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Activation of the Sonic hedgehog (Shh) signal transduction
pathway is essential for normal pattern formation and cellular
differentiation in the developing CNS. However, it is also
thought to be etiological in primitive neuroectodermal tumors.
We adapted GAL4/UAS methodology to ectopically express
full-length Shh in the dorsal neural tube of transgenic mouse
embryos commencing at 10 d postcoitum (dpc), beyond the
period of primary dorsal–ventral pattern formation and floor-
plate induction. Expression of Shh was maintained until birth,
permitting us to investigate effects of ongoing exposure to Shh
on CNS precursors in vivo. Proliferative rates of spinal cord
precursors were twice that of wild-type littermates at 12.5 dpc.
In contrast, at late fetal stages (18.5 dpc), cells that were

Shh-responsive but postmitotic were present in persistent
structures reminiscent of the ventricular zone germinal matrix.
This tissue remained blocked in an undifferentiated state. These
results indicate that cellular competence restricts the prolifera-
tive response to Shh in vivo and provide evidence that prolifer-
ation and differentiation can be regulated separately in precur-
sor cells of the spinal cord. Thus, Hedgehog signaling may
contribute to CNS tumorigenesis by directly enhancing prolif-
eration and preventing neural differentiation in selected precur-
sor cells.
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Sonic hedgehog (Shh) encodes a secreted glycoprotein that is
initially expressed in mesodermal tissues underlying the ventral
midline of the murine CNS (Echelard et al., 1993; Marti et al.,
1995a). Shh is essential for maintenance of notochord and pre-
chordal mesoderm (Chiang et al., 1996) as well as the induction of
floorplate and ventral neuronal populations that form at different
positions along the anterior–posterior (AP) axis of the neural
tube (Echelard et al., 1993; Roelink et al., 1994, 1995; Marti et al.,
1995b; Chiang et al., 1996; Ericson et al., 1997; Jessell and
Lumsden, 1997). In addition, there is evidence that Shh signaling
may specify oligodendrocyte precursors (Poncet et al., 1996;
Pringle et al., 1996). Shh signal transduction is complex (Tabin
and McMahon, 1997). The active Shh signal, which is produced
by autoprocessing and cholesterol modification (Porter et al.,
1996), binds to a receptor complex composed of at least two
transmembrane proteins, Patched and Smoothened (Marigo et
al., 1996; Stone et al., 1996). Shh binding to Patched is thought to

relieve Patched-mediated inhibition of Smoothened activity, re-
sulting in the activation of transcriptional targets by members of
the Gli family (Ingham et al., 1991; for review, see Ingham, 1998).
Although Patched and Gli-1 appear to be general transcriptional
targets in vertebrates, other factors are specific to neural precur-
sor cells, including HNF3b and Nkx-2.2 (Dale et al., 1997; Eric-
son et al., 1997).

In contrast to its roles in neural patterning and differentiation,
recent studies have implicated the Hedgehog signaling pathway in
proliferation and tumorigenesis. Loss-of-function mutations in
human PATCHED are associated with activation of the Hedge-
hog signal transduction pathway and promotion of a neoplastic
state characterized by proliferating, undifferentiated cell popula-
tions (Hahn et al., 1996; Johnson et al., 1996). Of the children
with Gorlin’s Syndrome, which is caused by inherited mutations
of PATCHED, 3–5% develop medulloblastoma (Vorechovsky et
al., 1997). Inactivating mutations of PATCHED have also been
found in sporadically occurring medulloblastoma (Raffel et al.,
1997) and basal cell carcinoma, and mice heterozygous for tar-
geted mutations of Patched, in which Shh targets are potentially
upregulated, develop cerebellar tumors (Goodrich et al., 1997).
Recently, Wechsler-Reya and Scott (1999) provided evidence
that Shh is required for granule cell precursor proliferation dur-
ing cerebellar development, raising the possibility that similar
mechanisms are involved during development and tumorigenesis.

