP activity while inhibiting the detrimen-
tal effects of the RAS, with no effect on bradykinin and
other NEP-derived vasoprotective factors. Sacubitril/
valsartan has been evaluated in the management of
hypertension, heart failure with reduced ejection frac-
tion (HFrEF), and heart failure with preserved ejection
fraction (HFpEF) and has demonstrated clinical efficacy
in the reduction of blood pressure in patients with
essential hypertension and without HFpEF and a re-
duction in hospitalizations and mortality for patients
with HFrEF. The landmark clinical trial, PARADIGM-
HF (Prospective Comparison of ARNI With ACEI to
Determine Impact on Global Mortality and Morbidity
in Heart Failure), showed that sacubitril/valsartan
was significantly more effective for the treatment of
heart failure with HFrEF compared with enalapril
(McMurray et al., 2014; Mogensen et al., 2018). In
2015, sacubitril/valsartan was approved by the FDA
for the treatment of HFrEF and the drug is now
included in American (Yancy et al., 2016) and Euro-
pean (Ponikowski et al., 2016) clinical guidelines for
the treatment of heart failure.
Despite the robust evidence of clinical benefit seen in

the PARADIGM-HF trial, as well as inclusion of the
drug in clinical guidelines, this medication is approved
in the United States for the treatment of heart failure
only and prescribing of this new therapeutic has been
slow. This has been ascribed to the phenomenon of

“clinical inertia” (Jarcho, 2019), which is driven by
clinician unfamiliarity, reluctance to switch stable
patients, safety concerns, and payer-reimbursement
issues (Sauer et al., 2019). A recent study estimated
that;28,484 deaths could be prevented each year in the
United States with optimal implementation of sacubi-
tril/valsartan therapy (Fonarow et al., 2016); thus,
because the potential reduction in mortality could be
substantial, there have been calls that a paradigm shift
is warranted in clinical practice (Sauer et al., 2019). The
PIONEER-HF study (comparison of sacubitril/valsar-
tan versus enalapril on effect on nt-pro-bnp in patients
stabilized from an acute heart failure episode), which
showed that treatment with sacubitril/valsartan pro-
duced a significantly greater reduction in N-terminal
pro–B-type natriuretic peptide (NT-proBNP) levels
than enalapril without increasing the rates of major
adverse events in patients hospitalized with acute
decompensated heart failure (Velazquez et al., 2019),
may help in overcoming the clinical inertia (Jarcho,
2019). The angiotensin receptor–neprilysin inhibitor
(ARNI) has shown considerable cardiovascular benefit
and absolute risk reduction compared with the stan-
dard-of-care treatment in the PARADIGM (Yandrapalli
et al., 2018) and PIONEER-HF (Morrow et al., 2019;
Velazquez et al., 2019) trials. The composite endpoint,
which was explored as part of a prespecified exploratory
analysis, consisted of death, rehospitalization for heart
failure (hospital stay .24 hours), requirement for a left
ventricular assist device insertion, or listing for a cardiac
transplantation. Furthermore, a recent meta-analysis of
data from the PARADIGM-HF trial (Srivastava et al.,
2018) showed that the 5-year estimated number needed
to treat for the primary outcome of cardiovascular death
or heart failure hospitalization with ARNI therapy
incremental to ACE inhibitor therapy in the overall
cohort was 14. This value is considered clinically mean-
ingful and supports guideline recommendations for use
of ARNI therapy among eligible patients with HFrEF.
The therapeutic role of ARNI in HFpEF is still unclear
and currently under investigation.

However, the effects of long-term NEP inhibition are
yet to be established. NEP is responsible for the
metabolism of many peptides; thus, chronic inhibition
may have a range of physiologic effects. Indeed, too
much NEP inhibition over and above angiotensin re-
ceptor blockade may increase ET-1 chronically, thereby
diminishing the blood pressure–lowering potential of
this combination, most likely because ET-1 upregulates
sodium-hydrogen exchanger 3 in the kidney and con-
strictor ETBR in the vascular wall (Roksnoer et al.,
2015). Chronic NEP inhibition may additionally in-
fluence Alzheimer disease progression due to NEP’s
role in the degradation of amyloid-b peptides. To date,
b-amyloid concentration has not been shown to be in-
creased in cerebrospinal fluid in healthy volunteers trea-
ted with sacubitril/valsartan (Langenickel et al., 2016),
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and there was no increase in cognitive defects versus
enalapril in the PARADIGM-HF trial (Cannon et al.,
2017). The PERSPECTIVE trial evaluates the efficacy
and safety of LCZ696 compared to valsartan on cogni-
tive function in patients with chronic heart failure and
preserved ejection fraction. It will collect data on long-
term cognitive effects in patients with chronic heart
failure treated with sacubitril/valsartan or valsartan
(Sauer et al., 2019). Furthermore, sacubitril/valsartan
may have an effect on inflammation, polyneuropathy,
bronchial reactivity, and cancer, as recently reviewed
in detail (Campbell, 2017). Long-term clinical data
from treatment with sacubitril/valsartan will provide
information on both the beneficial and adverse effects
of chronic inhibition, which will be important for the
development of new vasopeptidase inhibitors.
Potential future indications of sacubitril/valsartan

