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Interleukin-1 (IL-1) is a pleotrophic cytokine implicated in a
variety of central activities, including fever, sleep, ischemic
injury, and neuromodulatory responses, such as neuroimmune,
and neuroendocrine interactions. Although accumulating evi-
dence is available regarding the expression pattern of this
cytokine, its receptors in the CNS, and its mechanistic profile
under pathological levels, it is unclear whether this substance
modulates central neurons under physiological concentrations.
Further, in light of the functional and spatial overlap between
the adenosine and IL-1 systems, it is not known whether these
two systems are coupled. We report here that, in rat brain
slices, brief application of sub-femtomolar IL-183 causes a pro-
found decrease of glutamate transmission, but not GABAergic
inhibition, in hippocampal CA1 pyramidal neurons. This de-

crease by IL-18 is prevented by pharmacological blockade of
adenosine A, receptors. In addition, we show that IL-1p failed
to suppress glutamate transmission at room temperature. Be-
cause the production and release of adenosine in the CNS is
thought to be metabolically dependent, this observation sug-
gests that one of the functions of IL-1B is to increase the
endogenous production of adenosine. Together, these data
suggest for the first time that sub-femtomolar levels of IL-1 can
effectively modulate glutamate excitation in hippocampal neu-
rons via an adenosine-dependent mechanism.
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Numerous pathological conditions, such as central and peripheral
manifestations of inflammation, and ischemic episodes are asso-
ciated with increased interleukin-1 (IL-1) protein and gene ex-
pression. The pathophysiology accompanying these states, such as
neuronal cell death, fever, reductions in food gathering, and
sexual behavior, and increases in sleep and lethargy can be
attenuated by treatment with IL-1 antibodies and IL-1 receptor
antagonist (for review, see Dinarello et al., 1990; Dinarello, 1991,
1994; Schobitz et al., 1994; Rothwell and Hopkins, 1995). Because
of this, IL-1 has been traditionally considered as a mediator
arising in pathological situations. More recently, however, many
studies have been converging on the hypothesis that IL-1 is
involved in normal physiological processes. Immunocytochemis-
try studies show IL-1 bioactivity in the normal healthy rat CNS
(Quan et al., 1996). In addition, IL-1 has been implicated in the
mediation of physiological sleep (for review, see Krueger et al.,
1995; Takahashi et al., 1996), synaptic plasticity, neuroimmune,
and neuroendocrine interactions (Nguyen et al., 1998; Schneider
et al., 1998) in normal healthy animals.

When applied directly onto central neurons in vitro, IL-1 has
been shown to produce several electrophysiological changes, such
as alteration of firing patterns (Nakashima et al., 1989; Kuriyama
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etal., 1990; Li et al., 1992; Yamashita et al., 1995; Mo et al., 1996),
inhibition of voltage-gated calcium currents (Plata-Salaman and
Ffrench-Mullen 1992, 1994), and modulation of excitatory (Kat-
suki et al., 1990; Bellinger et al., 1993; Yu and Shinnick-
Gallagher, 1994; Cunningham et al., 1996; Coogan and O’Connor
1997; D’Arcangelo et al., 1997) and/or inhibitory (Miller et al.,
1991; Zeise et al., 1992; Yu and Shinnick-Gallagher, 1994; Pringle
et al., 1996) synaptic responses. Although these studies demon-
strate that IL-1 can induce neurophysiological changes, they are
all limited to some extent by the high picomolar to nanomolar
concentrations of IL-1 used, which are characteristic of patholog-
ical conditions (Symons et al., 1987; Jacobs and Tabor, 1990;
Cacabelos et al., 1991). When considering the effects of IL-1 on
central neurons, it is becoming apparent that it is important to
make a distinction between the effects of pathological versus
physiological levels of IL-1. Scheider et al. (1998) highlight this in
a recent study, which demonstrates that physiological levels of
IL-1 are necessary for the maintenance of long-term potentiation.
Contrary to this, others have shown that high levels of IL-1
(nanomolar) inhibit long-term potentiation (Katsuki et al., 1990;
Bellinger et al., 1993; Cunningham et al., 1996). Because in vivo
animal model and cell culture data show that femtomolar IL-1 (fm
IL-1) is able to cause physical and cellular changes (for review,
see Sundar et al., 1989; Dinarello, 1994; Rosoff et al., 1988), one
of our objectives was to determine whether physiological levels of
IL-1 (femtomolar to low picomolar) could alter synaptic activity
of central neurons in the brain slice model.

