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Abstract

Coarse-grained (CG) models facilitate efficient simulation of complex systems by integrating out 

the atomic, or fine-grained (FG), degrees of freedom. Systematically-derived CG models from FG 

simulations often attempt to approximate the CG potential of mean force (PMF), an inherently 

multidimensional and many-body quantity, using additive pairwise contributions. However, they 

currently lack fundamental principles that enable their extensible use across different 

thermodynamic state points, i.e., transferability. In this work, we investigate the explicit energy-

entropy decomposition of the CG PMF as a means to construct transferable CG models. In 

particular, despite its high-dimensional nature, we find for liquid systems that the entropic 

component to the CG PMF can similarly be represented using additive pairwise contributions, 

which we show is highly coupled to the CG configurational entropy. This approach formally 

connects the missing entropy that is lost due to the CG representation, i.e., translational, rotational 

and vibrational modes associated with the missing degrees of freedom, to the CG entropy. By 

design, the present framework imparts transferable CG interactions across different temperatures 

due to the explicit definition of an additive entropic contribution. Furthermore, we demonstrate 

that transferability across composition state points, such as between bulk liquids and their 

mixtures, is also achieved by designing combining rules to approximate cross-interactions from 

bulk CG PMFs. Using the predicted CG model for liquid mixtures, structural correlations of the 

fitted CG model were found to corroborate a high-fidelity combining rule. Our findings elucidate 

the physical nature and compact representation of CG entropy and suggest a new approach for 

overcoming the transferability problem. We expect this approach will further extend the current 

view of CG modeling into predictive multiscale modeling.
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Computer simulations have enabled the scientific community to understand chemical and 

physical phenomena at the molecular level in recent years.1–7 Coarse-grained (CG) models 

have further extended the spatiotemporal scales of simulations by removing or “integrating 

out” unnecessary degrees of freedom in the system of interest.8–15 In bottom-up CG models 

that are systematically parameterized from fine-grained (FG) simulations,15–18 the CG 

Hamiltonian is equivalent to the potential of mean force (PMF), and the resultant CG 

internal energy from summing up the CG Hamiltonian does not correspond to the FG 

internal energy. This is because the many-body PMF of the CG system is essentially the 

configuration-dependent free energy that necessarily contains an entropic contribution, i.e., 

it is not entirely an energetic quantity.19–22 However, due to its many-body nature, the 

configuration-dependent (e.g., pair distances) free energy depends on other thermodynamic 

variables (e.g., temperature, pressure, or chemical potential), and thus the so-called 

transferability problem limits the predictive ability of multiscale models for systems 

investigated in different state points.14, 23, 24 Despite the somewhat limited success of 

understanding and resolving the transferability problem using systematic approaches,25–32 

no general method to solve the transferability problem, to our knowledge, has been 

proposed. Therefore, a fundamental theory to construct transferable bottom-up CG models 

needs to be explored.

In pursuit of this direction, a key barrier for transferability of CG interactions is the entropic 

contribution to the many-body PMF (free energy) of the CG variables,28 as it will change 

throughout different state points. Since the exact form of the entropic contribution to the 

many-body PMF is difficult to determine, we instead endeavor to understand its relationship 

to the configurational entropy of the CG system. Since multiple atomic entities may be 

mapped into a single pseudo-atom, i.e., a CG site or “bead”, it seems clear that the entropy 

of the CG system is inherently reduced compared to that of the FG system since the entropic 
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contribution from different motions (or modes) within the CG bead are no longer resolved. 

This inequality is part of the general representability problem in which naïvely predicting 

thermodynamic quantities of the CG system based on FG expressions may result in 

significant deviations from the true FG values.18, 33–37 While such inequalities can be 

analytically reformulated in simple CG models,18 the generalization to physical systems 

with more complex interactions is quite challenging.

As such, an understanding of the CG entropy and its relation to the FG entropy is of utmost 

importance for not only constructing a systematic bottom-up CG model but also addressing 

challenges in coarse-graining, i.e., representability and transferability. We note that a 

previous theoretical study has addressed this issue for the first time and further derived a 

representability relationship with analytical analyses on global expressions for the entropy in 

CG systems.38 A central result from Ref 38 is that the entropic contribution to the CG PMF 

is a conditioned relative entropy that quantifies information loss upon CG mapping. This 

prior work demonstrated that decreasing CG resolution increased the entropic contribution 

to the PMF in the case of simple models.38 An important consequence of this analysis is that 

a practical yet accurate representation of the entropic contribution is likely necessary for 

transferable CG models. In this work, we aim to define and interpret the entropy within CG 

systems and provide a compact representation of the microscopic contributions to the CG 

entropy. After retrieving the missing entropy from the CG observable expression, we 

propose procedures for constructing transferable CG models using: (1) various temperatures 

and (2) different chemical environments (system transferability).