include myocardial infarction, HFpEF, (diabetic) ne-
phropathy, and stroke. ARNI attenuated adverse car-
diac remodeling and dysfunction after myocardial
infarction in rats compared with the ACE inhibitor
perindopril (Kompa et al., 2018), and it preserved left
ventricular ejection fraction after myocardial infarction
in rabbits, whereas valsartan did not (Torrado et al.,
2018). Studies in patients with HFpEF showed that
after 12 weeks of treatment, ARNI lowered NT-proBNP
more strongly than valsartan (Solomon et al., 2012).
HFpEF accounts for a large percentage of patients with
heart failure and is associated with significant morbid-
ity and mortality. Current medications are suboptimal
and new therapies are being sought including sacubi-
tril/valsartan. The PARAGON-HF (Prospective Com-
parison of ARNI with ARBGlobal Outcomes inHFWith
Preserved Ejection Fraction) trial is designed to deter-
mine the efficacy and safety of the sacubitril/valsartan
combination compared with valsartan (Solomon et al.,
2017). PARAGON-HF is an event-driven trial and all
randomized patients will be followed up until at least
1847 total heart failure hospitalizations and cardiovas-
cular deaths occur. The study, which is ongoing, will
provide important information on the potential thera-
peutic use of sacubitril/valsartan in HFpEF.
ARNI may also be effective in cardiovascular disease

associated with diabetes. In rats made diabetic with
streptozotocin, the NEP inhibitor thiorphan combined
with an ARB prevented functional renal decline, im-
proving glomerulosclerosis, fibrosis, and inflammation
versus ARB alone (Roksnoer et al., 2016b; Malek et al.,
2019). Secondary analysis of patients with heart failure
and type 2 diabetes in the PARADIGM-HF trial also
revealed that ARNI attenuated the effect of diabetes to
accelerate renal deterioration (Damman et al., 2018;
Packer et al., 2018). Yet ARNI displayed similar effects
on kidney function and albuminuria as irbesartan in
patients with chronic kidney diseases, although it did
display superior blood pressure effects (Haynes et al.,
2018). Remarkably, complete prevention of stroke was

obtained with ARNI, but not valsartan, in stroke-prone
spontaneously hypertensive rats (SHRs) (Rubattu et al.,
2018), although Bai et al. (2015) observed that ARNI
prevented ischemic brain damage after middle cerebral
artery occlusion in a much more marked manner than
valsartan.

Given these promising effects, a full understanding of
the mechanisms of action of ARNI is urgently needed.
Studies often report an increase in BNP and a decrease
in NT-proBNP. The latter is the inactive side-product
yielded upon cleavage of proBNP into biologically active
BNP. Elevated serum NT-proBNP is a well known
marker for heart failure severity, as it is associated
with increased risk of mortality and hospitalization.
NT-proBNP is not degraded by NEP and thus has
a longer half-life than BNP. A decrease in NT-proBNP
levels suggests reduced pro-BNP production due to
reduced cardiac wall tension (e.g., due to blood pressure
lowering), whereas an increase in BNP either suggests
the opposite or might be due to NEP inhibition. Hence,
a combination of blood pressure lowering and NEP
inhibition may even result in no change in BNP levels.
Furthermore, the decreases in NT-proBNP and rises in
BNP that have been reported might also be an assay
artifact, due to the fact that ARNI promotes peptide
glycosylation, thereby affecting the assays ofNT-proBNP
and BNP: NT-proBNP would become invisible, while
proBNP would additionally be detected in BNP assays
(Røsjø et al., 2015). Another complicating factor is that
BNP of all NPs is the least susceptible to degradation by
NEP and thus acts as an endogenous inhibitor of NEP. If
so, patients with elevated BNP levels already undergo
NEP inhibition, and accordingly may be less responsive
to ARNI (Vodovar et al., 2015).

VII. Recombinant Angiotensin-Converting
Enzyme 2 as a Therapeutic Intervention

The enzymatic conversion of the proinflammatory,
profibrotic vasoconstrictorAng II into theanti-inflammatory
antifibrotic and cardioprotective vasodilator Ang 1-7
appears to be a reasonable therapeutic approach for
treating conditions in which Ang II has been shown to
be involved in the pathologic mechanism and Ang 1-7
could mediate protective effects. Therefore, recombinant
human angiotensin-converting enzyme 2 (rhACE2) is
currently considered for treating acute respiratory dis-
tress syndrome and pulmonary arterial hypertension. In
a safety and tolerability study in healthy volunteers,
single doses between 100 and 1200 mg/kg rhACE2 were
administered intravenously, revealing a plasma half-
life of the enzyme in the range of 10 hours with peak
plasma concentrations up to 20 mg/ml (223 nM) for the
highest-dose cohort. Plasma levels stayed in the range
of 1 mg/ml (11.2 nM) until 24 hours after administration
of a single dose of 400 mg/kg (Haschke et al., 2013).
Compared with the undetectable levels of ACE2 present
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in healthy volunteers (,2.7 pM) (Rice et al., 2006),
a more that 4000-fold increase of circulating ACE2
levels is achieved until at least 24 hours after admin-
istration of a moderate intravenous dose of the recombi-
nant enzyme. Although no significant decrease in blood
pressure could be detected in healthy volunteers, the
treatment showed the expected biochemical in vivo
effects—that is, a profound suppression of circulating
Ang II, while Ang 1-7 and Ang 1-5 levels were increased
(Haschke et al., 2013).
In a recent pilot trial conducted in patients with acute