One of the characteristic properties of the IL-1 system is its
ability to induce slow-wave sleep (for review, see Krueger et al.,
1995). Much evidence indicates that this role is played out in
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normal physiological conditions, in addition to situations of infec-
tion and inflammation. IL-1B injected peripherally or centrally
has the effect of inducing slow-wave sleep; IL-1 receptor antag-
onists have the ability to attenuate normal spontaneous sleep
(Takahashi et al., 1996), and animals with IL-1 type I receptor
knock-outs are deficient in sleep (Fang et al., 1998). Consistent
with these findings, IL-1 activity is elevated in cat CSF with entry
into sleep (Lue et al., 1988), and its mRNA is upregulated during
sleep deprivation (Mackiewicz et al., 1996) and varies diurnally
with the sleep—wake cycle, declining in correlation to the increas-
ing amounts of previous sleep (Taishi et al., 1997).

A neurotransmitter that shares striking functional and spatial
similarities to IL-1 is adenosine. Microdialysis measurements in
freely behaving cats demonstrate that extracellular concentra-
tions of adenosine in the brain progressively increased during
wakefulness and declined slowly during recovery sleep. Further-
more, increases in the amounts of slow-wave sleep seen after
prolonged wakefulness are mimicked by central administration of
adenosine transport inhibitor [S-(4-nitrobenzyl)-6-thioinosine],
which raises extracellular adenosine (Porkka-Heiskanen et al.,
1997). Immunocytochemistry and autoradiography studies have
revealed that adenosine A, and IL-1 receptors are coexpressed in
discreet regions in the CNS (for review, see Goodman and
Synder, 1982; Fastbom et al., 1987a,b; Cunningham et al., 1992,
1993; Schobitz et al., 1994). In light of these previous reports, we
decided to investigate whether these two systems were coupled in
any respect.

MATERIALS AND METHODS

To determine whether low levels of IL-1 modulate central synaptic
activity and whether there is any coupling between the adenosine and
IL-1 systems, standard electrophysiological recording techniques were
applied to the hippocampal CA1 region of rat brain slices. The hip-
pocampus was ideal for testing our hypothesis because its local networks
are well characterized; moreover, it represents a brain region with the
highest densities of both adenosine A, and IL-1 receptors (see introduc-
tory remarks).

Brain slice preparation and electrophysiological recordings were per-
formed as described previously (Zhang et al., 1991). Briefly, male Wistar
rats (25- to 50-d-old) were anesthetized by halothane and decapitated.
The brain was quickly dissected out and sliced transversely to 400 wm
sections in an ice-cold artificial CSF (ACSF). Brain slices were then
maintained in oxygenated (5% C0O,-95% O,) ACSF at room tempera-
ture (22-23°C) for at least 1 hr before recording. The composition of the
ACSF was (in mM): NaCl 125, KC1 2.5, NaH,PO, 1.25, CaCl, 2, MgSO,
1.8, NaHCO; 26, and glucose 10.

Electrophysiological recordings were done in a fully submerged cham-
ber at 32-33°C except when indicated. The slice perfusion rate was 4-5
ml/min. Field synaptic potentials were recorded extracellularly using a
NaCl-filled glass pipette in stratum radiatum of the CA1 region. Schaffer
collateral-CA1 afferents were electrically stimulated by placing a bipolar
tungsten electrode in the stratum radiatum at the CA1-CA2 border.
Constant current pulses of 0.1 msec duration was generated via a Grass
stimulator (S88; Grass Instruments, Quincy, MA) and delivered via an
isolation unit every 15 sec.

For whole-cell patch recordings, the patch pipette was filled with a
solution of 150 mMm potassium methylsulfate, 2 mm HEPES, and 0.1 mMm
K-EGTA, pH 7.25 (osmolarity of 280 = 10 mOsm) (Zhang et al., 1994).
The tip resistance of the filled patch pipette was ~4 M(), and the series
resistance after membrane breakthrough was <15 M(). Signals were
recorded via an Axopatch amplifier (200B; Axon Instruments, Foster
City, CA). The low-pass filter was set at 5 kHz, and the series resistance
compensation was ~80%. Data were acquired, digitized, and stored
using pClamp software (version 6.3) and a 12-bit analog-to-digital inter-
face (Digidata 1200; Axon Instruments).

