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Approximately 28% of dorsal horn neurons (DHNSs) in lamina V
of the rat spinal cord generate voltage-dependent plateau po-
tentials underlying accelerating discharges and prolonged af-
terdischarges in response to steady current pulses or stimula-
tion of nociceptive primary afferent fibers. Using intracellular
recordings in a transverse slice preparation of the cervical
spinal cord, we have analyzed the ionic mechanisms involved in
the generation and maintenance of plateau potentials in lamina
V DHNs. Both the accelerating discharges and afterdischarges
were reversibly blocked by Mn?* and enhanced when Ca®*
was substituted with Ba®"- The underlying tetrodotoxin-
resistant regenerative depolarization was sensitive to dihydro-
pyridines, being blocked by nifedipine and enhanced by Bay K
8644. Substitution of extracellular Na™ with N-methyl-p-
glucamine or choline strongly decreased the duration of the

plateau potential. Loading the neurons with the calcium chela-
tor BAPTA did not change the initial response but clearly de-
creased the maximum firing frequency and the duration of the
afterdischarge. A similar effect was obtained with flufenamate,
a specific blocker of the calcium-activated nonspecific cation
current (Ican)- We conclude that the plateau potential of deep
DHNSs is supported by both Ca?* influx through intermediate-
threshold voltage-gated calcium channels of the L-type and by
subsequent activation of a caN current. Ca®™ influx during the
plateau is potentially of importance for pain integration and the
associated sensitization in spinal cord.

Key words: dorsal horn neurons; plateau potentials; bistabil-
ity; afterdischarge; nociceptive integration; dihydropyridine-
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One correlate of central sensitization to pain is an increased
background activity of spinal nociceptive neurons and the pro-
duction of long-lasting afterdischarges. In vivo, afterdischarges
are generated by deep dorsal horn neurons (DHNs) in response
to nociceptive primary afferent inputs (Woolf and King, 1987; De
Koninck and Henry, 1991). Their expression in response to
peripheral stimulation is exaggerated in experimental models of
persistent pain (Palecek et al.,, 1992; Laird and Bennett, 1993;
Sotgiu et al., 1995; Grubb et al., 1996) and has been related to
intense and prolonged behavioral responses to noxious stimuli
(Laird and Bennett, 1993; Asada et al., 1996). These prolonged
afterdischarges, apparently determinants for the perception of
pain, are mediated in part by long-lasting excitatory synaptic
potentials elicited in DHNSs via the activation of neurokinin or
amino acid receptors (Urban and Randic, 1984; Yoshimura and
Jessell, 1990; De Koninck and Henry, 1991; Gerber et al., 1991;
Nagy et al., 1993; Yoshimura et al., 1993).

In addition to synaptic components, however, intrinsic regen-
erative membrane properties of DHNs contribute significantly to
the long-lasting nociceptive responses (Morisset and Nagy, 1996,
1998; Russo and Hounsgaard, 1996). We reported previously that
~28% of deep dorsal horn neurons in the rat spinal cord exhib-
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ited, in vitro, voltage-dependent plateau potentials positively mod-
ulated by the activation of metabotropic glutamate receptors
(Morisset and Nagy, 1998). Expression of these regenerative
depolarizations can profoundly alter the output properties of
deep DHNS in response to sensory inputs. Nociceptive primary
afferent stimulation elicited intense and prolonged responses in
plateau-generating DHNs, whereas brief bursts of spikes were
evoked in the absence of regenerative potential. Because plateau
potentials had slow activation kinetics and were voltage-
dependent, plateau-generating neurons presented nonlinear in-
put—output relationships in both the amplitude and time domains.
Together, these results suggested that the ability of deep DHNs to
generate plateau potentials might be crucial for the perception
of pain in vivo. They also suggested that limiting the expression of
regenerative membrane properties of DHNs is potentially of clin-
ical interest as an alternative way of controlling pain-related central
hyperexcitability. A prerequisite, however, is a reasonable knowl-
edge of the ionic basis for these properties. Plateau potentials of
deep DHNs were shown to depend on calcium (Morisset and
Nagy, 1996), but the underlying conductances of the plateau were
not precisely known in the rat.