respiratory distress syndrome (ClinicalTrials.gov iden-
tifier NCT01597635), ACE2-mediated conversion of
Ang II to Ang 1-7 and Ang 1-5 could be confirmed and
the compound was well tolerated. Although a trend for
reduced interleukin-6 levels was reported for rhACE2-
treated subjects, no significant changes were observed
in the ratio of partial pressure of arterial oxygen to
fraction of inspired oxygen, oxygenation index, or
sequential organ failure assessment score. The study
was terminated after including 39 of 60 patients, as an
interim analysis revealed the unlikeliness to reach
a significant outcome. Primary outcomes including
safety and tolerability were successfully reached. A
rapid modulation of angiotensin metabolite levels was
also observed in individual patients with circulating
Ang II levels up to 600 pM, indicating that pharmaco-
logic efficacy can be achieved at a state of high RAS
activity. One reason for the lack of effect might be the
large heterogeneity in baseline RAS activity in this
population, although this does reflect reality (Khan
et al., 2017). Given that ACE2-mediated Ang 1-7
formation critically depends on the availability of Ang
II as its primary substrate, patient stratification on the
basis of renin or Ang II might be a reasonable approach
to enhance the therapeutic efficacy observed for a treat-
ment aiming to reduce Ang II levels while promoting the
alternative RAS via increased Ang 1-7 formation.
Two studies investigating the intravenous adminis-

tration of rhACE2 are currently recruiting patients. The
first is conducted in human healthy volunteers under
acute hypoxia and exercise (NCT03000686) in a pla-
cebo-controlled crossover design, in which modification
of pulmonary artery systolic pressure by rhACE2 serves
as the primary outcome. The second study is an open-
label dose escalation study for rhACE2 (NCT03177603)
in patients with pulmonary arterial hypertension, in
which changes in pulmonary vascular resistance, cardiac
output, andmeanpulmonary artery pressure in response
to rhACE2 serve as primary outcome measures.
Endogenous ACE2 is predominantly expressed on

endothelial surfaces and in a variety of tissues, includ-
ing the heart, kidney, and lung (Tipnis et al., 2000).
Angiotensin metabolites are continuously generated in
blood plasma, which is a processmainly driven by kidney-
derived renin, hepatic angiotensinogen, and membrane-
bound ACE and aminopeptidases. Indeed, endothelial

surfaces play a key role in generating a local RAS by
modifying the angiotensin mix supplied by the blood. In
its natural environment, ACE2 is likely to compete
with AT1R for local Ang II. To what extent this bal-
anced system is affected by an excess of rhACE2 in the
circulation at different states of RAS activity (e.g., how
such high amounts of rhACE2 affect the plasma angio-
tensin substrate supply for endothelial surfaces in the
absence and presence of compensatory mechanisms) is
obviously critical for the clinical success of rhACE2
and requires further investigation.

VIII. Regulation of Hypertension by Central-
Acting Aminopeptidase A Inhibitors

Several decades of investigationhaveprovided evidence
for the existence of a brainRAS and its involvement in the
control of cardiovascular functions (Veerasingham and
Raizada, 2003; Sakai and Sigmund, 2005). All of the
components of the systemic RAS—the precursor, angio-
tensinogen; the enzymes, renin, ACE, ACE2, APA, and
aminopeptidaseN (APN); the peptides, Ang I, Ang II, Ang
III, and Ang 1-7; and the receptors, AT1R and AT2R as
well as Mas—are present within the brain (reviewed in
Lenkei et al., 1997;Wright andHarding, 1997; and Santos
et al., 2018). Whether they are of local origin or derived
from plasma remains a matter of debate (Sigmund et al.,
2017; van Thiel et al., 2017).

Brain RAS hyperactivity has been implicated in the
development and maintenance of hypertension in sev-
eral experimental and genetic animal models of hyper-
tension, such as SHRs, deoxycorticosterone acetate
(DOCA)-salt rats, and transgenic mice overexpressing
both angiotensinogen and renin human genes (Basso
et al., 1981; Ganten et al., 1983; Davisson et al., 1998).
Among the bioactive peptides of the RAS, Ang II and
Ang III display similar affinities for AT1R (Wright and
Harding, 1995). When injected into the brain, these
peptides similarly increase blood pressure and arginine-
vasopressin release (Phillips, 1987; Zini et al., 1996;
Reaux et al., 1999). However, becauseAng II is converted
into Ang III in vivo, the nature of the effector peptide of
the brain RAS remains to be defined.

Using radiolabeled angiotensins in the presence or
absence of specific and selective APA and APN inhib-
itors, EC33 (Chauvel et al., 1994) and PC18 [(2S)-2-
amino-4-methylsulfanyl butane thiol] (Fournié-Zaluski
et al., 1992), respectively, administered by the intra-
cerebroventricular route, brain APA was shown to gener-
ate Ang III from Ang II by removing the N-terminal
aspartate residue, whereas APN (EC 3.4.11.2), another
membrane-bound zinc metalloprotease, metabolized Ang
III into Ang IV (Zini et al., 1996). The use of EC33 and
PC18 injected alone by the central route showed that
endogenous Ang III, rather than Ang II, is one of the
main effector peptides of the brain RAS in the control
of blood pressure and arginine-vasopressin release