Mitogenic effects of Shh have been observed in a number of
tissues during development (Fan and Tessier-Lavigne, 1994;
Forbes et al., 1996; Huang and Kunes, 1996; Bellusci et al., 1997;
Jensen and Wallace, 1997; Oro et al., 1997; Duprez et al., 1998),
and misexpression of chicken Shh (Echelard et al., 1993), Gli-1
(Hynes et al., 1997), or a dominant-negative form of protein
kinase A (dn-PK A), which activates Shh targets (Epstein et al.,
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1996), all resulted in embryonic CNS hyperplasia. The mecha-
nisms underlying such proliferative effects, however, are poorly
understood. To gain insight into this process, we have focused on
the mitogenic role of Shh in the developing CNS. Our results
show that ectopic activation of Hedgehog signal transduction
causes enhanced proliferation, but only at embryonic stages.
Thus, factors regulating maturation and cellular competence of
CNS precursor cells temporally restrict the proliferative response
to Shh in vivo.

MATERIALS AND METHODS
DNA constructs. The plasmid pGaTB and pUAST, encoding full-length
GAL4 and a pentamer array of its cognate DNA binding sequence, the
upstream activating sequence (UAS), were kindly provided by Drs. A.
Brand and N. Perrimon (Harvard Medical School). To generate the
transgene pWEXP-GAL4, plasmid pGaTB was digested with HindIII
and FspI to release a DNA fragment encoding GAL4, which was cloned
into NruI-digested Wnt-1 expression vector pWEXP-2 (Echelard et al.,
1993) (see Fig. 1 A). The transgene was purified from vector sequences by
digestion with AatII. To generate the reporter transgene pUAS-lacZ, the
plasmid XB3 (Echelard et al., 1994) was digested with NotI. The pen-
tamer array of UAS sequences from plasmid pUAST were amplified by
PCR primers that incorporated NotI and EagI recognition sequences.
Once digested, the PCR products were cloned into the XB3 vector to
create pUAS-lacZ (see Fig. 1 B). The transgene was purified from vector
sequences by digestion with SalI before pronuclear injection. To generate
the mouse Sonic hedgehog misexpression transgene pWEXP3C-Shh, the
full-length cDNA was digested from plasmid p8.1 (Echelard et al., 1993)
and cloned into the Wnt-1 expression vector pWEXP-3C (Danielian and
McMahon, 1996). The transgene was purified from vector sequences by
digestion with the restriction endonuclease SalI before microinjection.
To generate the transgene pUAS-Shh, a shuttle vector, pUAS-Shuttle,
was constructed as follows. The KpnI and BglII fragments of plasmid
XB3 were replaced with an oligonucleotide containing an XhoI site. This
construct was digested with NotI and KpnI, and an NotI–KpnI upstream
fragment of pUAS-lacZ, comprising five copies of UAS, was added,
generating plasmid pUAS-Shuttle. Finally, pUAS-Shuttle was digested
with XhoI and BglII, and an SalI–BglII fragment of pWEXP-3C was
cloned into the vector, creating plasmid pUAS-Shh (see Fig. 1C). The
transgene was purified from vector sequences by digestion with SalI and
BglII before microinjection.

DNA sequencing of the constructs listed above was carried out using
both ABI dye terminator and dideoxy chain termination methodologies.
The orientation and identity of GAL4 and mShh in constructs pWEXP2-
GAL4 and pWEXP3C-Shh, respectively, were confirmed by DNA se-
quencing using oligonucleotide 882 (59-TAA GAG GCC TAT AAG
AGG CGG-39), which primes ;60 bp upstream of the Wnt-1 translational
initiation site.

Production and genotyping of transgenic mice. Transgenic mice were
generated by microinjection of linear DNA fragments, separated from
plasmid vector sequences, into pronuclei of B6CBAF1/J (C57BL/6J 3
CBA/J) zygotes as described (Echelard et al., 1994). The transgenic line
Wnt-1/GAL4/cre-11 resulted from coinjection of the transgenes
pWEXP2-GAL4 and pWEXP3C-cre (construction and characterization
of the pWEXP3C-cre transgene are described elsewhere).

Founder (G0) transgenic mice were identified by Southern blot of
EcoRI-digested genomic DNA and probes for GAL4 (line WEXP2-
GAL4 ) or lacZ (lines UAS-lacZ and UAS-Shh). Subsequent genotyping
of UAS-lacZ transgenic embryos or mice by PCR was carried out as de-
scribed in Echelard et al. (1994). Genotyping of WEXP2-GAL4 and UAS-
Shh transgenic embryos or mice used an upstream primer from exon 1
untranslated sequence of Wnt-1 (882-TAAGAGGCCATAAGAGGCGG)
and a downstream primer from within GAL4 (1061-ATCAGTCTCCACT-
GAAGC; product size ;600 bp) or mouse Shh (930-CTCATAGTGTA-
GAGACTCCTC; product size ;600 bp) coding sequences, and the follow-
ing PCR conditions: 30 sec, 93°C; 30 sec, 55°C, 1 min, 72°C for 40 cycles; then
5 min, 72°C.