Recombinant rat IL-13, recombinant mouse IL-1 receptor antagonist
(IL-1ra), and anti-rat IL-1p polyclonal antibody were obtained from R &
D Systems (Minneapolis, MN). The specific activity for rat IL-18 was
determined by R & D Systems using a mouse D10.G4.1 helper T cell line
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proliferation assay, and the EDs, was between 1-3 ng/ml. IL-18 was
initially dissolved in sterile PBS that contained 0.1% albumin as the
carrier protein. The stock solution was stored at —80°C and then appro-
priately diluted to the ACSF at desired concentrations just before each
experiment. Before the application of IL-1p8, the slices were perfused
with the control ACSF that contained the same amount of PBS—albumin
until stable responses were reached. To minimize nonspecific binding of
IL-1p, all apparatus that came into contact with IL-1 was thoroughly and
routinely siliconated with Aquasil (Pierce, Rockford, IL). We found that
it was critical to thoroughly and routinely siliconize all apparatus in
contact with IL-1 to obtain measurable results. Adenosine A, antagonists
8-(p-sulfophenyl)theophyilline ~ (8-PST)  and  8-cyclopentyl-1,3-
dipropylxanthine (DPCPX), as well as the adenosine A, receptor agonist
adenosine amine congener (ADAC), were obtained from Research Bio-
chemicals (Natick, MA).

Adenosine in superfusates from the slices was determined essentially
as described previously (Hoehn and White, 1990; Semba and White,
1997). Briefly, samples were deproteinated with 0.3 M ZnSO, and 0.3 M
Ba(OH),, and the supernatants were placed in a boiling water bath with
5.4% chloroacetaldehyde to form ethenoadenosine. Samples were con-
centrated under N,, and ethenoadenosine detected by HPLC with fluo-
rescence detection. Adenosine release was expressed as picomoles per
milliliter of supernatant.

RESULTS

Robust inhibition of field EPSPs by IL-1

After electrical stimulation of Schaffer collateral afferents (the
major glutamatergic input to the CAIl region) at maximal
strength, field EPSPs (fEPSP) were recorded extracellularly in
the hippocampal CA1 area. These fEPSP were fully blocked by 20
UM 6-cyano-7-nitroquinozaline-2,3-dione (CNQX), confirming
their mediation by AMPA glutamate receptors (n = 5) (Shinno et
al., 1997).

Perfusion of slices with recombinant rat IL-13, at concentra-
tions as low as 10 ~'7 M, caused decreases in the amplitude of
fEPSPs compared with baseline control (p < 0.01; paired ¢ test)
(Fig. 1A4). The decrease in fEPSPs started 1 min after beginning
IL-1pB perfusion, achieved a plateau within the 4 min application
period, and fully recovered after washing (Fig. 1 B). This decrease
exhibited a linear concentration dependency between 10 ' and
10 !5 m IL-1B. Saturation was observed at concentrations
=10 "> M IL-1B, where fEPSPs were inhibited to ~38% of peak
baseline amplitude (Fig. 1C). The decrease in fEPSPs by IL-18 at
different concentrations was not accompanied by any substantial
changes in the presynaptic volleys (Fig. 14). In a set of slices in
which the presynaptic volley was clearly visualized (n = 14), their
amplitude was unchanged after application of IL-18 (0.65 * 0.11
and 0.64 = 0.11 mV measured before and after IL-18 application,
respectively).

To test whether the effect of IL-13 on glutamate transmission
was related to the strength of afferent stimulation, CA1 fEPSPs
were evoked by afferent stimulation at near-threshold, half-
maximal, and maximal strength, and changes were then moni-
tored after the perfusion of 10 ' M IL-18 (n = 6). All resultant
fEPSPs were reduced by ~60% compared with baseline (p <
0.001; paired 7 test) (Fig. 24, B), indicating a general suppression
by sub-fm IL-18 on stimulated hippocampal glutamatergic
synapses.