In general, the coarse-graining (CG) procedure is applied to a fine-grained (FG) system 

having configurations rn by applying the mapping operator M: rn → RN, yielding reduced 

configurations RN. Namely, a set of configurational states at the FG, ωFG, is renormalized to 

the set of CG configuration states ωCG. The exact configurational entropy of the CG 

configurational states in the canonical ensemble SCG ωCG = SCG, ωCG
RN

CG
, which 

should be identical to the all-atom configurational entropy (SAA(ωFG)), is formulated by 

taking the ensemble average of the CG entropy estimator SCG,ωFG (R
N

) defined as

SCG,ωCG
(RN) = − kB ln pωCG

(RN) −
∂WCG(RN)

∂T (1)

In eq (1), pωCG(RN) denotes the probability of CG configuration RN among ωCG, and 

wCG(Rn) is the CG many-body potential of mean force (PMF).21, 39 Detailed derivations for 

the many-body PMF case were first suggested by Ref 38 and also were given in Ref 18 – 

please refer to Section S1 of the Supporting Information (SI) for details. To reiterate, eq (1) 

shows that the naïvely observed entropy of the CG system 

SCG
naïve  ωCG = − kB ln pωCG

RN
CG

 is not equivalent to that of the FG entropy SAA (ωFG,). 

For instance, simple polymer models can demonstrate this mismatch between FG and CG 

entropies where the total entropy is completely mapped to the CG model while the naïve 

expression yields zero entropy.18 In this sense, we denote the missing (or excess) entropy 
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term 〈−∂ΔWCG(RN)/∂T〉CG as the entropy (Smap) that is mapped into the CG system. 

From eq (1), estimated Smap by taking a canonical ensemble average (constant NVT) over 

CG space, such that Smap =
− ∂WCG RN

∂T
CG

. In practice, it is difficult to ascertain the exact 

functional form of Smap in complex systems, but certain approximations may prove to be 

useful.

Assuming that the CG PMF is adequately represented in a pairwise-decomposable form 

(which may not always be the case), the Smap term can also be decomposed in a pairwise 

form as below:

Smap = 〈
− ∂WCG(RN)

∂T 〉 ≈ 〈∑
IJ

− ∂ΔWCG(RIJ)
∂T 〉 = 〈∑

IJ
Smap

2 (RIJ)〉 (2)

Equation (2) suggests that one can recover the missing entropy by calculating and averaging 

the pairwise mapping entropy Smap
(2) (R), which is the temperature derivative of the CG PMF. 

This is in line with the preceding work that connects the missing entropy to the mapping 

entropy.38 In practice, we introduce a free energy decomposition scheme, which is 

commonly referred to as energy-entropy decomposition in eq (3) below.28, 40–42

ΔWCG RIJ; T = ΔUCG RIJ − TΔSCG RIJ (3)

The symbol Δ here refers to the thermodynamic quantity in reference to RIJ at infinite 

distance. Thus, the pairwise entropy function can be expressed as ΔSCG(R) = −
∂ΔWCG(R; T)

∂T . 

We note that we explicitly consider the energy-entropy decomposition of the many-body 

PMF since we restrict ourselves to the canonical ensemble in this work, such that the free 

energy is indeed the Helmholtz free energy. Due to the entropic contribution, the PMF has 

an explicit dependence on temperature, which also provides a useful framework for 

constructing temperature transferable CG models.28, 40–42 Hence, Smap approximately 

becomes 〈ΣIJ ΔSCG(RIJ)〉 giving Smap
(2) RIJ = ΔSCG RIJ . This relationship clearly 

demonstrates a link between the missing entropy (due to coarsening) and the entropic 

contribution to the CG PMF, i.e., the entropy associated with FG configurations that are 

degenerate in CG configuration space is encoded in the CG PMF. Here, we note that we 

expect Smap to exactly correspond with the entropic contribution to the CG PMF in the limit 