Whole-mount histochemistry and skeletal preparation. Analysis of em-
bryos for b-galactosidase activity was carried out as described by Whiting
et al. (1991). For analysis of skeletal elements, 18.5 dpc bigenic fetuses
were processed as described (Wallin et al., 1994). Photography of pro-
cessed embryos or fetuses was performed in 80% glycerol /PBS on an
Olympus SZH10 microscope using Kodak 64T film. Live embryos or

fetuses were photographed in PBS using a 35 mm Nikon camera and
daylight film, respectively.

Histolog ical analysis, proliferation studies, and in situ hybridization. For
histological analysis, embryos were harvested between 9.5 and 18.5 dpc,
dissected in PBS, fixed overnight for 24 hr in Bouin’s fixative, embedded
in paraffin, and sectioned (6–8 mm) at forelimb levels of the thoracic
spine before staining with hematoxylin–eosin. To analyze proliferation,
50 mg/g of bromodeoxyuridine (BrDU) (Sigma, St. Louis, MO) was
injected intraperitoneally into pregnant mothers 3 hr before they were
killed at 12.5 and 18.5 dpc. Subsequently, four bigenic embryos and
wild-type littermates were fixed in paraformaldehyde and sectioned as
above. Dividing cells that had incorporated BrDU were identified using
monoclonal IgG (Becton Dickinson, San Jose, CA) and immunoperoxi-
dase staining (Vector Laboratories, Burlingame, CA) using diaminoben-
zidine (Sigma) or FITC-tyramide (DuPont NEN, Wilmington, DE).
Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling (TUNEL) procedure was performed as described (Gavrieli
et al., 1992). Both TdT and biotinylated-16-dUTP were from Boehringer
Mannheim (Indianapolis, IN).

In situ hybridization on paraffin sections with radiolabeled antisense
RNA probes was performed on either paraformaldehyde or Bouin’s fixed
tissues according to lab protocols [after Wilkinson (1992); available on
request]. Dark-field photomicrographs were collected on a Leitz Ortho-
plan or Nikon E600 compound microscope using a 35 mm camera and
Fuji Velvia film or a SPOT I digital camera. In situ hybridization on
frozen sections of paraformaldehyde-fixed tissues with digoxigenin-
labeled antisense probes was performed essentially as described in Ma et
al. (1997), and photomicrographs were collected on a Nikon E600 com-
pound microscope using a SPOT I digital camera (Diagnostic Imaging).
We thank the following investigators for kindly supplying the in situ
hybridization probes used: M. Scott (Ptc-1) (Goodrich et al., 1996); A.
Joyner (Gli-1) (Hui et al., 1994); B. Hogan (HNF3b) (Sasaki and Hogan,
1993); P. Gruss (Pax-6 ) (Walther and Gruss, 1991) (Pax-3) (Goulding et
al., 1993); J. Rubinstein (Nkx-2.2) (Price et al., 1992); R. Johnson
(Lmx-1b) (Chen et al., 1998); D. Lachman (Brn-3a) (Theil et al., 1994);
L. Roberston (BMP-7 ) (Lyons et al., 1995); R. Kageyama (HES-1) (Sasai
et al., 1992); Genetics Institute, Cambridge, MA (GDF-7 ) (Storm et al.,
1994).

Immunohistochemistry. For immunohistochemistry, embryos were ei-
ther fresh frozen or fixed between 6 and 24 hr in fresh 4% paraformal-
dehyde before freezing and cryostat sectioning (15 mm). Antibody
against a glutathione S-transferase–Hamster Lmx fusion protein or
Sonic hedgehog was generated in rabbits. Rabbit antisera for Isl-1/2,
Nkx-2.2, and Lim-3 were the generous gift of T. Jessell (Columbia
University, New York). GalC, O4, and PDGFaR monoclonal antibodies
were from Boehringer Mannheim. These and mouse monoclonal anti-
bodies against NeuN (Chemicon, Temecula, CA), TuJ1 (BAbCo, Berk-
ley, CA), Pax-7 (Developmental Studies Hybridoma Bank), and O4 IgM
were labeled with anti-rabbit Cy3 or anti-mouse IgG or IgM-conjugated
Cy2 (Jackson ImmunoResearch Labs, West Grove, PA) before visual-
ization by fluorescence microscopy. Photomicrographs were collected on
a Nikon E600 compound microscope and SPOT I digital camera (Diag-
nostic Instruments).