Using a slice preparation from the cervical region of the rat
spinal cord, we have analyzed in the present paper the membrane
conductances involved in the generation and the maintenance of
plateau potentials in lamina V DHNs. We show that the plateau
potential is carried by both Ca®* influx through voltage-gated
calcium channels (VGCC) of the L-type and subsequent activa-
tion of a calcium-activated nonspecific cation current.

MATERIALS AND METHODS

The methods were described previously (Morisset and Nagy, 1996, 1998).
Wistar rats of both sexes, aged from 17 to 26 d, were anesthetized with
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ing discharge and a prolonged afterdis-
charge (41, B, filled triangles). In the
presence of 2 mM Mn?*, the discharge
was tonic during the stimulation, and
no afterdischarge was observed (42, B,
open squares). This effect was reversible
(A3, B, filled circles). B, Instantaneous
frequency plot calculated for the dis-
charges recorded in A during the 3 sec
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CNQX, 50 um AP-5, 20 puMm bicucul-
line, and 50 uM strychnine.

ether and decapitated. The excised cervical spinal cord was sliced trans-
versally (400 um sections) in the region C6-C8 using a vibratome
(Campden Instruments Ltd, Leics, UK). The slices were transferred into
the recording chamber on a layer of optical paper (interface-type cham-
ber) on which they were perfused from below at a rate of 0.5 ml/mn with
a Krebs’ solution containing (in mm): 124.0 NaCl, 2.4 KC], 2.4 CaCl,, 1.3
Mg SO,, 1.2 KH,PO,, 26.0 NaHCOs;, 1.25 HEPES, and 10.0 glucose.
The solution, maintained at a temperature of 30°C, was oxygenated with
95% O,-5% CO,, pH 7.4. Recording began after 2 hr of equilibration.

Either a sharp electrode filled with 1% biocytin (Sigma, St. Quentin
Fallavier, France) in 1 M K-acetate (tip resistance of 160-200 MQ) or a
patch electrode (tip resistance of 9-12 M()) was placed under visual
control into the deep dorsal horn (lamina V of Rexed). The internal
solution of patch pipettes had the following composition (in mm): 120.0
K-gluconate, 20.0 KCI, 0.1 CaCl,, 1.3 Mg Cl,, 1.0 EGTA, 10.0 HEPES,
0.1 GTP, 0.2 cAMP, 0.1 leupeptin, 3.0 Na,-ATP, and 77.0 pD-Mannitol,
pH 7.3 (308 mOsm; 8 mOsm hyperosmotic to extracellular Krebs’ solu-
tion). Signals were recorded with an Axoclamp 2B amplifier (Axon
Instruments, Foster City, CA) and displayed on an oscilloscope (DSO
630; Gould, Ilford, Essex, UK) and a chart recorder (TA1l; Gould).
Acquisition and analysis were conducted with a Digidata 1200 system and
the pClamp 6 software (Axon Instruments) connected to a 486 IBM-
compatible computer. Current injection was controlled by the Digidata
1200 system or by a stimulator (Master 8; AMPI, Jerusalem, Israel).
Current was injected into the neurons through the same electrode via a
bridge circuit in the amplifier. Bridge balance was monitored throughout
experiments. Subsequent data analysis was performed with the pClamp
6 software (Axon Instruments), Excel 5.0 (Microsoft, Seattle, WA) and
SigmaPlot 4.16 (SPSS Inc., Chicago, IL). During electrophysiological
recordings with sharp electrodes, neurons were filled with biocytin for
subsequent morphological characterization. The morphological charac-
teristics and the types of sensory input integrated by the plateau-
generating deep dorsal horn cells have been presented previously (Moris-
set and Nagy, 1998). Mean resting membrane potential and neuronal
input resistance were calculated for a subset of the recorded neurons
(resting membrane potential, —57.7 + 1.2 mV; input resistance, 98.7 =
6.5 M(; mean = SD; n = 30).