Novel Therapeutic Approaches Targeting the RAS 557

http://ClinicalTrials.gov


(Zini et al., 1996; Reaux et al., 1999; Wright et al., 2003;
Fournie-Zaluski et al., 2004). Brain Ang III exerts
a tonic stimulatory control over blood pressure in two
experimental models of hypertension: the SHR (Reaux
et al., 1999; Marc et al., 2012) and the DOCA-salt rat
(Fournie-Zaluski et al., 2004), with both models exhib-
iting hyperactivity of the brain RAS. The activity of the
systemic RAS is normal in the SHR model and de-
pressed in DOCA-salt rats (characterized by low plasma
renin levels and high plasma arginine-vasopressin
levels), accounting for the resistance of hypertensive
DOCA-salt rats to treatment by systemic RAS blockers.
Brain APA, the enzyme responsible for generating

brain Ang III, therefore constitutes a promising target
for hypertension treatment, justifying the development
of potent and selective APA inhibitors as central-acting
antihypertensive agents. A prodrug of EC33, RB150
(4,4-dithio-{bis[(3S)-3-aminobutyl sulfonic acid]}), renamed
firibastat, was developed for clinical use (Fournie-Zaluski
et al., 2004). This compound is composed of two molecules
of EC33 linked by a disulfide bridge. Orally adminis-
tered RB150 crosses the intestinal, hepatic, and blood–
brain barriers. Upon brain entry, the disulfide bridge
is rapidly cleaved by brain reductases to generate two
active molecules of EC33, which inhibit brain APA
activity, block the formation of brain Ang III (Fournie-
Zaluski et al., 2004), and decrease blood pressure and
arginine-vasopressin release in alert hypertensive rats
(Bodineau et al., 2008; Marc et al., 2018). The RB150/
firibastat-induced blood pressure decrease is due to
the following: 1) decreases in sympathetic tone and,
consequently, vascular resistance; 2) a decrease in
arginine-vasopressin release into the bloodstream from
the posterior pituitary, reducing extracellular volume;
and 3) an improvement in baroreflex function (Fig. 7)
(Bodineau et al., 2008; Marc et al., 2012; Huang et al.,
2013). No blood pressure effect was noted in normotensive
rats, showing that RB150/firibastat is an antihyper-
tensive agent and not a hypotensive agent. Moreover,
the blood pressure decrease was greater in hyperten-
sive DOCA-salt rats than in SHRs, suggesting that
RB150/firibastat may be especially effective in salt-
dependent hypertension.
Together, these data led to the first evaluation of

RB150/firibastat in humans. Clinical studies in healthy
volunteers, in single ascending oral doses (phase Ia) and
multiple oral doses (phase Ib), have shown that RB150/
firibastat is well tolerated (Balavoine et al., 2014) up to
750mg twice daily for 7 days. Two phase II clinical trials
were then conducted. The first, a phase IIa trial carried
out in 34 hypertensive patients (grade I and II), was
a randomized double-blind study comparing the effect of
RB150 (250 mg twice daily for 1 week, then 500 mg
twice daily for 3 weeks) to placebo (Azizi et al., 2017). In
the intention-to-treat population, daytime ambulatory
systolic blood pressure (SBP) and office SBP decreased
by 2.7 and 4.7 mm Hg, respectively, after 4 weeks of

firibastat treatment versus placebo, but the difference
between the groups was not statistically significant
(P 5 0.157 and P 5 0.151, respectively). In the per-
protocol population (n 5 29 patients), firibastat treat-
ment induced a larger decrease in daytime ambulatory
SBP (median, 29.4 mm Hg; interquartile range, 212.5
to 23.0) in patients with a basal value of daytime
ambulatory SBP between 154 and 172 mmHg, whereas
placebo treatment did not induce any change (median,
0.75 mm Hg; interquartile range, 25.5 to 21.9). In the
multiple linear regression analysis for the per-protocol
population, only treatment with firibastat (P 5 0.06)
and baseline daytime ambulatory SBP (P 5 0.01) were
associated with changes in daytime ambulatory SBP.
This suggests that the more the basal daytime ambu-
latory SBP is elevated, the more the firibastat-induced
SBP decrease is apparent. This is in agreement with the
observation that, in experimental models of hyperten-
sion, firibastat acted as an antihypertensive agent and
not as a hypotensive agent. This study showed that
RB150/firibastat treatment was safe and tended to
decrease daytime ambulatory SBP, but not significantly
(Azizi et al., 2017), possibly due to the small number of
patients and the short duration of treatment. These
data were used to guide the design of a large phase IIb
clinical trial, NEW-HOPE (Novel Evaluation with
QGC001 in Hypertensive Overweight Patients of Mul-
tiple Ethnic Origins), carried out in 250 overweight
hypertensive patients (SBP 145–170 mm Hg), 50% of
whom were self-identified African Americans or His-
panics. In patients receiving firibastat for 2 months
(250 mg twice daily orally for 2 weeks, then 500 mg
twice daily; 25 mg hydrochlorothiazide daily could be
added after 1month if SBP$ 160mmHg and/or DBP$
100 mm Hg), a significant blood pressure–lowering
efficacy and a safe tolerability profile were observed
(NCT03198793) (Ferdinand et al., 2018).

If the proof of concept of firibastat efficacy is con-
firmed in pivotal phase III trials, RB150/firibastat could
constitute the first of a new class of centrally acting
antihypertensive agents. Firibastat may be especially
effective in African Americans who are poorly respon-
sive to blockers of the systemic RAS and who are salt
sensitive with high plasma arginine-vasopressin levels
and low plasma renin activity.