IL-1 receptor-mediated inhibition of fEPSPs

To determine that our observations were mediated via activated
IL-1 receptors and were IL-1B-specific, IL-1ra was continuously
perfused in the hippocampal isolate before IL-18 application
(n = 7) (Fig. 34ii). Control perfusion of 1.5 X 10 '* m IL-1ra
alone for 10 min caused no significant changes in fEPSPs (5.6 =
8.0% from baseline of 1.88 = 0.04 mV). Application of 10~ m
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Figure 1. Suppression of fEPSPs by sub-fm IL-18. A, fEPSPs were
recorded from the hippocampal CA1 region of a brain slice after constant
afferent stimulation every 15 sec. Each frace was averaged from three
consecutive measurements and collected before, during, or after washing
out IL-18 (10 ~'7 M). The open arrow indicates the presynaptic volley. B,
Amplitudes of fEPSPs were plotted versus time; numbered data points
correspond to the fraces illustrated in A. The shaded column indicates the
time period of IL-1p application. Recordings were taken after stabilized
fEPSPs were achieved. C, Concentration-response relationship for IL-18
suppression of fEPSPs. Changes in fEPSPs amplitudes were normalized
as percentages of baseline control; this was plotted versus the concentra-
tions of IL-1B used. The line through the data points is a computed
Lorentzian fit using the following equation: y = a + b/(1 + ((x — ¢)/d)?),
wherea = 36.1,b =321.3,c = —1.4 X 10 "V, andd = 6.6 X 10 718, 1> =
0.92. The number of slices examined for each data point is indicated.

IL-1p (the level at which the suppression of fEPSPs was saturated
and most robust) (Figs. 1C, 34i) in the presence of IL-1ra atten-
uated its ability to inhibit fEPSPs: 29.1 * 12.2% compared with
74.1 = 5.1% by IL-1B alone (p < 0.001; one-way ANOVA) (Fig.
3B). In a separate experiment, IL-13 was neutralized with a
polyclonal antibody raised against rat IL-18 (10 ~** m IL-18 in
3.3 X 10! m anti-rat IL-1 antibody) (Fig. 34iii). The applica-
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Figure 2. Sub-fm IL-1p exerts a generalized depression on CA1 fEPSPs.
A, Representative traces of fEPSPs recorded from a slice after afferent
stimulation at near-threshold, half-maximal, or maximal strength. Each
trace was averaged from three consecutive measurements before, during,
and after 10 ~'® M IL-1 application. B, Peak amplitude of fEPSPs plotted
versus afferent stimulation at near-threshold, half-maximal, or maximal
strength, respectively. Data were collected from a set of six slices. Open
and filled circles represent measurements obtained before or after IL-13
application (10 ~'¢ M, for 4 min), respectively. Mean = SEM are indicated.

tion of antibody-neutralized IL-1B produced a 12.0 = 6.7%
decrease in fEPSPs, again greatly attenuated compared with that
induced by nontreated IL-18 at the same concentration (p <
0.001; one-way ANOVA) (Fig. 3B).

Selective decrease of EPSCs but not IPSCs by IL-13

To assess whether a similar pattern of decreased synaptic trans-
mission by IL-18 occurred at the single cell level, synaptic cur-
rents evoked by afferent stimulation were recorded from individ-
ual CAl pyramidal neurons in the whole-cell voltage-clamp
mode. At a holding potential of approximately —60 mV, CAl
neurons displayed transient, inward currents, referred to as EPSCs
(Fig. 44, top). We have shown previously that these EPSCs are
blocked by CNQX (Shinno et al., 1997; Ouanounou et al., 1999),
indicating their mediation by AMPA glutamate receptors. Per-
fusion of slices with 107" m IL-18 for 4-5 min reversibly
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Figure 3. IL-1 receptor-mediated fEPSP depression. A, Records were
collected from three separate slices, and each individual trace was aver-
aged from three measurements. i, IL-1p3 alone. ii, IL-1B plus IL-1ra. iii,
Antibody-neutralized IL-1B. To control for any nonspecific effects, the
antibody and receptor antagonist were maintained at a constant concen-
tration throughout the recording period. Open arrows indicate the pre-
synaptic volley. B, Percent of baseline control fEPSP peak amplitude
measured in the presence of 10 "3 M IL-18 alone, 10 3 M IL-18 plus
1.5 X 10 ~'* M IL-1ra, and 10 ~** m IL-1 neutralized by 3.3 X 1072 m
anti-IL-1B antibody. Mean = SEM and the number of slices examined in
each group are indicated. Statistical significance was calculated via one-
way ANOVA.

suppressed the EPSCs by 70% (n = 8) (Fig. 44,B), paralleling the
results obtained by extracellular recordings.