When needed, the following drugs were added to the normal Krebs’
solution and continuously superfused on the preparation: 1S,3R-1-
amino-1,3-cyclopentanedicarboxylic acid (15,3R-ACPD), (*)-2-amino-
S-phosphonopentanoic acid (AP-5), apamin, bicuculline, and 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX) were from Research Biochemicals
(Natick, MA); BAPTA-AM was from Calbiochem (La Jolla, CA);
cAMP, Na,-ATP, Bay-K 8644, choline chloride, EGTA, flufenamic acid
(FFA), GTP, HEPES, leupeptin, nifedipine, N-methyl-D-glucamine
(NMDG), strychnine, and tetrodotoxin (TTX) were from Sigma. Nifed-

ipine and FFA were freshly dissolved in dimethylsulfoxide (DMSO) for
each experiment. Care was taken to protect nifedipine from light. DMSO
had no effects per se at the concentration used (0.1 and 0.2%, respec-
tively). Low-sodium saline consisted of normal perfusion medium in
which 124.0 mm NaCl was replaced with 124.0 mm NMDG or 124.0 mMm
choline chloride. Mn2* was added to a modified perfusion medium
containing (in mMm): 124.0 NaCl, 3.6 KCl, 2.4 CaCl,, 1.3 Mg Cl,, 26.0
NaHCO;, 1.25 HEPES, and 10.0 glucose. Ba?* saline consisted of the
same modified medium in which 2.4 CaCl, was substituted with equimo-
lar BaCl,. When needed in the presence of a drug, bias current was
injected to keep same holding potential or to reach same initial firing
frequency as in control. Data presented in all the figures were obtained
in the presence of a mixture of 50 um AP-5, 20 um CNQX, 20 uM
bicuculline, and 50 uM strychnine to block NM DA receptors and most of
the fast excitatory and inhibitory synaptic transmission. In Figures 2 and
4-6, plateau potentials were induced in the presence of the metabotropic
glutamate receptor agonist 15,3R-ACPD (Morisset and Nagy, 1996,
1998). Recordings were obtained with patch pipettes (whole-cell config-
uration) in Figure 6 and with sharp electrodes in all other figures.

RESULTS

Nifedipine-sensitive Ca2* component of the

plateau potential

In plateau-generating DHNSs, both the acceleration of firing dur-
ing the injection of a pulse of depolarizing current (Fig. 141,B,
filled triangles) and the afterdischarge were suppressed in the
presence of 2 mmM Mn?", which is known to block voltage-
activated calcium currents (Fig. 142, B, open squares) (n = 3).
Note that the intensity of the current pulse was adjusted to elicit
the same initial firing frequency as in the control (mean firing
frequency of 18.6 and 19.3 Hz, respectively, during the first 100
msec of the discharge). Nevertheless, the subsequent evolution of
the discharges was radically different (mean firing frequency
during the last 100 msec of the discharge of 40.9 Hz in control and
20.6 Hz in the presence of Mn?*). The block by Mn?* was
reversible (Fig. 143, 1B, filled circles). Conversely, plateau poten-
tials were enhanced when Ca?" was substituted with Ba>* in the
bathing medium (four of four DHNS). Barium is a better charge
carrier through VGCCs, does not activate Ca®*-dependent K™
conductances, and subsequently blocks most of the potassium
channels from the inner face of the membrane. The effects of the
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Figure 2. Plateau-potential amplification in the presence of barium. 4, In
control conditions, a DHN responded to a 1 sec depolarizing current
pulse with a discharge of moderate acceleration, followed by a weak
afterdischarge. B, After 14 min in the barium solution (Ca®" substituted
with equimolar Ba®"), the latter were substantially increased. Barium also
caused an increase in the neuron input resistance (A, inset). C, After a
more prolonged exposure to the barium solution (25 min), the amplitude
of the plateau potential was enhanced, leading to inactivation of action
potentials, and a long-lasting afterdepolarization was produced. Note
after 4.5 sec a further depolarizing step in the plateau potential (arrow-
head). Recordings were made in the presence of the mGIluR agonist
15,3R-ACPD (25 uMm).

substitution are illustrated in Figure 2 for a neuron that expressed
moderate acceleration of firing and reduced afterdischarge in
response to a pulse of depolarizing current in control conditions
(Fig. 2A4). After 14 min in the presence of barium (Fig. 2B), the
firing frequency during and after the stimulation was much higher
(118.6 = 9.7 Hz; n = 3 stimulations during the last 100 msec of
the stimulation in Ba®*; 46.7 = 1.4 Hz, n = 3 in control), and the
afterdischarge was longer. A longer exposure to the Ba?* solu-
tion further increased the amplitude and duration of the plateau
potentials, leading to spike inactivation (Fig. 2C). These en-
hanced plateau potentials obtained in the presence of Ba?" could
still be repolarized by the injection of hyperpolarizing current
pulses (data not shown).

