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Background.  A first step to combating antimicrobial resistance in enteric pathogens is to establish an objective assessment of 
antibiotic exposure. Our goal was to develop and evaluate a liquid chromatography–ion trap mass spectrometry (LC/MS) method to 
determine antibiotic exposure in patients with cholera.

Methods.  A priority list for targeted LC/MS was generated from medication-vendor surveys in Bangladesh. A study of patients 
with and those without cholera was conducted to collect and analyze paired urine and stool samples.

Results.  Among 845 patients, 11% (90) were Vibrio cholerae positive; among these 90 patients, analysis of stool specimens re-
vealed ≥1 antibiotic in 86% and ≥2 antibiotics in 52%. Among 44 patients with cholera and paired urine and stool specimens, ≥1 
antibiotic was detected in 98% and ≥2 antibiotics were detected in 84%, despite 55% self-reporting medication use. Compared with 
LC/MS, a low-cost antimicrobial detection bioassay lacked a sufficient negative predictive value (10%; 95% confidence interval, 
6%–16%). Detection of guideline-recommended antibiotics in stool specimens did (for azithromycin; P =  .040) and did not (for 
ciprofloxacin) correlate with V. cholerae suppression. A nonrecommended antibiotic (metronidazole) was associated with decreases 
in anaerobes (ie, Prevotella organisms; P < .001).

Conclusion.  These findings suggest that there may be no true negative control group when attempting to account for antibiotic 
exposure in settings like those in this study.

Keywords.  Diarrhoea; diarrhea; cholera; mass spectrometry; antimicrobial resistance; AMR; LC/MS; Vibrio cholerae; 
Bangladesh.

Infectious diseases research on how antibiotics influence in-
fection and transmission of pathogens relies heavily on self-
reported medication use that is rarely objectively confirmed 
[1–3]. This problem leads to avoidable heterogeneity between 
control and experimental study arms and, potentially, to gener-
ation of cross-study conflicts. This is important for antimicro-
bial resistance (AMR) research because efforts to assess rates of 

AMR emergence under antibiotic pressure may be comprom-
ised by unknown antibiotic exposure. This problem impedes 
development of evidence-based guidelines that account for 
AMR emergence in the infected host and AMR transmission 
to the population.

We are specifically interested in diarrheal diseases because 
of the high rate of inappropriate use of antibiotics. One ex-
planation is that most cases are caused by noninvasive bacte-
rial pathogens or viral agents that require rehydration alone 
[4–6]. Antibiotics are typically restricted to invasive bacterial 
pathogens and select noninvasive pathogens, including Vibrio 
cholerae [6–8]. Despite guideline restriction, antibiotics are 
commonly sold in settings that have little regulatory oversight, 
such as Southeast Asia [9, 10]; this is likely one explanation for 
the high rate of AMR among enteric pathogens. For example, 
V.  cholerae can be resistant to most antibiotic classes even 
though guidelines restrict treatment to macrolides, tetracyc-
lines, fluoroquinolones, and trimethoprim/sulfamethoxazole 
[7, 11–15]. Bacterial taxa have been identified that are associ-
ated with early (for Escherichia, Streptococcus, and Enterococcus 
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organisms), middle (for Bacteroides organisms), and late (for 
Prevotella and Roseburia organisms) phases of recovery from 
cholera [16]. Their resistance profiles are difficult to determine, 
given that some of these bacteria are fastidious. The degree to 
which inappropriate antibiotic use influences pathogenic and 
nonpathogenic microbiota has not been thoroughly studied, in 
part because of limitations in assessing antibiotic exposure.

Affordable and reliable assays to detect antibiotics in urine 
and stool samples are lacking [17–20]. One low-cost approach 
to determine whether a patient is excreting an antibiotic is to 
expose pan-susceptible bacteria to the patient’s urine and test 
for inhibition of growth. While this bioassay may indicate that 
an antimicrobial is present, it does not identify the agent and 
lacks sensitivity because the concentration must be sufficient 
to inhibit growth of the indicator organism [21, 22]. Liquid 
chromatography–mass spectrometry (LC/MS) enables high 
specificity and sensitivity for multiple analytes and has become 
tractable because instrumentation is more accessible and asso-
ciated costs are decreasing [17, 18]. In this study, our objectives 
were to develop a scalable MS method that identifies clinically 
relevant antibiotics in diarrheal stool specimens, determines 
how widespread antibiotics are in patients with cholera, and 
identifies effects on the microbiota.