IX. Targeting Angiotensinogen: Antisense
Oligonucleotides and Small Interfering RNA

Since all angiotensins stem from angiotensinogen,
deleting angiotensinogen will diminish the stimulation
of all angiotensin receptors, including AT2R and Mas.
Circulating angiotensinogen is derived from the liver,
and it is generally believed that additional angio-
tensinogen production occurs in the brain, kidney,
and adipose tissue (Campbell and Habener, 1986;
Thomas and Sernia, 1988; Matsusaka et al., 2012).
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Although it is attractive to speculate that this angio-
tensinogen contributes to “local” angiotensin produc-
tion, direct evidence that tissue angiotensin generation
occurs independently of liver angiotensinogen is still
lacking. Indeed, deleting renal angiotensinogen unexpect-
edly did not affect renal angiotensin levels at baseline or
under pathophysiological conditions (Matsusaka et al.,
2012, 2014). Future studies should address brain and
adipose tissue angiotensin levels in the absence of
hepatic angiotensinogen to solve this issue (Uijl et al.,
2018). Such studies require highly sensitive angiotensin
assays, since brain angiotensin levels in particular are
extremely low (van Thiel et al., 2017; Lombard-Banek
et al., 2019).
In humans, circulating angiotensinogen levels are in

the micromolar range (i.e., close to theKm of its reaction
with renin) and 5 to 6 orders of magnitude above the
levels of circulating Ang II. Circulating, liver-derived
angiotensinogen diffuses slowly into the interstitial
space and hence contributes to tissue angiotensin pro-
duction (e.g., in the heart and vascular wall) (de Lannoy
et al., 1997). Upregulation of angiotensinogen levels,
such as in subjects carrying the T235 allele of the
angiotensinogen gene or in pregnant women (due to the
fact that estrogen stimulates angiotensinogen synthesis)

(Schunkert et al., 1997; Danser et al., 1998), results in
renin downregulation, thereby normalizing angiotensin
generation. In contrast, renin upregulation, as occurs in
patients with heart failure, particularly during treat-
ment with diuretics and RAS blockers, diminishes
angiotensinogen and, if excessive, may result in near-
complete angiotensinogen depletion (Danser et al.,
1997; Klotz et al., 2009). Such depletion tends to occur
earlier at the tissue level rather than in the circulation
(Klotz et al., 2009). Nevertheless, the inverse relation-
ship between renin and angiotensinogen allows angio-
tensin levels to remain intact over a wide range of
angiotensinogen levels, even in patients with angioten-
sinogen levels that are ,25% of normal (Danser et al.,
1997; Klotz et al., 2009). Of interest, mice display
angiotensinogen levels that are at most a few percent
of those in humans, and they still display similar
angiotensin levels to humans. This is due to the fact
that their renin levels are several orders of magnitude
higher than those in humans (van Thiel et al., 2017).
Here it is important to realize that humans are also
capable of upregulating renin levels several hundred-
fold (Balcarek et al., 2014), thereby compensating for
significant angiotensinogen depletion. Taken together,
this implies that to suppress angiotensin levels in blood

Fig. 7. Mode of action of the APA inhibitor prodrug RB150/firibastat on the control of blood pressure in hypertensive rats. After oral administration,
the disulfide bridge enables RB150 to cross the blood–brain barrier and to enter the brain. At the opposite, EC33 is not able to enter the brain. In the
brain, the disulfide bridge of RB150 is cleaved by brain reductases generating two active molecules of EC33. EC33 subsequently inhibits brain APA
activity and blocks the formation of brain Ang III, known to exert, in brain structures (PVN, SON, PPit, NTS, and RVLM), a stimulatory action on the
control of blood pressure in hypertensive rats. This results in a blood pressure decrease via a decrease in arginine-vasopressin release and sympathetic
neuron activity and an improvement of the baroreflex function. The red dashed lines represent the neuronal angiotensinergic pathways in the adult rat
brain. MnPO, median preoptic nucleus; NTS, nucleus of the solitary tract; OVLT, organum vasculosum of the lamina terminalis; PPit, posterior
pituitary; PVN, paraventricular nucleus; RVLM, rostral ventrolateral medulla; SFO, subfornical organ; SON, supraoptic nucleus.

Novel Therapeutic Approaches Targeting the RAS 559



plasma, angiotensinogen depletion should be substan-
tial (most likely .90%), whereas suppression of angio-
tensins at the tissue level may already occur at less
impressive angiotensinogen reductions.
Currently, suppression of angiotensinogen can be

achieved by interference at the RNA level with oligonu-
cleotides (Fig. 8). Antisense oligonucleotides (ASOs) are
single-stranded synthetic nucleic acids that are comple-
mentary to a specific mRNA region (Watts and Corey,
2012). Once hybridized, mRNA degradation occurs,
thereby abrogating protein (angiotensinogen) synthe-
sis. ASOs generally consisting of 15–30 nucleotides and
are highly unstable; thus, chemical modifications are
required to increase nuclease resistance. Such modifi-
cations may also help to increase RNA affinity and
selectivity. Furthermore, conjugation to a hepatocyte-
targeting ligand [triantennary N-acetylgalactosamine
(GalNAc)] facilitates selective accumulation in the liver,
thereby increasing potency 10- to 30-fold (Mullick et al.,
2017; Ren et al., 2018). GalNAc binds to the asialogly-
coprotein receptor on hepatocytes, allowing transport
and release of the ASO into the intracellular compart-
ment (Levin, 2019). Without GalNAc, the ASOs may
also accumulate outside the liver, for example, in the
above-mentioned putative angiotensinogen-synthesizing
organs. Small interfering RNA (siRNA) shares with
ASOs the principle of oligonucleotide binding to a target
RNA through Watson-Crick base pairing. Yet siRNA is
double stranded (increasing stability) and, once in the
cell, one strand (the “passenger” strand) is lost, whereas
the other strand (the “guide” strand) is loaded into the
RNA-induced silencing complex (RISC). RISC is a pro-
tein complex that allows the guide strand to bind to
a complementary RNA region, after which an enzyme
(Argonaute) that is part of RISC cleaves the mRNA.
GalNAc conjugation can be applied to siRNA as well,
which in the case of siRNA for proprotein convertase
subtilisin/kexin type 9 (PCSK9)–enabled biannual dos-
ing to suppress PCSK9 (Ray et al., 2017). If true for
angiotensinogen as well, this might revolutionize hy-
pertension pharmacotherapy, particularly in patients
who are nonadherent.
Early studies with angiotensinogen ASOs adminis-