As shown previously (Morisset and Nagy, 1996), the Ca**
dependent bistability was also maintained under 1 um tetrodo-
toxin (n = 24), further indicating that the ability to produce
plateau potentials is an endogenous membrane property of the
deep DHNSs. Under these conditions, a slow-rising plateau poten-
tial still developed during injection of square pulse of depolariz-
ing current and was followed by a long-lasting afterdepolarization
(Figs. 341, control) that could be interrupted by a brief pulse of
hyperpolarizing current (data not shown).

TTX-resistant plateau potentials were also highly sensitive to
dihydropyridines, which are known to modulate negatively (ni-
fedipine) and positively (S-Bay K 8644) L-type calcium currents
(Fox et al., 1987b). They were almost completely blocked by
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bath-applied nifedipine (1 um, n = 2 of 2; 10 um, n = 9 of 9) (Fig.
341). Conversely, both the amplitude of the plateau during the
stimulation and the duration of the afterdepolarization were
enhanced by 2 um S-Bay K 8644 (Fig. 3B1) (n = 3 of 3). The I-V
plots obtained at the end of 3 sec depolarizing current pulses of
increasing intensities in the presence of nifedipine (10 um) (Fig.
342) or S-Bay K 8644 (Fig. 3B2) begin to differentiate from the
control I-V plots at approximately —55 mV. The threshold for the
dihydropyridine-sensitive current was therefore in agreement
with the plateau-potential threshold measured in normal saline
(=539 = 1.3 mV; n = 6). Both the regenerative depolarization
during the stimulation and the afterdepolarization were corre-
lated with a strong decrease in membrane resistance (Fig. 3C),
whereas the slow repolarizing phase after the plateau corre-
sponded to a progressive recovery of the control value. The
preceding results demonstrate that bistability in DHNs is sup-
ported by a nifedipine-sensitive Ca**-dependent plateau poten-
tial. Accordingly, in the absence of TTX, both the acceleration of
firing during injection of a depolarizing current pulse and the
afterdischarge were suppressed in the presence of nifedipine (n =
3 of 3; data not shown). Together, our results indicate that L-type
calcium channels are involved in the endogenous plateau proper-
ties of deep DHNs underlying accelerating discharges and pro-
longed afterdischarges.

CaZ2*-dependent depolarizing component of the
plateau potential

Because Ca>" entry through VGCCs could subsequently activate
calcium-dependent depolarizing conductances, such as a calcium-
activated nonspecific cationic conductance (I-,n) (Swandulla
and Lux, 1985; Partridge et al., 1994), we addressed the question
of whether the calcium was in itself a charge carrier responsible
for the plateau potential or whether the generation and mainte-
nance of regenerative depolarizations were caused, in part or
totally, by Ca**-dependent conductances.