METHODS

Subjects

Samples were collected as part of a previously published study 
[23] that was approved by the institutional review boards at 
Stanford University School of Medicine (6208) and the Institute 
of Epidemiology, Disease Control, and Research, Bangladesh 
Ministry of Health and Family Welfare (IEDCR/IRB/2015/03). 
Participants provided written consent/assent.

Pharmacy Survey

Medication vendors were surveyed in rural Bangladesh (Basta 
Union, Keraniganj Upazila, Dhaka District) to name and price 
the “three most common antibiotics used to treat diarrhea.”

Clinical Study

The study was conducted from September to December 2015 
at a district and subdistrict government hospital in rural 
Netrokona, Bangladesh. The sites were chosen because they 
are resource constrained with frequent diarrheal disease out-
breaks [23, 24]. Inclusion criteria were an age of ≥2 months and 
the presence of acute diarrhea, defined as ≥3 loose stools in 
the past 24 hours and a total duration of <7 days. Patients with 
comorbidities were excluded.

Sample Collection

The first urine and stool samples voided were collected before 
the administration of hospital antibiotics. Urine specimens had 
a volume of 1.5 mL and were stored at −20°C. Stool specimens 

had a volume of 2 mL; samples were placed in 6 mL of RNAlater 
(Invitrogen), stored on site at 4°C, and later frozen at −80°C. 
Stool samples were tested with a point-of-care cholera test 
(Crystal VC, Span Diagnostics). The first and last stool spe-
cimens collected each day and specimens testing positive for 
V. cholerae at the point of care were stored at 4°C in Cary Blair 
medium and transported to the central laboratory.

Microbiological Analysis
Culture and Antibiotic Sensitivity Testing
Samples in Cary Blair medium underwent selective cul-
ture and sensitivity testing for V.  cholerae at the IEDCR and 
the International Centre for Diarrhoeal Disease Research, 
Bangladesh [23, 25].

Molecular Detection of V. cholerae and Vibriophages
DNA from stool samples suspended in RNAlater was extracted 
using the MoBio PowerSoil 96-well kit. Each extraction batch 
contained V. cholerae resuspended in LB medium at concentra-
tions relevant to those in stool specimens from patients with 
cholera (ie, 1 × 108 and 5 × 108 colony-forming units/mL). DNA 
extracts were screened for V. cholerae by 2 methods. The first 
approach consisted of a 384-well quantitative polymerase chain 
reaction (qPCR) format (Light Cycler, Roche) that was per-
formed in duplicate, using established qPCR primers for tcpAset1 
and a cycle threshold for positivity set to <29 [26]. The second 
approach involved a 5184 nanowell qPCR format (Tokara) with 
a 100-nL reaction volume, using tcpAset1 and tcpAset2 primers 
and a cycle threshold for positivity set to <28 (Supplementary 
Table 1). For both approaches, indeterminate results were as-
sessed by PCR, using ompW primers [27]. Vibriophages (ICP1, 
ICP2, and ICP3) were identified by conventional PCR, using 
standard techniques (Supplementary Table 1); templates were 
the same as those used in the microbiota analysis (see below), 
and ICP1, ICP2, and ICP3 controls were provided by A. Camilli 
(Tufts University, Boston, MA).