of perfectly expressive basis functions and infinite sampling. For practical reasons, we 

instead represent the CG PMF in a pairwise form, and further decompose it into energy and 

entropy contributions. We then approximate Smap on the basis of the pairwise entropy 

integrated over all CG configurations using eq (2). Therefore, one goal of the present work is 

to verify the correspondence shown in eq (2) and further utilize this pairwise entropy 

function to construct a transferable CG force field.
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Even if one can recover an entropy from utilizing eqs (1)–(3), a problem still remains: to 

accurately relate it to the corresponding entropy at the FG resolution (the “missing” entropy) 

and to understand its physical meaning. We find that the missing entropy term becomes 

clearer when applied to single-site CG fluid models. In the single-site model, the CG system 

will only have translational motion, while at the FG resolution various rotational and 

vibrational motions exist and are coupled with the translational motions. In other words, the 

single-site CG model can clearly differentiate the mapped entropy (rotational or vibrational 

motion) with the naïvely observed entropy (only translational motion). Yet, this argument 

necessitates a procedure to separate the entropies originating from different motions in the 

system.

Our strategy is to leverage the two-phase thermodynamic (2PT) method43 and to further 

decompose the entropy into its modal contributions. In 2PT, the partition function is 

constructed by partitioning the density of states of the system into translational, rotational, 

and vibrational contributions. Thermodynamic properties are then obtained by applying 

quantum statistics to the solid-like component and classical statistics to the gas-like 

component. Due to its simplicity and efficiency, the 2PT model has been widely applied 

from simple Lennard-Jones fluid43 to liquid states44, 45 with complex phenomena.46, 47 

Notably, the 2PT method can provide very accurate thermodynamic quantities for liquid 

states even with the use of short trajectories.44, 48 By utilizing the 2PT framework, we can 

distinguish the translational contribution from the rotational and vibrational contributions 

and relate them to the configurational entropy at the FG resolution (see Fig. 1). However, 

any other free energy methodology, such as quasiharmonic analyses, that can extract 

different modal contributions would work under the suggested framework and would not be 

limited to only the 2PT method.

Overall, simulations are carried out for both FG and CG systems where the CG models are 

effectively constructed by the Multiscale Coarse-Graining (MS-CG) formalism,19‘22·49 

although alternative bottom-up CG methods could be used. In practice, the CG 

parameterization is performed by variational force-matching to minimize the force residuals 

between the FG and CG ensembles (a detailed procedure is described in Section 5–3 in SI). 

From the N sets of CG PMFs generated from force-matching, ΔSCG(R) is obtained by a 

finite difference derivative of the pairwise potential at temperature Tt and TN given by28·50 

ΔSCG(R) ≈ −
ΔWCG R, TN − ΔWCG R, T1

TN − T1
.

Finally, we obtain a complete expression for the mapped entropy as a function of the CG 

variables. Additional smoothing or filtering can also be performed to the differences in the 

pairwise forces before the integration step in eq (S12). At the target temperature T = T*, the 

FG entropy and naïve CG entropy is calculated using the 2PT entropy. The missing CG 

entropy is subsequently recuperated by utilizing the mapped entropy and the configurations 

of the CG system at T = T* as an ensemble average of the pairwise mapping entropy 

function: Smap = ∑IJ Smap
(2) RIJ = ∑IJ ΔSCG RIJ .
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The current framework has certain limitations from the approximations that we have 

introduced. First, we assumed that the CG force fields are adequately pairwise 

decomposable. However, higher-order correlations may not be captured and thus our present 

approach may not directly work in systems with non-negligible many-body effects. Further 

improvements of the present algorithm may be feasible by using stable numerical algorithms 

to calculate the finite difference, e.g., self-consistent basis sets,50 and post-processing the 

numerical noise from the force-matched profile,51 e.g., using the Bayesian regularization 

approach.52 These numerical issues are not as evident in this work for liquid mixtures, but 

certain approaches should be considered for complex systems such as lipids or polypeptides.