RESULTS
Gal4/UAS-targeted gene expression in the
Wnt-1 domain
The Wnt-1 enhancer is well suited for directing gene expression in
the roofplate of the spinal cord and was used to overexpress
mouse Shh in transgenic mice (D. Rowitch, B. St.-Jacques, and A.
McMahon, unpublished observations). However, this resulted in
a lethal CNS malformation and precluded maintenance of stable
lines. Therefore, on the basis of the work of and Brand and
Perrimon (1993) in Drosophila and Ornitz et al. (1991) in mice,
we adapted the GAL4/UAS bigenic system for controlled gene
expression in the developing murine CNS. Six lines of transgenic
mice were generated in which GAL4 was expressed under control
of Wnt-1 regulatory sequences (Wnt-1/GAL4) (Fig. 1A) (see
Materials and Methods), as judged by whole-mount in situ hy-
bridization (data not shown). These were subsequently crossed
with a reporter line in which expression of lacZ was governed by
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the GAL4 cognate DNA-binding motif, “upstream activating
sequence” (Fig. 1B, UAS). When mated to Wnt-1/GAL4 hemizy-
gotes, 25% of progeny embryos from three of five lines showed
b-galactosidase staining in the Wnt-1 pattern (Fig. 2A,B), and one
of these lines was selected for further study (designated UAS-
lacZ). All six Wnt-1/GAL4 founders were then screened against
the UAS-lacZ line and one of these was selected for further study
because of its relatively high levels of activity (designated Wnt-1/
GAL4). Expression of lacZ in double-hemizygous (bigenic) em-
bryos was studied from 8.5 to 18.5 dpc. b-galactosidase staining
was first detected at ;9.0 dpc in a region of the ventral midbrain.
This represented a delay of ;24 hr in the onset of expression
compared with previous observations of lacZ under direct control
of Wnt-1 regulatory sequences (Echelard et al., 1994). Expression
comprising the full Wnt-1 pattern was seen by 10.5 dpc (Fig. 2,
compare A and B). Maintenance of b-galactosidase staining was
observed at 12.5 dpc (Fig. 2C) and 18.5 dpc, at which point
roofplate cells could be clearly identified (Fig. 2D).

Conditional expression of Shh in the developing
spinal cord
To determine whether this bigenic system could also be used to
control expression of Shh, the transgenic line UAS-Shh (Fig. 1C)
was generated. Of eight founder lines that carried the UAS-Shh
transgene, six survived and three transmitted the allele through
the germline. One of these promoted expression of Shh in re-
sponse to GAL4 in the CNS. The UAS-Shh line was viable;
hemizygous progeny did not express ectopic Shh. The phenotype
of bigenic embryos (hereafter termed Shh-Tg), comprising ven-
tralization of the midbrain and neural hyperplasia, could first be

distinguished at 9.5 dpc (data not shown) and was followed
extensively from 10.5 to 18.5 dpc (Fig. 2E–J). In contrast to
Wnt-1-Shh transgenic founder embryos, which display a spectrum
of phenotypic severity (Echelard et al., 1993; D. Rowitch, B.
St.-Jacques, A. McMahon, unpublished observations), the pheno-
type of the Shh-Tg embryos was highly reproducible. The Shh-Tg
phenotype was judged as moderate compared with the most
severe Wnt-1-Shh founders, which failed to develop craniofacial
mesenchyme and died at 14–16 dpc. Gross morphological analysis
of Shh-Tg fetuses at 18.5 dpc revealed a tissue mass that ema-
nated from the midbrain (Fig. 2H, arrow) and spinal cord tissues
with a folded appearance protruding from the back of the animals
(Fig. 2 I). The membranous skull, the neural arches of the verte-
brae, and epiaxial muscle, which normally overlay the brain and
spinal cord, were absent (Figs. 2H–J). In addition, there was
pronounced blood supply to the dorsal spinal cord (Fig. 2I).
Whether such effects on mesodermal derivatives are caused by
Shh itself or are a consequence of neural hyperplasia remains to
be determined.