Antimicrobial Detection in Urine Specimens by a Bioassay
Urine specimens were tested for antibiotics as previously de-
scribed [21, 22]. A lawn of pan-susceptible Kocuria rhizophila 
(ATCC 9341)  was made on sheep blood agar and Mueller-
Hinton agar (Supplementary Figure 3) [18]. Ten microliters of 
urine supernatant was spotted onto disks in triplicate. The disks 
were dried, placed on the bacterial lawns, and incubated over-
night at 37°C. Any zone of inhibition was scored as positive. 
Positive controls were urine specimens collected from a volun-
teer 5 hours after metronidazole (500  mg) and ciprofloxacin 
(750 mg) administration, as well as pure antibiotics in normal 
saline. Negative controls were urine specimens obtained from 
the same volunteer before antibiotic administration, as well as 
normal saline. Limits of detection for assays were derived from 
Clinical and Laboratory Standards Institute guidelines (Wayne, 
PA): 0.12  mg/mL amoxicillin, 0.12  mg/mL azithromycin, 
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0.115  mg/mL ceftriaxone, 2.5  μg/mL ciprofloxacin, and 
0.47 mg/mL tetracycline.

Microbiota Analysis
Microbiota were profiled by preparing DNA with the QIAamp 
Fast DNA Stool Mini Kit (Qiagen) with bead beating, barcoded 
amplification of the V1 to V2 segment of the 16S ribosomal 
gene (Supplementary Table 1), and sequencing of pooled li-
braries with an Illumina MiSeq [28]. Operational taxonomic 
units were made with a threshold of 97% similarity and taxo-
nomically mapped to the Greengenes 16S database [29]. Quality 
control and comparative analyses (eg, to determine α and β di-
versities) were performed without rarefaction, using standard 
methods within CLC Genomics Workbench v11.0 (Qiagen; 
Supplementary Materials).

Sample Extraction Procedure for LC/MS

Protein was precipitated from urine samples with a 1:1 ratio 
(v/v) of cold methanol, sonicated, and centrifuged; supernatant 
was diluted with methanol and water (1:1 v/v) plus 0.1% formic 
acid; 10 μL was injected for LC/MS. Because of the high protein 
concentration in stool samples, extraction required additional 
steps. Supernatant was obtained by centrifugation and filtered 
(0.2  μM surfactant-free cellulose acetate; Thermo Scientific 
Nalgene). Protein was precipitated with a 1:7 ratio (v/v) of 
methanol; samples were sonicated and centrifuged. Both urine 
and stool supernatants were diluted with methanol and water 
(1:1 v/v) plus 0.1% formic acid; 10 μL was injected for LC/MS.

LC/MS Method for Detection of Clinically Relevant Medications

The LC/MS method represents a qualitative approach and uses 
ion trap MS, rather than triple-quadrupole targeted MS, be-
cause the former enables both the screening of targeted analytes 
and identification of untargeted compounds, such as major 
metabolites. The unified LC/MS method used an 1100 series 
high-performance liquid chromatography system (Agilent 
Technologies) integrated with an LTQ XL ion trap mass spec-
trometer (Thermo Fisher Scientific). The mass spectrometer 
acquired both full scan (m/z 130 -1000) and MS2 data using 
heated electrospray ionization (HESI) in positive mode. To en-
hance identification of parent compounds and metabolites, data 
dependent acquisition in dynamic exclusion mode was util-
ized. LC was performed on a 2.1 × 150–mm Hypersil Gold aQ 
column (particle size, 3 μm), with gradient elution; the flow rate 
was 0.25  mL/minute, and the column temperature was 40°C. 
Mobile phases were 0.1% formic acid in water (A) and 0.1% 
formic acid in acetonitrile (B). The gradient elution profile was 
as follows: an initial hold at 0% B for 1 minute, followed by a 
linear gradient of 0%–95% B for 15 minutes, and then a hold at 
95% B for 1 minute before equilibrating back to 0% B; the total 
run time was 20 minutes. Controls included blank samples run 
intermittently during analysis.