Representability: Application to bulk liquids

For single-site CG models where the configurational entropy of the CG system originates 

from translational motion, we hypothesize that the entropic contributions from rotational and 

vibrational motions are mapped to the CG PMF. It follows that the value of the mapping 

entropy is dependent on the vibrational and rotational motions at the FG resolution. For 

example, the mapping entropy should increase as the vibrational or rotational entropies 

increase. In order to test our hypothesis, we first designed a proof-of-concept study by 

investigating the pairwise entropy function in different single-site CG neopentane moieties 

by gradually tuning the length and stiffness of its C-C bonds. We find that the value of the 

pairwise entropy functions from different CG neopentane systems gradually increases as the 

C-C bonds become longer or softer (SI Section S2). With this in mind, we now present 

results for more complex liquid systems: methanol and chloroform molecules. Using the 

schemes and details that are described above, the pairwise thermodynamic quantities are 

obtained and plotted in Fig. 2.

As is immediately evident, the pairwise entropy functions (Fig. 2a) demonstrate 

approximately positive definite behavior and vanish at large distances. While the energetic 

profile of methanol has features that are representative of non-spherical interactions, such as 

the Gay-Berne interaction,53 the profile of chloroform is closer to spherical interactions, 

which is evident from the small separation between the two potential minima. These features 

will be further addressed in the next section.

Using the pairwise entropy function Smap
(2) (R) from Fig. 2a, the global mapped entropy of the 

methanol and chloroform systems is readily calculated and shown in Fig. 3. Here, we 

introduce the radial distribution function g(R) and a change of variables to calculate the 

radial mapped entropies and integrate them to obtain the overall mapped entropies:

Smap = ρ∫ dR ⋅ 4πR2g(R) ⋅ Smap
(2) (R) (4)

This approach gives consistent values to other numerical techniques, such as averaging the 

quantity −∂Δ〈WCG(RIJ)〉/∂T over the ensemble (SI Section 3). In Fig. 3a, the major peaks 

with non-negligible intensities occur in regions with large g(R) values, but soon the radial 
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entropy Srad (R): = 4πR2ρg(R) ⋅ Smap
(2) (R) decays to zero because lim

R Rcut
Smap

(2) (R) = 0. To check 

convergence of the mapped entropy, we integrate Srad(R) from R = 0 to R = Rcut by varying 

Rcut from 3 to 20 Å. The changes to the overall mapped entropy are depicted in Fig. 3b, 

demonstrating that the value quickly converges beyond the first coordination shell. It is 

worth noting that the current approach is mainly suitable for systems without strong long-

range correlations due to the contribution from R2g(R) ⋅ Smap
(2) (R).

To establish a connection between the CG entropy and its correspondence at the FG 

resolution, we first computed the all-atom configurational entropies of methanol and 

chloroform at T = 300 K by utilizing the 2PT method.43 Here, liquid systems were modeled 

using the Optimized Potential for Liquid Simulations (OPLS) force field as listed in Table 

1.54 The all-atom entropies are first validated by comparison to previously reported entropy 

values using same method44 and the OPLS force field. Slight differences observed for the 

methanol system likely arise due to differences in simulated temperatures, resulting in 

consistently larger entropy values than the reported values (Ref 44 used T = 298 K). For 

chloroform, we used a modified version of the OPLS force field from Ref 55, but the general 

trends remain consistent.

For the CG systems, the naïve CG entropy similarly calculated from the 2PT method is 

shown in Table 1, which corresponds to the translational entropy given the absence of 

intramolecular vibrations and rotations due to our CG mapping. Likewise, we approximate 

the entropy that is folded into the CG PMF from Fig. 3b, which corresponds to the rotational 

and vibrational entropies that are lost due to the CG mapping. In comparing the all-atom and 

CG translational entropies, we note larger values in the latter case, which likely arise due to 

the following factor. First, we restrict ourselves to a pairwise basis set22 to represent the 

effective CG potential, which may not capture the complete many-body PMF; for instance, 

single-site methanol is inherently non-spherical at the atomistic level, which can only be 

approximated to a certain extent with simple pairwise interactions (see Fig. 2). More 

importantly, we also find that our approximations of the mapped (i.e., missing) CG entropies 

for both systems recapitulates reasonably well the rotational and vibrational contributions at 

the FG resolution, even though the CG model for methanol somewhat overestimates the 

mapping entropy contribution. This analysis therefore suggests that our approach can 

faithfully represent the entropy of CG systems in a pairwise decomposable manner by 

explicitly including the missing entropy, in which the latter quantity corresponds to the FG 

entropy that is lost from CG mapping.