In a first series of experiments, we have examined the effect of
loading plateau-generating neurons with a calcium chelator that
prevents the activation of Ca?*-dependent conductances. Figure
4 shows that applying in the bath 50 um of the membrane-
permeable calcium chelator BAPTA-AM clearly decreased the
expression of plateau potentials. A DHN that produced an accel-
erating discharge and an afterdischarge in response to a 3 sec
depolarizing current pulse in control conditions (Fig. 447) be-
came unable to generate the afterdischarge, regardless of the
membrane potential in the presence of BAPTA-AM (Fig. 442).
Interestingly, in the presence of the calcium chelator, the dis-
charge was still accelerating during the stimulation. However,
analysis of the instantaneous firing frequency (Fig. 443, open
circles) shows that, although initially similar to the control (Fig.
4A3, filled circles), the firing acceleration stopped after 1.5 sec
(Fig. 443, dashed line), and the mean firing frequency during the
last 100 msec of the stimulation was lower (28.0 Hz) than in
control (44.8 Hz). Therefore, in the presence of BAPTA-AM, a
regenerative depolarization was still observed, but a delayed
depolarizing component of the response disappeared, preventing
the afterdischarge. The fact that different components participate
in the initial acceleration of firing and in the afterdischarge
appears more clearly in Figure 4, B and C, in which another DHN
was stimulated with shorter current pulses. In the control condi-
tions (Fig. 4 B1), the neuron produced an afterdischarge over >30
sec. After the end of the stimulus, the firing frequency raised
gradually to peak after 10 sec at 14.4 Hz (mean frequency over 0.5
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sec) yielding to a mean frequency of 10.8 Hz during the first 20
sec of the afterdischarge. After 40 min in the presence of 50 um
BAPTA-AM (Fig. 4B2), the afterdischarge produced in response
to the same stimulation lasted for 14.9 sec with a much lower
firing frequency (2.5 Hz). After 1 hr 40 min in the presence of the
chelator, no afterdischarge was generated, regardless of the mem-
brane potential (Fig. 4B3). Interestingly, in the three situations,
the same firing pattern was produced during the stimulation
(mildly accelerating discharge of ~20 Hz) (Fig. 4C). Moreover, in
the same conditions as in Figure 4B3 (1 hr 40 min in BAPTA-
AM), a shorter stimulation (0.35 sec) (Fig. 4B4) was able to elicit
an afterdischarge. Most probably, during the brief stimulation,
the cumulative spike-associated afterhyperpolarizing potential
did not develop enough to counteract the calcium current-
mediated depolarization. The afterdischarge, however, was
shorter than 8 sec with a mean firing frequency of 3.4 Hz. Similar
results were obtained in three of three neurons. Together, they
indicate that the plateau potential in deep DHNS is supported by
both an L-type Ca?" current and a Ca*"-activated depolarizing
current and that the calcium current by itself can only sustain a
mild and relatively short afterdischarge, if any.

In a second series of experiments, we investigated further the
type of calcium-dependent current involved by testing the possi-
ble implication of a calcium-activated nonspecific cationic cur-
rent. For that purpose, plateau potentials were tested in mediums
in which Na™ was substituted with NMDG or choline. The
former substance is known to have very low permeability through
the can channels (Bal and McCormick, 1993; Wilson et al., 1996).
The permeability of choline varies depending on the neuronal
type (Partridge et al., 1994; Rekling and Feldman, 1997). These
substitutions were performed in the presence of 1 um TTX.
Figure 542 shows that, when Na ™ was substituted with NMDG,
the peak depolarization during the current injection, as well as
the afterdepolarization after the stimulation, were clearly re-
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duced in amplitude compared with the control (Fig. 541). Figure
5B illustrates a similar effect for another type of plateau-
generating DHN, producing only very short afterdepolarization
in control. Again, the peak depolarization during the stimulation
was reduced in the NMDG medium (Fig. 5B2), the reduction
being reversible (Fig. 5B3). The effects of NMDG substitution
were obtained in three of three neurons. Similar reduction of the
plateau potential was also obtained in three of three other DHNs
when Na ™ was substituted with choline. In the example of Figure
5C, in control conditions (Fig. 5C7), the duration of the plateau
potential was variable but always longer than 10 sec (n = 6
stimulations), whereas in the choline medium, it fell to 3.5 = 0.2
sec (n = 6) when elicited from the same holding potential
(Fig. 5C2). Again, the effect was reversible (Fig. 5C3). Note in
Figure 5C2 the difference between a subthreshold (left) and a
suprathreshold (right) stimulation. The residual regenerative
depolarization may be attributable to either partial permeability
of both NMDG and choline through can channels or calcium
current through the L-type VGCC.

Participation of a caN current in the plateau potential was
further investigated by using FFA, a specific antagonist of /-y
(Shaw et al., 1995). Figure 6 shows that the late phase of the
plateau potential was strongly reduced in the presence of 0.5 mm
FFA. In the example of Figure 64, the neuron responded to a 1
sec depolarizing current pulse with an afterdischarge longer than
20 sec (Fig. 6A41). In the presence of FFA, no afterdischarge was
obtained (Fig. 642), regardless of the holding potential or the
stimulus intensity. Again, however, there was no clear difference
in the type of firing pattern during the stimulation compared with
control. As indicated by the slope of the regression lines in Figure
6A3, during the first second of firing, the acceleration was 8.0
Hz/sec in control and 9.4 Hz/sec in the presence of FFA (linear
regression coefficients, 0.68 in both cases). The early and late
phases of the plateau have, therefore, the same different sensitiv-
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ity to FFA as to BAPTA (Fig. 44,B). In the case of the neuron in
Figure 6B, the stimulus triggered a short plateau that lasted only
for 5.5 sec and led to an intense firing during the afterdischarge
(Fig. 6B1, 6B3, peak at 47.6 Hz, filled circles). In response to the
same stimulation in the presence of 0.5 mm FFA (Fig. 6B2), the
maximum firing frequency during the afterdischarge was much
lower (16.1 Hz) (Fig. 6 B3, open circles), although the mean firing
frequency during the first second of the discharge was similar to
the control (9.6 and 9.9 Hz, respectively). Unexpectedly, the
afterdischarge was prolonged in the presence of FFA. This was
most probably caused by a weaker afterhyperpolarizing potential
associated with the much lower depolarization during the plateau
potential. Strong reduction of the plateau potential was obtained
in four of four plateau-generating neurons.