Analytes were identified by the retention time, mass-to-charge 
ratio, and fragmentation data. The analytical response, measured 
as a chromatographic peak area, was determined for each analyte. 
Analytes with peak areas of >1 × 105 were designated “major,” and 
those with peak areas of <1 × 105 were designated “minor.” LC/
MS sensitivity was determined by spiking 16 analytes into an ex-
tracted blank urine matrix, followed by serial dilutions. Dilutions 
ranged from 2 μg/mL to 0.512 ng/mL. Limits of detection were 
determined based on sufficient peak area at the correct retention 
time: peak area values >0.4 × 105 were considered valid for analyte 
confirmation. Owing to the diverse structures of analytes and ion-
ization efficiencies, detection limits ranged widely. Limits of detec-
tion in the blank urine matrix corresponded to the following serial 
dilutions: 1.28 ng/mL for trimethoprim and ondansetron, 3.2 ng/
mL for azithromycin and erythromycin, 8 ng/mL for ciprofloxacin, 
20  ng/mL for sulfamethoxazole and doxycycline, 50  ng/mL for 
metronidazole, amoxicillin, tetracycline, and omeprazole, 125 ng/
mL for paracetamol, ceftriaxone, and furazolidone, and 320 ng/
mL for cephalexin and penicillin.

Statistical Analysis

The Cohen κ coefficient was used to assess interrater agree-
ment between results of urine and stool assays. The McNemar 
χ 2 test was used to test marginal frequencies (null hypoth-
esis). Analyses were performed in GraphPad Prism 8.0.1 and R 
v3.4.1/RStudio v1.1.0153 [30]. Permutational multivariate anal-
ysis of variance analysis was conducted with CLC Genomics 
Workbench v11.0 (Qiagen).

RESULTS

Antibiotic Survey of Medication Vendors

Responses from 62 medication vendors to the question “Name 
the top three antibiotics you sell for the treatment of diarrheal 
disease” were ciprofloxacin (57 respondents; median cost, $0.19/
tablet), metronidazole (55; $0.02/tablet), azithromycin (38; 
$0.44/tablet), tetracycline (13; $0.03/tablet), and “other” (10; 
Figure 1). The survey, World Health Organization (WHO) 
guidelines on diarrheal disease treatment, and WHO guidelines 
for treatment of acute respiratory infection (patients with diar-
rhea often have concomitant pneumonia) were used to generate 
the following list of antibiotics for targeted LC/MS: azithromycin, 
amoxicillin, cephalexin, ceftriaxone, ciprofloxacin, doxycycline, 
erythromycin, furazolidone, metronidazole, penicillin V, sulfa-
methoxazole/trimethoprim, and tetracycline.

Antibiotic Detection by LC/MS
Sample Collection and Preparation
Stool samples were collected from 845 of 961 enrolled patients. 
PCR identified 90 patients with cholera, among whom the me-
dian age was 24 years (range, 0.5–70 years), and the sex of 50% 
was female. Ten paired samples from patients without cholera 
were analyzed.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz299#supplementary-data
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Detection of Antibiotics
Extracted ion chromatograms for the antibiotic control mix-
ture had consistent elution times and enabled identification 
of targets in paired urine and stool specimens (Supplementary 
Figures 1 and 2); positive and negative control urine samples 
were consistent. LC/MS of paired stool and urine specimens 
from patients with cholera found ≥1 antibiotic in 98% (43 of 
44) and ≥2 antibiotics in 84% (37 of 44). A total of 92 antibiotics 
(mean, 2.1 antibiotics/patient; range, 0–4 antibiotics/patient) 
and 75 antibiotics (mean, 1.7 antibiotics/patient; range, 0–3 
antibiotics/patient) were identified in 44 paired urine and stool 
samples, respectively (Figure 2). Analysis of all stool samples 
identified ≥1 antibiotic in 86% (77 of 90) and ≥2 antibiotics in 
52% (47 of 90; Figure 3A), for a total of 133 observations (mean, 
1.5 antibiotic/patient; range, 0–3 antibiotics/patient). Results 
for 10 patients without cholera were similar (Supplementary 
Figure 4).
Frequencies of ciprofloxacin and tetracycline detection from 
patients with cholera were not statistically different in paired 
urine and stool specimens (Table 1). The Cohen κ for correla-
tion of metronidazole detection in urine and stool specimens 
was 0.60 (95% confidence interval [CI], .36–.83), and the dif-
ference was significant (P = .01); there was no correlation be-
tween azithromycin detection in urine and stool specimens. 
First-pass metabolism and degradation in the gastrointestinal 
tract influenced differential detection in urine and stool speci-
mens. Detection of metabolites provided additional confirma-
tion of the presence of the investigated medications.