tered by intracerebroventricular injection in the brain of
SHRs showed a modest reduction of angiotensinogen
levels in the hypothalamus (from �60 to �40 pmol/g),
but not in the brainstem, cortex, midbrain, or cerebel-
lum (Wielbo et al., 1995). Remarkably, baseline brain
angiotensinogen levels were comparable in all brain
regions and corresponded to ,5% of blood plasma
angiotensinogen levels. These data argue against
angiotensinogen expression in selected brain nuclei,
and they favor the presence of trapped plasma angio-
tensinogen in the brain. Furthermore, brainstem Ang
II levels decreased marginally from 70 to 60 pg/g after
angiotensinogen ASO administration (Gyurko et al.,
1993), yet blood pressure decreased by .35 mm Hg.

It remains difficult to link this large hypotensive effect
to the inconsistent or even absent changes in brain
angiotensinogen and Ang II; thus, before concluding
that this reflects exclusive interference with brain
angiotensinogen expression, these studies should now
be repeated with the current, more selective, potent and
stable angiotensinogen ASOs. Recent studies evaluated
such ASOs and siRNAs in various rat models (Mullick
et al., 2017) and mice (Ye et al., 2019) and also compared
the GalNAc-conjugated and nonconjugated variants.

In mice, hepatocyte-specific angiotensinogen deficiency
abolished angiotensinogen accumulation in proximal
tubules and greatly diminished renal Ang II levels,
supporting the concept that renal angiotensin generation
depends on liver-derived angiotensinogen (Roksnoer et al.,
2016a). In rats, both GalNAc-conjugated and unconju-
gated angiotensinogen ASO suppressed circulating
angiotensinogen, although only the unconjugated
ASO additionally suppressed renal and adipose angio-
tensinogen mRNA. Nevertheless, both the GalNAc-
conjugated ASO and siRNA effectively lowered blood
pressure in SHRs (Mullick et al., 2017; Uijl et al., 2019),
suggesting that interference with renal or adipose angio-
tensinogen is not required for this effect. This was also
true for lipid nanoparticle-encapsulated angiotensinogen
siRNA delivered to the liver in SHRs (Olearczyk et al.,
2014).Unexpectedly,GalNAc-conjugated angiotensinogen

Fig. 8. Overview of AGT suppression using siRNAs. siRNAs enter the
cell and are incorporated into the RISC in the cytoplasm. The RISC
complex with the active guide strand binds the complementary sequence
within the target mRNA, resulting in Argonaut 2–mediated cleavage and
subsequent AGT mRNA degradation. AGT, angiotensinogen.
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ASO also lowered blood pressure in SHRs fed 8% salt,
whereas classic RAS blockers are ineffective in this
model (Mullick et al., 2017). Moreover, GalNAc-
conjugated angiotensinogen ASO did not induce renal
dysfunction (reflected by reduced creatinine clearance)
in rats with 5/6 nephrectomy, unlike both nonconju-
gated angiotensinogen ASO and captopril (Mullick
et al., 2017). The authors speculated that the preserva-
tion of renal angiotensinogen in the 5/6 nephrectomy
model with GalNAc-conjugated angiotensinogen ASO
might have prevented kidney function deterioration,
but failed to support this concept by determining renal
angiotensin levels under the various conditions. Renal
angiotensinogen production is unlikely to underlie the
effectiveness of GalNAc-conjugated angiotensinogen
ASO in SHRs fed 8% salt. Finally, unconjugated
angiotensinogen ASO slowed polycystic kidney disease
in various polycystic kidney disease mouse models
(Ravichandran et al., 2015; Fitzgibbon et al., 2018).
Since this approach lowered both renal and hepatic
angiotensinogen expression, as well as angiotensinogen
in serum, it cannot be concluded to what degree this
was due to interference with renal angiotensinogen,
although it is likely to be due to suppression of renal
Ang II. Clearly, future studies combining GalNAc-
conjugated and unconjugated angiotensinogen ASO/
siRNA together with renal Ang II measurements in
various models are needed to finally settle the issue of
renal angiotensinogen versus hepatic angiotensinogen
contributing to renal angiotensin generation.
In summary, angiotensinogen ASO and siRNA show

promising results in rodent models for hypertension
and kidney failure. Their long-lasting effects are par-
ticularly exciting, and if translated to a clinical appli-
cation of at most a few administrations per year, may
help to eliminate nonadherence. Yet major hurdles
remainwith regard to both safety (e.g., immune responses,
liver toxicity, nonspecific effects, what to do in situations
where RAS activity is acutely needed, etc.) and efficacy,
particularly in the context of common comorbidities such
as heart failure and chronic kidney disease, and in
combination with other RAS blockers.