Figure 1. Schematic illustration of transgenes WEXP-GAL4, UAS-lacZ,
and UAS-Shh used in bigenic system for misexpression in the mouse
embryonic CNS. A, Plasmid pWEXP-GAL4 comprises full-length GAL4
(Brand and Perrimon, 1993) cloned into the WEXP2 expression vector
under control of Wnt-1 regulatory sequences (Echelard et al., 1993). B,
The reporter transgenic construct pUAS-lacZ used the Wnt-1 minimal
promoter (Echelard et al., 1994) and five copies of the UAS (Brand and
Perrimon, 1993). C, In plasmid pUAS-Shh, full-length mouse Shh cDNA
was cloned into expression vector WEXP3C (Danielian and McMahon,
1996). Wnt-1 regulatory sequences were then replaced by five copies of the
UAS. Binding sites for oligonucleotide primers used in genotyping the
various transgenic lines are indicated (arrows).

Figure 2. The GAL4/UAS system for gene expression in the developing
CNS. A–D, Whole-mount histochemical analysis of b-galactosidase activ-
ity in transgenic mouse embryos. A, Lateral view showing pattern of lacZ
expression under the control of Wnt-1 regulatory sequences (Echelard et
al., 1994). B, C, Lateral views of 10.5 and 12.5 dpc bigenic Wnt-1-Gal4 X
UAS-lacZ embryos showing expression pattern of lacZ (arrow indicates
roofplate expression in the spinal cord). D, Transverse (top) and bisected
(bottom) views of lacZ expression in the rostral spinal cord of bigenic fetus
at 18.5 dpc. Note staining in roofplate oligodendrocytes that project to the
ventricular zone (arrows). E–J, Morphological analysis of wild-type (lef t)
and Wnt-1-GAL4 X UAS-Shh bigenic (right) littermates at 10.5 dpc (E,
arrow indicates anterior neural tube defect) and 12.5 dpc ( F). G–J,
Analysis at 18.5 dpc. Lateral views of wild-type (G) and bigenic fetuses
(H ). Note tissue mass protruding from midbrain that covers cerebral
hemispheres (arrow). I, Dorsal view of bigenic fetus showing hyperplastic
spinal cord that protrudes from the back covered by a thin epithelial
membrane. Note prominent vasculature and hemorrhage (arrow). J, Dor-
sal view of skeletal prep of wild-type (lef t) and bigenic (right) fetuses at
18.5 dpc. Note absence of the membranous skull and dorsal neural arches
as well as the splayed open configuration of the vertebral bodies (arrows).
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Increased levels of proliferation in the spinal
cord of Shh-Tg mice at embryonic but not fetal
stages of development
Histological analysis of 12.5–18.5 dpc Shh-Tg bigenic embryos
demonstrated hyperplasia of the dorsal spinal cord and expansion
of the ventricular zone (VZ) (hydromyelia) (Fig. 3, compare A
and E with I and M). In principle, this could result from increased
levels of proliferation and/or inhibition of programmed cell
death. To assess proliferation in wild-type and Shh-Tg embryos,
mitotically active cells were labeled with BrDU at 12.5, 14.5, 16.5,
and 18.5 dpc and identified in sections taken at the forelimb level
(Fig. 3B,F,J,N; and data not shown). To quantify levels of pro-
liferation at 12.5 dpc, we derived a relative mitotic index (ratio of
BrDU-labeled cells in the alar vs basal ventricular zone) in
Shh-Tg mice (mean 5 9.3, SE 5 1.45; n 5 4) and wild-type
littermates (mean 5 3.8, SE 5 0.26; n 5 4). This indicated that
levels of proliferation in 12.5 dpc Shh-Tg embryos were approx-
imately twice that of wild-type, reflecting significant ( p , 0.001,
Student’s t test) elevation in the dorsal compartment where Shh
was ectopically expressed. At 14.5 dpc, a small population of
BrDU-labeled cells were observed in the spinal cord of one of
three Shh-Tg embryos, but not in wild-type (data not shown).
However, by 18.5 dpc mitotic activity in Shh-Tg neural tissue (n 5
3) was not above background wild-type levels (n 5 3) (Fig. 3,
compare J and N).