IPSCs were evoked in the presence of 20 um CNQX. Subse-
quent application of IL-18 at 10 '3 M caused a slight but signif-
icant increase in the amplitude of IPSC from 265.4 = 44.7 to
319.5 = 59.6 pA (n = 16; p < 0.015; paired ¢ test) (Fig. 44,
bottom, B). Our laboratory has shown previously that these phar-
macologically isolated IPSCs are mediated by Cl -dependent
GABA ,-mediated currents (Zhang et al., 1991, 1993, 1998).
Therefore, IL-18 may weakly potentiate GABAergic transmis-
sion in the rat hippocampus.
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Figure 4. Sub-fm IL-1p inhibits EPSCs and slightly potentates IPSCs. A4,
Representative EPSCs (top) and IPSCs (bottom) recorded from two CA1
pyramidal neurons at the holding potential of —60 or —50 mV, respec-
tively. Each trace was averaged from three consecutive measurements and
was recorded before, at the end of IL-18 application (10 ~'° or 10 ~"* m
5-7 min), and after washing. IPSCs were isolated pharmacologically by
perfusing slices with 20 um CNQX throughout the recording period. B,
Peak amplitude of EPSCs or IPSCs measured before and after applica-
tion of IL-18. Mean = SEM and the number of CAl pyramidal neurons
examined in each group are indicated, and statistical significance was
calculated via a paired ¢ test.

Decrease in fEPSPs by IL-18 was prevented by
adenosine A, receptor antagonists

Stimulation of adenosine A, receptors in the hippocampal CAl
region has been shown to inhibit glutamatergic transmission with-
out suppressing GABAergic transmission (Lambert and Teyler,
1991; Yoon and Rothman, 1991; Thompson et al., 1992; Khazi-
pov et al., 1995). This similarity shared by adenosine A, receptor
stimulation and IL-1B application suggested that these two sys-
tems might indeed be coupled. To test this idea, slices were first
perfused thoroughly with 20 um DCPCX, an adenosine A,
receptor antagonist. After application of DCPCX for >10 min,
CA1 fEPSPs stabilized at 2.05 £ 0.09 mV, no significant differ-
ence from baseline at 1.97 = 0.09 mV (n = 15). In the presence
of DCPCX, subsequent applications of 10 ~'* m IL-18 for 5 min
caused no substantial decrease in fEPSPs (A, 4.2 + 1.6%; n = 15).
We also examined the effect of 8-PST, a water soluble adenosine
A, receptor antagonist, on IL-18 induced synaptic inhibition,
using a similar protocol to that of DPCPX application. In the
presence of 5-10 um 8-PST (concentrations that are preferential
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Figure 5. Adenosine-dependent suppression of fEPSPs by IL-1B. A4,
fEPSPs were recorded from three slices. Each trace was averaged from
three consecutive measurements and collected before or after the appli-
cation of IL-1B at 33°C. i, IL-1B alone. ii, In the presence of 20 um
DCPCX, a adenosine A, receptor antagonist. 7ii, In the presence of 10 um
8-PST, a water soluble adenosine A, receptor antagonist. B, Representa-
tive fEPSPs were recorded from a single slice at 23°C; each frace was
averaged from three consecutive measurements. Left two traces were
collected before and after IL-1B3 application. Right two traces were re-
corded in the presence of ADAC, a stable adenosine A, receptor agonist,
and after wash. C, Changes in fEPSPs by IL-13 examined under four
conditions (33°C, 33°C plus DPCPX, 33°C plus 8-PST, and 23°C). Open
columns represent baseline control, filled columns represent measurement
in the presence of IL-1B with one of the four conditions, and the hatched
column represents measurement in the presence of ADAC. Mean = SEM
and number of slices examined are indicated. Statistically significant
decreases from the baseline control, *p < 0.0001; paired ¢ test.

for adenosine A, receptors; Bruns et al., 1980; Rainnie et al.,
1994), subsequent applications of 10 ~** M IL-1 for 5 min caused
no substantial decrease in fEPSPs (A, 8.8 = 6.4%; n = 10) (Fig.
5A,C). These observations were in sharp contrast to those ob-
served in control slices in which the similar application of IL-13
alone greatly inhibited CA1 fEPSPs by 61.0 = 5.9% (p < 0.0001;
paired ¢ test; n = 17) (Fig. 54,C).