X. Dual Receptor Activation of Particulate
Guanylyl Cyclase A and Mas

In contemporary drug discovery, an emerging strat-
egy is the design and development of bispecific thera-
peutics. A bispecific drug, as either a small molecule or
peptide, targets two independent signaling pathways.
Importantly, the goal of bispecific drugs is to achieve
therapeutic synergy that transcends the effects of single-
pathway activation. As an example, this concept has
been supported by the approval of the small molecule
sacubitril/valsartan for heart failure, which has also
demonstrated efficacy in hypertension (Ruilope et al.,
2010; McMurray et al., 2013).

Most recently, advances in peptide engineering have
been employed to design and develop novel designer
peptides that target pGC-A (Meems and Burnett,
2016; Chen et al., 2018). This molecular target is well
recognized to mediate cardiorenal protection in cardio-
vascular disease, via its second-messenger cGMP, for
which the cardiac hormones ANP and BNP are its
endogenous ligands. Indeed, stimulation of the pGC-A/
cGMP pathway results in a number of biologic proper-
ties, including natriuresis, diuresis, blood pressure
lowering, inhibition of cardiomyocyte hypertrophy and
fibroblast proliferation, browning of white adipocytes
with enhanced energy utilization, suppression of in-
flammatory cytokines and T cells, and inhibition of
aldosterone (Bordicchia et al., 2012; Ma et al., 2013;
Kuhn, 2016). Cataliotti et al. (2011) also reported that
chronic activation of pGC-A by adenoviral BNP gene
delivery in SHRs reduced blood pressure and attenu-
ated cardiac hypertrophy and diastolic dysfunction. In
human heart failure, chronic pGC-A augmentation with
daily subcutaneous BNP injections improved cardiore-
nal function and clinical symptoms (Chen et al., 2012).

A second but separatemolecular target in cardiorenal
therapeutics is the Mas. Mas activation mediates anti-
apoptotic, anti-inflammatory, vasodilatory, antithrom-
botic, and AT1R antagonizing actions by activation via
its ligand Ang 1-7 and its second-messenger cAMP
(Santos et al., 2003; Trask and Ferrario, 2007). In
addition to cAMP activation, other downstream path-
ways activated byAng 1-7/Mas include the phospholipase
A2 pathway (Santos et al., 2003) and the phosphoinosi-
tide 3-kinase/AKT pathway (Sampaio et al., 2007; Lopez
Verrilli et al., 2012; Savergnini et al., 2013; Than et al.,
2013). This Ang 1-7/Mas axis also has cardiorenal pro-
tective actions in models of hypertension and heart
failure (Mori et al., 2014; van Twist et al., 2014). The
therapeutic development of Mas has been limited, how-
ever, by the rapid in vivo degradation of Ang 1-7 (Iusuf
et al., 2008).

A first-in-class bispecific designer peptide that cotar-
gets Mas and pGC-A in one peptide entity was recently
engineered (Meems et al., 2019). This designer peptide
NPA7 replaces the 9-amino-acid N terminus of BNP1-
32with theMas agonist Ang 1-7 (Fig. 9). The goal was to
create a bispecific drug (i.e., NPA7) that would possess
greater systemic and renal vasodilating, natriuretic,
diuretic, and cardiac unloading properties compared
with either Ang 1-7 or BNP alone and which potentially
would have beneficial efficacy for the treatment of
cardiovascular disease such as hypertension and heart
failure.

In a recent report, pGC-A and Mas activation by
NPA7 was validated and it was shown that NPA7 is
biologically active in vivo with potent and more sus-
tained cardiorenal actions that go beyondMas or pGC-A
alone (Meems et al., 2019). Further validation of stimu-
lation of both receptors in vitro was shown and increases
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in the secondmessengers of pGC-A andMas in HEK293
cells with increases in cGMP and cAMP, respectively,
were demonstrated. Importantly, blockade of Mas
attenuated the hemodynamic, natriuretic, and diuretic
responses to NPA7 in vivo, underscoring the impor-
tant activation of Mas by NPA7. These findings are the
first studies of a novel and unique Mas activator that
possesses Ang 1-7 properties, hence generating in vitro
and in vivo actions that represent alternative RAS
activation together with pGC-A targeting.
NPA7 as a therapeutic has implications for the

treatment of cardiovascular disease, especially for those
disease states in which RAS activation plays a pivotal
role (i.e., hypertension and heart failure). Hypertension
and heart failure have neurohumoral imbalance, which
is characterized by a relative NP deficiency with exces-
sive RAS activation (Hawkridge et al., 2005; Macheret
et al., 2012). Treatment with drugs that target both the
pGC-A receptor system and Mas have the potential to
restore this imbalance. Indeed, studies have reported
that chronic pGC-A receptor activation in human heart
failure is associated with improved cardiorenal function,
left ventricular function and/or structure, and overall
clinical outcomes (Chen et al., 2012). Long-term treatment
with Ang 1-7 in experimental models of cardiovascular
disease improves cardiac function mice and prevents
cardiomyocyte hypertrophy, apoptosis, and fibrosis (Mori
et al., 2014; Papinska et al., 2016). Therefore, NPA7 may
not only improve hemodynamic function, diuresis and
natriuresis in the short term but may have wide potential
application in cardiovascular, renal, and metabolic dis-
eases when chronically used. Thus, future studies are
needed to address the full therapeutic potential of this
first-in-class peptide and the concept of optimizing ther-
apy with bivalency.