Transferability: Temperature transferability of bulk liquids

As mentioned previously, the transferability problem arises due to difficulty in capturing the 

many-body PMF, especially since the PMF will change in unknown ways for new systems 

given its state-point dependency.14, 15, 24 In particular, one must consider the non-trivial 

contribution of the CG entropy to the PMF, which has been challenging to unambiguously 

quantify. An end goal of this work is to enable a general CG potential that retains high-

fidelity in different molecular environments and thermodynamic state points.14 We will 
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focus on two different cases: (i) different temperatures and (ii) different systems or chemical 

environments, i.e., bulk liquid and liquid mixtures. As a first step in constructing transferable 

CG interactions for a given system at different state points, the most direct approach is to 

interpolate the PMFs at different temperatures by leveraging the energy-entropy 

decomposition expressed in eq (3) within valid temperature ranges, i.e., within a given 

phase. In practice, we estimate the pairwise terms in the CG PMF at different temperatures, 

where the pairwise thermodynamic functions ΔUCG(R) and ΔSCG(R) are from Fig. 2 and 

assumed here to be temperature independent (i.e., a simple linear dependence on 

temperature of ΔWCG(R; T)).

We find that the analytically-fitted effective CG interactions (using eq (3)) for methanol and 

chloroform are in excellent agreement with respect to the interactions derived from MS-CG 

at each state-point, as shown in Fig. 4. A nearly linear dependence of the CG PMF on 

temperature is consistent with previous reports.28, 56, 57 It is worthwhile to note that we used 

the following ranges to obtain the pairwise entropy functions of each system: 250–350 K for 

methanol and 250–325 K for chloroform. However, in Fig. 4, we not only interpolated the 

PMFs at temperatures within the training range but also extrapolated them to even higher 

temperatures outside of our training set. For methanol, we find that the range of 

extrapolation can be much larger than those reported in previous works (330 K for Ref 28 

and 300 K for Ref 56). Remarkably, the extrapolated CG interactions can also reproduce the 

effective PMF correctly, even in the long-range regimes (Fig. 4b and 4d), while assuming 

only linear temperature dependence: ΔWCG(R;T) = ΔUCG(R) — TΔSCG(R). This success in 

extrapolating the CG PMF suggests that we can extend this approach and construct “phase-

transferable” CG models by combining pairwise energy and entropy functions from different 

phases. We are, for example, currently pursuing the development of CG force fields that are 

transferable between liquid and vapor phases for a future publication.

Transferability to different chemical environments: “Liquid mixtures”

In order to transfer the effective CG interactions to different chemical environments, we 

construct liquid mixtures composed of methanol and chloroform. Constructing bottom-up 

CG models that are transferable from bulk to mixed-liquid states has been recognized as a 

difficult problem, and has therefore been the focus of recent research efforts.30, 32 However, 

recently suggested methods remain system-dependent, thereby limiting their applicability. 

However, as is common practice in all-atom and top-down models, a “combining rule” for 

arbitrary CG models is one potential solution. Even though combining (or mixing) different 

PMFs may seem nearly impossible due to their complex nature, we seek to predict effective 

CG interactions between two different molecules by solely utilizing information derived 

from bulk states.

To address the aforementioned challenges, we show that the energy-entropy decomposition 

of bulk state PMFs can be utilized to predict the PMFs associated with single-site CG liquid 

mixtures, especially cross-interactions, in a systematic way. Rather than combining the PMF 

naïvely, our framework discriminates and combines the energetic and entropic terms 

separately. Finally, the interpolated (or mixed) PMF of the system is readily obtained by 

adding these two functions. To more effectively predict the interaction between methanol 
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and chloroform CG beads, we approximate the methanol CG bead as a spherocylindrical 

particle and the chloroform CG bead as a spherical particle. These choices were motivated 

by the energetic interaction profiles calculated in Fig. 2b, which suggest that methanol has a 

rod-like interaction58 while chloroform retains spherical symmetry with a small degree of 

anisotropy.30 By adopting this assumption, the methanol-chloroform cross-interaction was 

simplified to a rod-sphere interaction. Based on previous statistical mechanical 

developments of rod-sphere interactions using Gay-Berne and Lennard-Jones functional 

forms59, 60, we first extracted effective Gay-Berne53, 58 and Lennard-Jones (LJ 6–4)61 

parameters from the self-interaction PMFs and projected the cross-interaction onto an 

approximated pairwise form (please refer to the SI Section 6). As a result, we then obtained 

a simplified expression of the rod-sphere energetic interaction term as:

ΔUMeOH−CCl3H(R) ≈ 27
4 ϵMeOH ⋅ ϵCCl3H[(

σCCl3H

R )
6

− (
σCCl3H

R )
4

] (5)

with σCCl3H = σr − s = 3.1893 Å and ϵr − s = ϵMeOH ⋅ ϵCCl3H = 0.9503 kcal/mol. The pairwise 

self-interactions (methanol-methanol, chloroform-chloroform) were modeled using the 

procedure detailed in the previous section, with additional details in the SI.