Nonantibiotic Detection
Among paired samples from patients with cholera, ondansetron 
and metabolites were detected in urine alone in 48% (21 of 
44) [31]. Paracetamol was detected in 11% of urine samples (5 of 

44) and in 0.2% of stool specimens (1 of 44). In patients without 
cholera, paracetamol was detected in 5 of 6 urine specimens and 
6 of 10 stool specimens. Omeprazole was not detected.

Antimicrobial Detection by a Bioassay

The bioassay found that 77% of urine samples (34 of 44) in-
hibited growth of K.  rhizophila (Supplementary Figure 3). 
Compared with LC/MS, the low-cost antimicrobial activity 
assay had a sensitivity of 79% (95% CI, 64%–90%), a speci-
ficity of 100% (95% CI, 2.5%–100%), a positive predictive 
value of 100% (95% CI, not applicable), and a negative predic-
tive value of 10% (95% CI, 6%–17%). Similar patterns of anti-
microbial activity were observed in patients without cholera 
(Supplementary Figure 4).

Antibiotic Susceptibility Profile of V. cholerae Isolates

Among patients from whom specimens were collected and 
cultured, 6.4% (16 of 249)  were positive for V.  cholerae. All 
isolates were susceptible to ciprofloxacin despite detection 
of ciprofloxacin by LC/MS in 5 of 7 available urine samples 
and 8 of 16 stool samples. All isolates (100% [16 of 16]) were 
azithromycin susceptible. Intermediate resistance was present 
for trimethoprim/sulfamethoxazole (81% [13 of  16]) and tet-
racycline (75% [12 of 16]). All isolates (100% [16 of 16]) were 
erythromycin resistant.

Medication Detection by LC/MS Versus Self-reported Use

Patients were asked whether medications had been taken for 
their current illness before admission, because they were un-
able to articulate antibiotic names. Among patients with paired 
urine and stool samples, 55% (24 of 44) reported taking med-
ication before admission. There was no concordance between 
self-reported medication use and detection of medication by 
LC/MS (Cohen κ, 0.054); among all patients with cholera, 48% 
(43 of 90) reported medication use (Figure 3A). Findings were 
similar for patients without cholera (Supplementary Figure 4).

Microbiota Correlates of Antibiotic Exposure

Given that only 1 sample was negative for antibiotics as meas-
ured by analysis of paired urine and stool specimens, stool 
samples were analyzed for correlates of microbiota changes as 
a function of antibiotic detection in stool alone. Samples with 
lytic vibriophage or trace antibiotic detection were removed 
as potential confounders. Permutational multivariate analysis 
of variance (based on Bray-Curtis dissimilarities) was used to 
assess β diversity as a function of (1) detection (n = 59) versus 
nondetection (n = 9) of any antibiotic (pseudo F statistic, 1.56; 
P = .057; Supplementary Table 2); (2) detection (n = 29) versus 
nondetection (n  =  24) of metronidazole (pseudo F statistic, 
2.78; P = .001; Figure 5A); (3) among metronidazole negative 
samples, detection (n = 16) versus nondetection (n = 24) of 
ciprofloxacin (pseudo F statistic, 1.23; P  =  .158; Figure 4A); 
and (4) detection (n  =  17) versus nondetection (n  =  43) of 
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Figure 1.   Responses to the question “Name the top three antibiotics you sell for 
the treatment of diarrheal disease” among 62 rural medication vendors. “Other” 
refers to amoxicillin (1 respondents; median cost, $0.06/tablet), ampicillin (1; $0.06/
tablet), erythromycin (5; $0.10/tablet or $0.76/liquid dose), and nitazoxanide, an 
antiparasitic medication (3; $0.13/tablet). Pricing for ciprofloxacin, metronidazole, 
azithromycin, is tetracycline are provided in the text.
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azithromycin (pseudo F statistic, 1.71; P  =  .041; Figure 6A). 
Bivariate comparisons of α diversity by antibiotic exposure 
were not significantly different (P > .05, by the Mann-Whitney 
U test; Supplementary Figure 5).