In summary, our results demonstrate that the plateau potential
in deep DHNSs is supported by both an L-type Ca** current and
a calcium-activated nonspecific cationic current. The former is
the major depolarizing component during the initial phase of the
plateau, and the latter is necessary for the expression of long-
lasting afterdischarges.

VA the recordings were obtained in the pres-
1 ence of the mGluR agonist 1S5,3R-
s ACPD (25 uM). 4, B, Different neurons.

DISCUSSION

Expression of voltage-dependent plateau potentials by dorsal
horn neurons in response to the stimulation of primary afferent
fibers is of particular importance for the processing of nociceptive
information in the spinal cord (Morisset and Nagy, 1996, 1998;
Russo and Hounsgaard, 1996). In the present study, we analyzed
the ionic basis for the intrinsic regenerative properties of the rat
DHNs.

Generation and maintenance of the plateau potential

Plateau potentials, or more generally regenerative depolariza-
tions outlasting the duration of a stimulus, have been described in
a variety of neuronal types in both invertebrates (Golowasch and
Marder, 1992; Kiehn and Harris-Warrick, 1992; Zhang and
Harris-Warrick, 1995; Zhang et al., 1995; Angstadt and Choo,
1996; Wilson et al., 1996; Mills and Pitman, 1997) and vertebrates
(Hounsgaard and Mintz, 1988; Kiehn, 1991; Fraser and
MacVicar, 1996; Russo and Hounsgaard, 1996; Overton and
Clark, 1997; Rekling and Feldman, 1997; Viana di Prisco et al.,
1997; Hsiao et al., 1998; Sandler et al., 1998), and the mechanisms



7314 J. Neurosci., September 1, 1999, 19(17):7309-7316

A1 control

control
C1
67
mV
—_
C2 choline
-67
mV —_—
wash
Cs
-67 20
V._mv I mV
i _ .90
pA

2s

Figure 5. Sodium substitution decreased the amplitude and duration of
TTX-resistant plateau potentials. All the recordings were obtained in the
presence of 1 um TTX and 50 uM 1S5,3R-ACPD. A, When most of the
Na ™ was replaced by NMDG in the perfusion medium, the amplitude of
both the late depolarizing phase during the stimulation and the afterde-
polarization were reduced (42) compared with control conditions (47). In
neurons producing short plateaus (BI), the NMDG medium reduced the
late phase of the regenerative depolarization (B2). The reduction was
reversible (B3). C, Similar reversible effects were obtained when most of
the Na ™ was replaced by choline in the bath. In the choline medium, note
the difference between a subthreshold (C2, first stimulation) and a su-
prathreshold response (second stimulation).

are diverse. The present data show that, in DHN of the rat, the
plateau potential is calcium-dependent, being both resistant to
TTX and blocked by Mn?*. In addition, maximum firing fre-
quency and duration of the afterdischarge supported by the
plateau are strongly reduced when intracellular Ca*" concentra-
tion is maintained low by the calcium chelator BAPTA, indicat-
ing that the plateau potential is supported by both a Ca?*
conductance and a Ca®"-dependent conductance. The calcium
chelator was applied in the bath under its membrane-permeable
form BAPTA-AM. Therefore, it could have also perturbed a
spontaneous release of transmitters in the slice preparation,
whereby inducing indirect modifications of the DHNs regenera-
tive properties. However, our experiments conducted in a mix-
ture of synaptic blockers eliminated the possibility of indirect
effects via ionotropic neurotransmission. The indirect decrease of
plateau properties via modifications in the release of neuromodu-
lators is also unlikely because the initial part of the plateaus was
almost unchanged in the presence of the chelator. Moreover,
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ionic substitutions and application of blockers confirmed the
implication of a Ca?"-dependent conductance in the plateau
potential of the deep DHNs.