While mixing the energetic interactions is similar to conventional combining rules for 

interaction parameters, mixing the entropic functions is relatively different. Specifically, we 

point out that the entropic mixing discussed in this work is a pairwise quantity that is a 

function of pair distance (i.e., not the conventional entropy of mixing), which, to our 

knowledge, is seldomly explored. Here, we suggest a combining rule for pairwise entropy 

functions. Due to the near-positive definite nature of the obtained entropy function from the 

single-site CG mapping, we take a geometric average of the entropy functions at a given 

distance R. This expression is given by ΔSMeOH−CCl3H
mix (R) = ΔSMeOH

bulk (R) ⋅ ΔSCCl3H
bulk (R)

(Note that ΔSCG(R) >0). In turn, we note that such an entropic combining rule is consistent 

with the conventional Lorentz-Berthelot mixing rules62, 63 (see the SI). From the proposed 

mixing protocol, we can compute the pairwise energy and entropy functions for the 

methanol-chloroform interaction and compare them to the actual MS-CG interactions from 

force-matching the mixture system (Fig. 5a). Notably, excellent agreement is observed for 

both the energetic and entropic contributions in Fig. 5a, which suggests that the interpolated 

model can be transferred to other temperatures as well. We next perform CG simulations 

using the fitted CG interactions to evaluate the fidelity of the mixed CG model.

To evaluate the structural correlations of methanol-chloroform pairs, we calculated the radial 

distribution function (RDF), or g(r), of methanol-chloroform and compared it to the exact 

CG mapped all-atom reference as shown in Fig. 5b. The RDF of the interpolated CG model 

is smoother than the mapped all-atom reference due to the use of simple CG energetic 

functions for combining. In particular, it deviates in the first peak width that can be 

interpreted as smoothing over underlying structure that appears in the all-atom structure. 

Nonetheless, the structural agreement is quite reasonable (the peak value near 4.5 Å is 
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almost identical), given the fact that the interpolated CG PMF was constructed without any 

prior information of the exact CG cross-interaction.

In order to investigate higher-order correlations, especially given the inhomogeneous nature 

of this system,64 we perform cluster analysis of methanol and chloroform clusters based on a 

previously reported protocol that utilizes connected graphs within the first coordination shell 

to identify clusters.29 Surprisingly, we find that the cluster distribution of the interpolated 

CG models and the CG mapped atomistic system matches almost perfectly in both methanol 

and chloroform regardless of the observation scheme (averaged observation in Fig. 5c and 

logarithm of overall clusters in Fig. 5d). Altogether, both thermodynamic and structural 

properties derived from our proposed strategy to construct transferable CG interactions 

appear to faithfully reproduce the actual CG properties of the mixture as directly obtained by 

force-matching to the mixture.

To summarize, our work elucidates the nature of CG entropy as the mapped (missing) 

entropy from the many-body CG PMF determined by the CG mapping. Using single-site CG 

models, we clarify the implicit embedding of vibrational and rotational entropies within the 

CG PMF, while only the translational entropy is captured by naïve arguments. Furthermore, 

we demonstrate the use of a free energy decomposition framework to impart transferable 

bottom-up CG force fields for non-parameterized state points. Our findings in the methanol/

chloroform mixture system suggest a high-fidelity combining rule to approximate CG PMFs 

for different chemical environments by separately mixing the energetic and entropic 

components of the bulk-phase CG PMFs.