Promotion of endogenous adenosine release by IL-1B?

To provide additional evidence for the possibility that adenosine
mediates IL-1B-induced glutamatergic suppression, we examined
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the effects of IL-18 at room temperature (22-23°C). Because the
synthesis and transmembrane flux of adenosine is directly related
to energy metabolism (for review, see Brundege and Dunwiddie,
1997), we hypothesized that the suppression of fEPSPs by IL-18
would be attenuated at room temperature. As expected, CAl
fEPSPs recorded at room temperature showed no substantial
inhibition after exposure to 10 ~'? M IL-18 for 5-6 min (Fig. 5B).
However, they were strongly suppressed by subsequent applica-
tion of 1 uM ADAC, a stable adenosine A, receptor agonist,
indicating that the adenosine A, receptor cascade remained func-
tional at room temperature (Fig. 5B).

To measure the possible elevation of extracellular adenosine by
IL-1B, perfused ACSF was collected before and at the end of
IL-18 application (10 ~** m for ~4 min) when the fEPSPs were
decreased by 78 * 6.8% from baseline (n = 8). The collected
ACSF was frozen immediately to —70°C and analyzed via HPLC
and fluorescence assays (Hoehn and White, 1990; Semba and
White, 1997). The decreased fEPSPs were not associated with any
significant observable changes in extracellular adenosine (—5 =
8%), from a basal level of 6—8 pmol/ml collected before the
IL-1B application.

DISCUSSION

Two major findings emerge from the present experiments: (1)
brief application of sub-fm IL-1p selectively decreases glutamate
AMPA receptor-mediated transmission in the rat hippocampus;
and (2) the decrease by IL-1p is mediated through an adenosine-
dependent pathway. These data suggest for the first time that
there is a coupling between the adenosine and IL-1 systems.
Further, our data reinforce the idea that the IL-1 system plays a
regulatory role at physiological levels found in the normal mam-
malian CNS. However, it should be noted that the in vivo action
of IL-1 is much more complex than observed in an isolated brain
slice. Our results do not in any way prove that the slow-wave
sleep-promoting aspects of IL-1 are mediated via adenosine;
rather, our data provide clues for further investigation into these
issues.

The concentration-response curve shown in Figure 1 high-
lights two important aspects. First, during infection and inflam-
mation, IL-18 is found in the CNS at picomolar to nanomolar
levels; it is at this concentration that IL-1 assumes the role of a
primary immune mediator. We observed that, at this level, IL-18
suppression of glutamatergic fEPSP was saturated at 70% of
baseline control, whereas the linear portion of the concentration—
response curve was observed at the sub-femtomolar to femtomo-
lar range. These data demonstrate that the activation profile of
IL-1B is characteristic of a neuromodulatory substance, in that
IL-1p alters, but does not abolish, glutamatergic excitation. Sec-
ond, these data illustrate that sub-fm IL-18 can effectively regu-
late glutamate transmission and thus suggest that subtle modifi-
cations in the basal levels of IL-18 in vivo could greatly effect
normal brain functioning.

Because application of IL-1 receptor antagonist and neutral-
ized IL-1B via its specific polyclonal antibody attenuated the
ability of IL-18 to suppress fEPSPs, we concluded that the inhi-
bition by IL-1B of glutamatergic AMPA receptor-mediated EP-
SP-EPSCs is conveyed via IL-1 receptors and is IL-1B-specific.
Our findings are in apparent contradiction to previously pub-
lished data reporting that IL-18 inhibits NMDA, but not AMPA,
receptor-mediated fEPSP in the dentate gyrus region of brain
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slices (Coogan and O’Connor, 1997). However, the length and
dose of application used in that study is well above the level we
used in the present experiments.