The relative abundances at the level of genera were analyzed in 
bivariate comparisons as a function of the presence of any anti-
biotic, ciprofloxacin, metronidazole, and azithromycin (Figures 
3–6 and Supplementary Table 2). Samples with trace detection 

and those harboring lytic vibriophages were removed as po-
tential confounders (Figure 3A). By nanoliter qPCR (Figure 3B 
and Supplementary Table 2), a decrease in bacterial load cor-
related with ciprofloxacin detection (P  =  .009) and a decrease 
in V. cholerae load was associated with azithromycin (P = .042). 
Comparisons of the relative abundance revealed that metroni-
dazole was associated with a decrease in Prevotella organisms 
(P  <  .001), which are associated with patients who recovered 
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from cholera and healthy controls [16]. In contrast to the rela-
tive decreases of anaerobes (eg, Prevotella, Bacteroides, Blautia, 
and Ruminococcus organisms), metronidazole was associated 
with an increase in taxa associated with active cholera and/or 
the early phase of recovery from cholera (ie, Enterobacteriaceae; 
Supplementary Table 2). Ciprofloxacin was associated with a 
marginal increase in the relative abundance of Brachyspira or-
ganisms (Supplementary Table 2); species of this genus have been 
characterized as pathogens of both humans and livestock [32, 33].

DISCUSSION

The objective of this study was to determine how widespread 
antibiotic use is among patients with cholera and to test the 

concordance of these findings with patients’ self-reported his-
tory of medication use. LC/MS analysis of paired urine and 
stool specimens from patients with cholera found ≥1 antibi-
otic in 98% despite only 55% reporting any medication use. 
While antibiotic detection correlated with anticipated shifts 
in the microbiome and pathogen abundance, the study identi-
fied negative consequences of an ineffective antibiotic on taxa 
previously found associated with cholera recovery and healthy 
controls. These findings represent a call to awareness that anti-
biotic exposure is widespread and discordant with self-reported 
patient history. Given the potential impact on the microbiota, 
studies at high risk of confounding by unknown exposure to 
antibiotics will benefit from LC/MS analysis.
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Table 1.  Frequency of Antibiotic Detection in Paired Urine and Stool Samples From Patients With Cholera

Antibiotic

Positivity, Specimens, No. (%)

Cohen κ (95% CI)a

McNemar’s χ 2 Testa

Urine Stool Statistic P

Ciprofloxacin 35 (80) 30 (68) 0.71 (.48–.94) 3.2 .07

Metronidazole 34 (77) 26 (59) 0.60 (.36–.83) 6.13 .01

Azithromycin 14 (32) 13 (30) 0.41 (.12–.70) 0 >.999

Tetracycline 5 (11) 5 (11) 1 (NA) NA  

Ceftriaxone 2 (5) 0 (0) … b … b  

Erythromycin 1 (2) 1 (2) … b … b  

Amoxicillin 1 (2) 0 (0) … b … b  

Abbreviation: NA, not applicable.
aFor the comparison of stool and urine specimens.
bFields with <5 medications detected were not analyzed.
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Figure 4.   Ciprofloxacin is associated with minimal microbiota changes. A, Comparison of stool samples from patients with cholera in which ciprofloxacin was or was not 
detected; samples with phage or trace antibiotic detection were removed. P = .158, by permutational multivariate analysis of variance (Bray-Curtis dissimilarities). Brachyspira 
species are in brown. B, Relative abundance of taxa previously shown to be associated with early, middle, and late phases of recovery from cholera, with (Abx+) and without 
(Abx-) antibiotic detection. No significant differences were detected by the Mann-Whitney U test (α = 0.05). P values were adjusted for multiple comparisons. Bars and 
whiskers denote medians and interquartile ranges, respectively. Analyses were restricted to samples without detection of trace antibiotic and phages. See Supplementary 
Table 2 for further details. Bacteroid, Bacteroides; Enterob, Enterobacteriaceae (family); Enteroc, Enterococci; Prevotel, Prevotella; Roseb, Roseburia; Streptoc, Streptococci. 
aSamples negative for ciprofloxacin were also negative for metronidazole. bEnterobacteriaceae is grouped with genera associated with the early phase of recovery because 
the family contains Escherichia, which is known to be associated with this phase.
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The discordance may be explained by respondent confusion 
due to cultural, economic, and educational challenges. Patient 
perception of secondary gain by answering questions falsely 
was minimized by hiring professional data collectors dressed in 
nonprovider uniforms and providing consent procedures that 
stated that medical care would not be affected by enrollment. 
Unintentional antibiotic exposure is possible, given that high 
levels of antibiotics can be found in environmental sources, in-
cluding commercial food products [7].