In order to combine CG PMFs, an entropic combining rule is suggested based on mixing 

rules that are introduced in this work. Nevertheless, it is evident that much of the physical 

nature of the pairwise entropy function and its combining rules remains unexplored, 

suggesting that the proposed framework will have various potential applications and future 

directions. A natural extension of the proposed combining rule for simple liquids would be 

to model complex interacting systems that necessitate CG modeling: protein-protein 

interactions or proteins in water. For example, we plan to integrate the current approach with 

a recently proposed bottom-up CG modeling framework for complex biomolecules in water 

(e.g., lipids), which represent solvent effects through the use of virtual sites.65 After 

successfully applying the approach to more complex biomolecules, the next step will be to 

investigate the correct combining rules for pairwise thermodynamic quantities in such 

systems. We also note that the pairwise entropy function obtained from different 

temperatures might be useful to compare and validate different CG models. In contrast to 

more ad hoc top-down CG models, the present framework is expected to facilitate bottom-up 

CG modeling by providing a systematic procedure to transfer CG force fields to different 

thermodynamic state points and compositions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic diagram describing the procedure for calculating different entropy quantities in 

all-atom and CG systems. The entropy of a single-site CG liquid system consists of two 

components: the naïve (translation) and mapped CG entropies (vibration and rotation). Both 

all atom entropies and naïve CG entropies (based on the Gibbs definition) are directly 

obtained by 2PT calculations using MD trajectories. The mapped CG entropy is calculated 

separately using the pairwise entropy function from the CG PMF using eq (4). The 

representability relationship for entropy (bottom) asserts that the all-atom entropy should be 

identical to the sum of naïve and mapped CG entropies.
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Figure 2: 
Pairwise thermodynamic quantities for liquids systems: methanol (red) and chloroform 

(blue). (a) The pairwise mapping entropy function Smap
(2) (R) (solid lines) calculated from the 

scheme depicted in Fig. 1. (b) The pairwise energy function (solid lines) calculated from 

differences between the PMF and the pairwise entropy function. For comparison, the 

pairwise PMFs of both liquids are shown as dashed lines in each figure. For (a), the PMF 

values are additionally scaled by a factor of 1/T with T = 300 K.
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Figure 3: 
Mapped entropy for methanol (red) and chloroform (purple) system using the pairwise 

entropy function. (a) The radial mapped entropy component Srad(R) = 4πR2ρg(R) ⋅ Smap
(2) (R). 

(b) The global mapped CG entropy obtained by integrating the radial mapped entropy with 

different cutoff radii for methanol (red, square) and chloroform (blue, circle).
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Figure 4: 
Effective CG interactions of the methanol and chloroform systems for different temperatures 

by comparing the fitted PMFs (dots) with the conventional MS-CG PMFs (lines). (a) 

Methanol-Methanol CG PMFs at selected temperatures from 250 K to 425 K. (b) Magnified 

CG PMFs of methanol at the long-range region between 6 and 10 Å. (c) Chloroform-

Chloroform CG PMFs at selected temperatures from 250 K to 375 K. (d) Magnified CG 

PMFs of chloroform at the long-range region between 6 and 10 Å.
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Figure 5: 
Assessment of the transferability of CG models in the liquid mixture utilizing a proposed 

combining rule based on energy-entropy decomposition. Here, each liquid molecule was 

mapped to single CG bead, (a) Thermodynamic quantities of the methanol-chloroform CG 

cross interaction: energetic (orange) and entropic (green) interactions from the proposed 

combining rule (dotted lines) comparing to the actual MS-CG (solid lines), (b) Methanol-

chloroform g(r) for CG mapped atomistic and interpolated MS-CG simulations. The g(r) 
function obtained from the actual MS-CG model for the CG mixture is also depicted (dotted 

lines) to provide the upper limit of possible CG models. Histograms of observed methanol 

(red, magenta) and chloroform (blue, cyan) cluster sizes in mapped all-atom and interpolated 

CG models in (c) natural (averaged) scales and (d) log scales.

Jin et al. Page 18

J Phys Chem Lett. Author manuscript; available in PMC 2019 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jin et al. Page 19

Table 1:

Comparison of average molar entropy for methanol and chloroform with different contributions: Molar 

entropies calculated at all-atom resolution, naïve CG entropies (translation only) from the 2PT calculation, and 

mapped (or missing) CG entropy from Fig. 3b (due to rotation and vibration).

Entropy All-atom MS-CG Reference 2PT44

(Cal mol−1 HK−1) Naïve Missing

Methanol

Translation 16.12 21.11 16.03

Rotation 11.53
13.26

0.00
18.95

11.38
13.09

Vibration 1.73 0.00 1.71

Chloroform

Translation 20.32 24.96 21.12

Rotation 18.95
24.62

0.00
22.33

19.20
24.85

Vibration 5.67 0.00 5.65
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