XI. Conclusion

Blockers of the RAS have profoundly influenced
clinical medicine. In particular, ACE inhibitors have
had a major impact on cardiovascular medicine, espe-
cially in the treatment of heart failure, hypertension,
and ischemic heart disease (Ferrario andMullick, 2017;
Oparil et al., 2018). Many major evidence-based cardio-
vascular guidelines recommend ACE inhibitors as first-
line therapy, at least for heart failure and hypertension
(Rosendorff et al., 2015; Yancy et al., 2017; Whelton
et al., 2018; Wright et al., 2018). However, despite
enormous therapeutic advances in the management of
these conditions, patients treatedwith ACE inhibitors are
still at increased risk for cardiovascular morbidity and
premature death (Moukarbel and Solomon, 2008). Rea-
sons for this are multifactorial, including the fact that the
“ideal ACE inhibitor” has yet to be developed. Clinically,
this was addressed, in part, with the development of
vasopeptidase inhibitors such as omapatrilat, a dual in-
hibitor of ACE and NEP (Nawarskas et al., 2001;
Tabrizchi, 2001; Lapointe and Rouleau, 2002).

These drugs had the promise of being highly effective
in the treatment of endothelial dysfunction, atheroscle-
rosis, hypertension, and heart failure and were termed
by some as the “super ACE inhibitors.” However, large
clinical trials did not live up to the expectations and
omapatrilat failed to obtain FDA approval as a result of
the high incidence of angioedema, which has also been
associated with ACE inhibitors and to a lesser extent
with ARBs and ARB/NEP inhibitors (Owens and
Oliphant, 2017; Kostis et al., 2018), especially in African
Americans, smokers, women, older individuals, and
patients with previous drug rash or reaction, seasonal
allergies, or use of immunosuppressive drugs.

Fig. 9. NPA7 is a single peptide entity that coactivates the Mas and pGC-A receptors and their second messengers cAMP and cGMP, respectively.
NPA7 incorporates key amino acids from BNP1-32 (a pGC-A activator) and Ang 1-7 (a Mas activator), resulting in a novel bispecific first-in-class
bispecific peptide. GC, guanylyl cyclase; URO, urodilatin.
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Although the exact causes of vasopeptidase inhibitor–
and ACE inhibitor–induced angioedema remain elu-
sive, evidence suggests that this may be due to the
excess bradykinin formation owing to inhibition of both
the domains of ACE (Baş et al., 2015; Bas, 2017; Stone
and Brown, 2017; Straka et al., 2017). Accordingly, the
potential benefits of selective inhibition of the ACE C
domain that primarily inhibits production of Ang II
from Ang I, while at the same time reducing side effects
by preventing bradykinin buildup via continued brady-
kinin degradation by an intact N domain, seem attrac-
tive. The ACE N domain also regulates the breakdown
of other peptides, including amyloid-b peptide, tetra-
peptideAc-SDKP, andGnRH,hencemaintaininga func-
tional N domain to prevent accumulation of amyloid-b
peptide, and other peptides may have additional car-
diovascular protective and health benefits (Bernstein
et al., 2012).
Nevertheless, even having an ideal ACE inhibitor

without side effects may not be sufficient to treat all
patients, given the multiple counter-regulatory mecha-
nisms within the RAS that allow Ang II levels to return
to their original status even in the presence of ACE
inhibition. Hence, we need alternative RAS blockers
like angiotensinogen ASO and siRNA, which are capa-
ble of significantly suppressing/eliminating RAS activ-
ity, even when renin is upregulated, simply because it
removes the substrate from which all angiotensins
stem. This approach (siRNA, in particular) additionally
has the advantage of an exceptional long half-life,
allowing application to be limited to a few times per
year, thus offering the possibility to simultaneously
combat nonadherence. Of course, a matter of debate
remains how far one should suppress the RAS, since we
cannot live without a functional RAS—too much RAS
blockade will yield the well known side effects observed
in trials applying multiple RAS blockers at the same
time, such as hypotension, renal dysfunction, and
hyperkalemia. The optimal degree of RAS suppression
is unlikely to be identical in all patients and undoubt-
edly requires individualization of therapy. In other
words, there is a need for significant or even “complete”
RAS blockade in some patients, but a modest degree of
RAS blockade might be sufficient in others. Alternative
options would be to either combine classic RAS blockers
with drugs that interfere with other hormonal systems
that are known to be involved in hypertension, to
upregulate the so-called protective arm of the RAS, or
to aim at RAS blockade at one specific location (e.g., in
the brain with firibastat), normalizing brain RAS
hyperactivity and consequently regulating sympathetic
tone, baroreflex function, and arginine-vasopressin re-
lease. Here, exciting new developments are currently
taking place, such as the combination of an ACE
C-domain–selective inhibitor with an NEP inhibitor,
which increases NP levels by inhibiting breakdown
to inactive fragments. Theoretically, this constitutes

a second opportunity to create a “super ACE inhibitor”
that is now safe for widespread use in the clinic. The
combination of an ARBwith anNEP inhibitor is already
a clinical reality with proven superior effectiveness
versus single RAS blockade. Recombinant ACE2 and
brain-selective APA inhibition are currently being
tested clinically in pulmonary arterial hypertension
and overweight patients with hypertension, respec-
tively, based on the concept that ACE2 degrades Ang
II and upregulates the protective Ang 1-7, whereas APA
blockade prevents brain AT1R stimulation by Ang III.
Finally, dual Mas/pGC-A activation has shown promis-
ing results in animal studies and should now be taken
to the next step. Taken together, our possibilities to
improve and extend classic RAS blockade are rapidly
expanding and should eventually result in novel treat-
ment modalities with superior efficacy, diminished side
effects, reduced dosing frequency, enhanced brain spec-
ificity, and/or the capacity to upregulate protective
mechanisms.
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