Rural medication vendors were surveyed to identify 
medications sold for diarrheal disease. The intent was to as-
sess prescription habits and cost and to prioritize medi-
cations for targeted LC/MS analysis. Ciprofloxacin and 

metronidazole were the 2 most common prescribed medica-
tions. Azithromycin, commonly used for respiratory infec-
tions, is the recommended treatment for V. cholerae resistant 
to other recommended antibiotics [5, 7] and the third most 
common antibiotic named for diarrhea treatment. Amoxicillin 
and penicillin V (which are used for respiratory tract infec-
tions) were included because diarrheal patients may have res-
piratory disease [34–36].

We hypothesized that antibiotic-resistant pathogens would 
be shed by patients shedding the corresponding antibiotic. 
Although susceptibilities to all antibiotics were not tested, 
all V.  cholerae isolates were susceptible to ciprofloxacin, even 
though ciprofloxacin was detected in half of the isolate stool 
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Figure 5.  Metronidazole is associated with relative decreases in anaerobes, including Prevotella species. A, Comparison of stool samples from patients with cholera in 
which metronidazole was or was not detected; samples with phage or trace antibiotic detection were removed. P = .001, by permutational multivariate analysis of variance 
(Bray-Curtis dissimilarities). Prevotella species are in purple. B, Relative abundance of taxa previously shown to be associated with early, middle, and late phases of recovery 
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http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz299#supplementary-data


Antibiotic Detection in Patients With Cholera  •  jid  2019:220  (15 November)  •  1663

supernatants. These results were not anticipated, given that 
ciprofloxacin resistance is common among V. cholerae isolates 
in Bangladesh [37–39]. Explanations include protective niches 
[40], resistance mechanisms that do not recapitulate in vitro 
[41–43], limitations with antimicrobial susceptibility tests, and/
or subinhibitory levels of antibiotic exposure.

Findings of LC/MS were consistent. An artificial control 
mixture containing standards of all analytes was run with each 
batch and showed consistent elution times. Blank samples dis-
tributed throughout each run did not show the presence of 
analytes. Chromatographic separation was designed to detect 

both parent medications and their metabolites, which are gen-
erally more polar than the parent drug and therefore elute 
earlier. The method monitored full scan (MS), MS2, and MS3. 
For analytes with the same molecular weight (eg, doxycycline 
and tetracycline), baseline chromatographic separation enabled 
unambiguous assignment. For analytes with complex metabol-
ites (eg, azithromycin), MS fragmentation data aided in metab-
olite identification and therefore parent confirmation.