Application of these substances indicated that the calcium-
dependent conductance involved in the depolarizing phase of the
plateau potential was a Ca?"-activated nonselective cation cur-
rent (I-an) (Partridge et al., 1994), which was shown in a variety
of neurons to sustain burst discharge, afterdischarge, and plateau
potentials, or oscillations (Swandulla and Lux, 1985; Zhang et al.,
1995; Fraser and MacVicar, 1996; Wilson et al., 1996; Klink and
Alonso, 1997; Viana di Prisco et al., 1997; Beurrier et al., 1999).
In the rat DHNSs, the amplitude and/or the duration of the
plateau potential were strongly reduced when most of extracel-
lular Na ™ was replaced by impermeable molecules through the
cAN channels (NMDG or choline), or during superfusion with the
specific I, blocker FFA. FFA, one member of a class of
nonsteroidal anti-inflammatory drugs, was shown to affect two
calcium-activated conductances in neurons of the snail Helix
aspersa (Shaw et al., 1995). It induced a transient increase in [y
and in a calcium-activated chloride current, consecutive to a rise
in intracellular calcium concentration; subsequently, it blocked
the two calcium-activated conductances. To our knowledge, no
calcium-activated chloride current was described in the DHN:S,
and, in any case, blockade of such a hyperpolarizing conductance
by FFA would have prolonged plateau potentials. On the other
hand, a CAN current was reported in a proportion of rat DHNs
(Murase et al., 1989), and the clear and permanent decrease of the
late phase of the plateaus in the presence of FFA, together with
the effects of Ca®" chelation and Na ™ substitutions, indicates
that /-, is actually involved in this late depolarizing phase of
the plateau potentials. Dynamic interactions between /-, and
intermediate-to-high threshold Ca?" currents were reported in
other plateau-producing neurons (Zhang et al., 1995; Fraser and
MacVicar, 1996). In the latter cases, blocking the /-, completely
eliminated the plateau potentials. When I, was blocked in
DHNs, however, the reduction only concerned the late phase of
the plateau, leaving the early phase unchanged. Moreover, a weak
afterdischarge can still show up in the presence of BAPTA.
Therefore, I, Was not the only depolarizing component of the
regenerative plateau potential.

Our data indicate that the plateau potential in DHNS of the rat
spinal cord was also carried by calcium influx through VGCC,
which activated a few millivolt positive to resting membrane
potential. This intermediate threshold calcium current was medi-
ated probably by L-type calcium channels, being sensitive to
dihydropyridines. Plateau potentials supported by similar calcium
currents were described in DHNS of the turtle spinal cord (Russo
and Hounsgaard, 1996) and various motoneurons (Hounsgaard
and Mintz, 1988; Hsiao et al., 1998). In the latter cases, as well as
in the rat DHNs (present paper), the involved L-type calcium
current activated at a more negative membrane potential than for
typical L-type currents (Fox et al., 1987a; Tsien et al., 1988).
Dihydropyridine sensitivity was reported for a number of low- or
intermediate-voltage-activated calcium currents, showing little or
no inactivation (Marchetti et al., 1995; Avery and Johnston, 1996;
Kavalali and Plummer, 1996). In DHNSs of the rat spinal cord,
voltage-clamp studies described modulation by dihydropyridines
of a sustained Ca>* current for membrane potentials positive to
=50 mV (Huang, 1989; Ryu and Randic, 1990). Interestingly,
both this intermediate-threshold Ca®* current and an I, Were
reported to be activated or enhanced by substance P in a propor-
tion of the rat DHNs (Murase et al., 1989; Ryu and Randic, 1990),
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Figure 6. The Icnn blocker FFA
blocked the late phase of plateau po-
tentials. A, In control conditions, a full
plateau potential supported a pro-
longed afterdischarge. Again, note the
progressive firing acceleration after
termination of the 1 sec stimulation.
! T T The afterdischarge was suppressed in
Time (ms) the presence of 0.5 mm FFA (42), al-
though the firing pattern during the