The decrease in glutamatergic transmission by IL-13 manifests
itself in both field and single cell recordings and was not associ-
ated with substantial changes in the afferent axonal potentials.
These observations suggest that IL-183 suppression of the gluta-
mate response results from decreased glutamate release (McGa-
hon and Lynch, 1995; Murray et al., 1997) and not the attenuation
of presynaptic excitability.

Adenosine is an important modulatory neurotransmitter impli-
cated in a variety of brain activities, particularly those related to
sleep and ischemic-hypoxic episodes (for review, see Phillis and
Wu, 1981; Snyder, 1985; Brundege and Dunwiddie, 1997; Porkka-
Heiskanen et al., 1997). Of the multiple neurophysiological ac-
tions, inhibition of glutamate transmission by adenosine has been
noted for some time in several brain regions (Dunwiddie, 1985;
Greene and Haas, 1991) and is likely a result of the inhibition of
presynaptic calcium influx (Wu and Saggau, 1994). In the hip-
pocampal CA1 region, adenosine-induced decreases in glutamate
transmission are mediated via A, subtype receptors, and this
suppression occurs without directly affecting GABAergic trans-
mission (Yoon and Rothman 1991; Capogna et al., 1993). We
believe that the decrease of EPSPs by IL-18 presented here is
conveyed through endogenous adenosine acting on A, receptors
based on the following observations. First, the decrease by IL-13
is only seen in glutamate EPSPs—EPSCs but not in GABAergic
IPSCs. Second, IL-1B-induced fEPSP suppression is fully
blocked by the adenosine A, receptor antagonists DPCPX and
8-PST. Third, when examined at room temperature, the evoked
fEPSPs were insensitive to IL-183 but were greatly suppressed by
application of the adenosine A; receptor agonist ADAC (Fig.
5B,C). Our interpretation of these three observations is that the
adenosine A, receptor signal cascade can be turned on at room
temperature after direct agonist stimulation and that the failure
by IL-18 to suppress fEPSPs at room temperature reflects insuf-
ficient stimulation of adenosine A, receptors. Therefore, in light
of metabolic—temperature dependence of endogenous adenosine
release and the subsequent modulation of glutamate transmission
(Masino and Dunwiddie, 1999), we propose that IL-1 acts to
suppress glutamate transmission via promoting endogenous aden-
osine release rather than by sensitizing the adenosine A,
receptor-mediated signal cascade.

However, an increase by IL-18 in extracellular adenosine was
not detectable by HPLC measurement in the present experi-
ments. It is possible that IL-18 promotes a local release of
adenosine at sites near the activated glutamatergic synapses, at
levels that are sufficient to suppress the glutamate transmission
but too low to be measured in the perfusate collected from the
entire slice. Previous studies have noted that enhanced adenosine
release is characteristically found only in the proximity of acti-
vated synapses (Manzoni et al., 1994; Brundege and Dunwiddie,
1996). The stimulation afforded by our experimental settings only
activates a small amount of the total glutamate synapses in the
hippocampal slice at any one time. Therefore, the lack of a
detectable increase in extracellular adenosine by IL-18 in the
hippocampal slice is likely caused by the nature of adenosine
release only at activated synapses. Although further experiments
are needed to resolve the full nature of this mechanism, our
observations with adenosine A, receptor antagonists and the
temperature dependency of the actions of IL-13 are consistent
with the above assumption.
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In summary, the present data suggest that IL-18 can effectively
modulate glutamate transmission in the hippocampus at sub-
femtomolar concentrations, likely via an adenosine-dependent
pathway. The strong coexpression of both IL-1 receptors and
adenosine A, receptors in the mammalian CNS suggests that
IL-1 may act via adenosine-mediated mechanisms in other re-
gions of the brain. However, this does not preclude IL-1 actions
via other pathways, because we have observed the enhancement
of IL-18 of GABAergic IPSCs, which do not appear to be
adenosine-dependent (Yoon and Rothman, 1991; Capogna et al.,
1993). What remains to be seen is whether such regulation of
synaptic activity by IL-18 occurs in vivo and its relevance to the
induction of slow-wave sleep and other physiological activities.
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