Different frequencies of detection between stool and urine 
specimens for some antimicrobials (eg, azithromycin) were 
likely attributed to differences in sample collection time and 
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Figure 6.  Azithromycin is not associated with major taxonomic changes other than suppression of Vibrio cholerae. A, Comparison of stool samples from patients with 
cholera in which azithromycin was or was not detected; samples with phage or trace antibiotic detection were removed. P = .041, by permutational multivariate analysis 
of variance (Bray-Curtis dissimilarities). Vibrio species are in blue. B, Relative abundance of taxa previously shown to be associated with early, middle, and late phases of 
recovery from cholera, with (Abx+) and without (Abx-) antibiotic detection. No significant differences were detected by the Mann-Whitney U test (α = 0.05). P values were 
adjusted for multiple comparisons. Bars and whiskers denote medians and interquartile ranges, respectively. Analyses were restricted to samples without detection of trace 
antibiotic and phage. See Supplementary Table 2 for further details. Bacteroid, Bacteroides; Enterob, Enterobacteriaceae (family); Enteroc, Enterococci; Prevotel, Prevotella; 
Roseb, Roseburia; Streptoc, Streptococci. aEnterobacteriaceae is grouped with genera associated with the early phase of recovery because the family contains Escherichia, 
which is known to be associated with this phase. 
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conditions, matrix complexity, and recovery. When the 16-com-
ponent standard mix was spiked into a stool sample, 50% ana-
lyte loss was observed in filtered samples, compared with the 
nonfiltered samples. Further optimizing stool preparation to 
minimize dilution and avoid filtration may increase sensitivity. 
Differences in excretion pathways, possible first-pass metabo-
lism, and degradation may also affect detection frequencies.

LC/MS poses benefit versus cost challenges. The advantages 
are that LC/MS identifies the antibiotic and has a higher sensi-
tivity. In contrast, the bioassay offers a high sensitivity, speci-
ficity, and positive predictive value, but the negative predictive 
value is unacceptably low. The bioassay is tractable and less ex-
pensive, at $1–$2 per sample, compared with LC/MS (approxi-
mately $20–$160 per sample); however, the downstream cost of 
measurement bias without LC/MS is likely high.

The value of incorporating the LC/MS metadata into the 
microbiota analysis was 3-fold. First, it provided confirmation 
that metronidazole was associated with a relative reduction of 
expected taxa, such as anaerobic genera. In addition, the rel-
ative decrease of genera associated with disease recovery (eg, 
Prevotella spp.) provided an important example of the unantic-
ipated consequences of inappropriate antibiotic use. Second, it 
supported azithromycin as a recommended agent for cholera, 
because of the reduction in the absolute and relative abun-
dance of V. cholerae. Third, it revealed the lack of ciprofloxacin-
associated suppression of V. cholerae despite in vitro detection 
of susceptibility by antimicrobial susceptibility testing. These 
data caution against the use of ciprofloxacin for cholera.

These findings should be viewed within the context of the 
limitations of the study. First, the study was conducted at only 
2 sites within a single district in rural Bangladesh. Second, the 
mass spectrometry results are presented as qualitative data. LC/
MS can provide quantitative data. We decided on a qualitative 
method not only due to cost and logistical constraints, but also 
to enable analyte annotation and detection of metabolites, and 
because physiologic variation in free water volume in urine and 
diarrheal stool may devalue quantitation. Third, the medication-
vendor survey and clinical study were in different districts, yet 
both were in rural settings. Fourth, the microbiota analysis was 
restricted by a small sample size and limited antibiotic-negative 
stool samples. This limitation negated the ability to adjust for 
age and sex, resulted in a lack of significance for some bivar-
iate comparisons after adjustment for false-discovery rates, and 
caused insufficient representation of important taxa, such as 
Blautia obeum and Paracoccus aminovorans, that are known to 
be associated with inibition in vivo and promotion of growth 
in vitro of V. cholerae, respectively [3, 44]. The V1-V2 pri-
mers did separate Escherichia organisms from other genera 
within the Enterobacteriaceae family. Enterobacteriaceae was 
grouped next to genera associated with the early phase of re-
covery from cholera, based published data on Escherichia spe-
cies [16]. Despite these limitations, the methods represent a 

robust approach for monitoring antibiotic exposure that pro-
vide important correlates to assess antibiotic-associated host 
and microbiota phenomena.
The findings suggest that there may be no true negative control 
when attempting to account for antibiotic exposure in settings 
like those in this study. Similar studies that incorporate LC/MS 
will contribute to a more complete understanding of the scale of 
antibiotic exposure. Collectively, these data will provide impor-
tant clinical insights that will help guide our approach to com-
bating AMR and encouraging better antimicrobial stewardship.
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