stimulation was not affected (43). 43,
The instantaneous frequency plot was
calculated as in Figure 1 for two dis-
charges in control conditions ( filled cir-
cles) and for two discharges in the pres-
ence of FFA (open circles). Lines are
linear regressions through the data
points (solid line, control; dashed line,
FFA) (correlation coefficients, 0.68 in
both cases; see Results). B, In another
DHN for which the plateau quickly re-
polarized (BI), application of FFA
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strongly reduced the maximum firing frequency and prolonged the duration of the afterdischarge (B2, B3, open circles) (see Results). B3, The
instantaneous frequency plots were calculated for the discharges in BI and B2 (S, 1 sec depolarizing pulse). All recordings were obtained in the presence

of 25 um 18,3R-ACPD.

just like the plateau potential (Russo et al., 1997). A possibility
remains that /-, is activated by other sources of calcium. High-
voltage-activated calcium currents were described in rat DHNs
(Ryu and Randic, 1990), including one of the N-type (Huang,
1989). They appeared, however, insufficient to support plateau
potentials, which were readily blocked in the presence of nifedi-
pine. Another potential activator of /-,y is the calcium released
from the intracellular store (Zhang et al., 1995). In any case, it
would have to be via a Ca®*-induced Ca** release (for review,
see Simpson et al., 1995) consecutive to the activation of L-type
VGCC. These additional possibilities require further studies.

Firing acceleration, maximum firing frequency, and duration
of the afterdischarge are rather variable depending on the neuron
(Russo and Hounsgaard, 1996; Morisset and Nagy, 1998). This
variability is such that it often prevents normalized quantification
of the effects of channel blockers (Figs. 5, compare A4, B; 6,
compare A, B). This indicates that, in the balance of the intrinsic
conductances, the relative weight of L-type I, and Iy, and as
stressed for turtle DHNs (Russo and Hounsgaard, 1996) of the
Ca?*-dependent K™ current, is probably set differently in differ-
ent neurons.

In summary, in DHNs of the rat spinal cord, an L-type calcium
current is the principal depolarizing component during the early
phase of the plateau potential, ensuring the initial regenerative
depolarization and firing acceleration. It subsequently triggers
and maintains a CAN current, responsible for the high-frequency
firing, and expression of prolonged afterdischarge. Regenera-
tive properties of the rat DHNs, therefore, appear more complex
than those described for the same class of spinal neurons and
for motoneurons in the turtle in which the plateau potential
is supported essentially by a noninactivating L-type current
(Hounsgaard and Mintz, 1988; Russo and Hounsgaard, 1996).

Plateau potential-mediated Ca2*
processing in spinal cord

As reported previously, plateau-generating cells in the deep dor-
sal horn are comprised preferentially of wide-dynamic range
neurons and, to a smaller extent, of nociceptive specific neurons
(Morisset and Nagy, 1998). The regenerative depolarizations
associated with plateau potentials of these neurons are function-

influx and pain

ally important for nociceptive integration in the spinal cord. They
introduce nonlinearity in the information processing and enable
the production of intense firing and afterdischarges in response to
stimulation of nociceptive inputs (Morisset and Nagy, 1996, 1998;
Russo and Hounsgaard, 1996). We have shown in the present
paper that Ca®" acts as a charge carrier participating in these
prolonged depolarizations. However, intracellular calcium may
act also as a second messenger directly and by stimulation of other
second messenger systems. These effects, including synaptic plas-
ticity and regulation of neuronal gene expression, are potentially
of importance in pain processing (for review, see Woolf, 1996).
Ca?" influx during plateau potentials must contribute substan-
tially to elevate the internal calcium concentration.

Additional support for the functional importance of Ca**
dependent plateau potentials of DHNs in processing of nocicep-
tive information comes from in vivo studies showing that L-type
VGCCs are involved in the hyperalgesia and allodynia resulting
from various nociceptive stimulations and inflammatory condi-
tions in the rat (Martin et al., 1996; Neugebauer et al., 1996;
Sluka, 1997). Interestingly, L-type calcium channels might not
mediate electrically evoked synaptic release of transmitters (Holz
et al., 1988; Takahashi and Momiyama, 1993), leaving for the
plateau-mediated calcium influx a potential role in the Ca®*-
mediated DHNs sensitization.
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