During spinal cord development, there is evidence for pro-
grammed cell death initially in neural crest precursors and the
floorplate region at early stages (Homma et al., 1994) and subse-
quently in ventral motor neuronal populations (Lance-Jones,
1982). To examine programmed cell death in the developing
spinal cord, tissue from 12.5, 14.5, and 18.5 dpc wild-type and
transgenic mice was analyzed by the TUNEL procedure. No
differences were observed between wild-type and Shh-Tg samples
even as late as 18.5 dpc (data not shown). We conclude from these
studies that hyperplasia of the dorsal spinal cord in Shh-Tg mice
is most likely a result of proliferation per se, rather than inhibition
of apoptotic cell death. Interestingly, Shh was capable of promot-
ing proliferation at 12.5 dpc, when precursors are normally com-
petent to divide, but not at 18.5 dpc, when neurogenesis is
complete. Thus a “clock” that normally temporally restricts the
period of neural precursor proliferation in wild-type embryos also
appeared to be operative in Shh-Tg mice.

Given these dramatic differences in cellular response, it was
important to establish that the Hedgehog signal transduction
pathway was active at both of these time points. Transcriptional
targets of Shh include the transmembrane receptor Patched-1 and
the zinc finger transcription factor Gli-1. Upregulation of Ptc-1
and Gli-1 was observed at both 12.5 and 18.5 dpc (Fig.
3G,H,O,P), confirming activation of Shh signal transduction.
Additionally, high levels of Shh expression (Fig. 3R) and protein
production (Fig. 3S) were maintained at 18.5 dpc. Thus, activa-
tion of Shh signal transduction was not able to promote prolifer-
ation in the spinal cord at late fetal stages.

Proliferative effects of Shh in the absence of floorplate
Induction of floorplate has been observed when notochord was
ectopically grafted in the chick neural tube (Placzek et al., 1993)
or when naive neural plate tissues were treated with the
N-terminal fragment of Shh (N-Shh) (Marti et al., 1995b; Roelink
et al., 1995), but such effects were limited to early developmental
stages (Placzek et al., 1993; Ericson et al., 1996). In addition,
proliferative effects of notochord and floorplate have been ob-

served previously (van Straaten et al., 1989; Placzek et al., 1993).
One possibility was that induction of floorplate in Shh-Tg mice
could lead to proliferation by factors other than Shh. However,
ectopic expression of HNF3b in floorplate structures was not
observed in the spinal cord at either 10.5 or 18.5 dpc (Fig. 3T), in
keeping with previous observations (Echelard et al., 1993; Epstein
et al., 1996). These data indicate that Shh expression in the spinal
cord of Shh-Tg mice occurs beyond the phase of competence to
induce floorplate (Ericson et al., 1996). At 10.5 dpc, there was
broad expression of HNF3b throughout the midbrain, indicating
ventralization (Echelard et al., 1993) (data not shown). This may
account in part for a failure in anterior neural tube closure (Fig.
2E). Because neural tube defects can have secondary effects on
proliferation, patterning, and tissue survival, we focused our
studies at the forelimb and posterior cervical spinal cord levels.

Ectopic Shh expression confers mixed dorsal–ventral
character to the embryonic spinal cord
Sonic hedgehog is normally expressed in organizing structures at
the ventral midline from early stages of neural development.
Given that Shh expression in Shh-Tg mice occurs beyond the
phase of competence to form floorplate, we investigated how
dorsal–ventral organization was subsequently affected in 12.5–
14.5 dpc embryos. Secreted factors, such as bone morphogenetic
proteins (BMPs), from the non-neural ectoderm and roofplate,
are thought to act on neural plate precursors to establish dorsal
identity (Liem et al., 1997; Lee et al., 1998). Dorsal neural
precursors can be recognized by expression of the molecular
markers Pax-3 and Pax-7 at appropriate stages in wild-type mice
at 12.5 dpc (Fig. 4A) (Tanabe and Jessell, 1996). In Shh-Tg
embryos, Pax-3 expression was maintained in the alar plate,
indicating that dorsal cell types that were established before
ectopic Shh expression were maintained despite ectopic Shh
activity (Fig. 4B). To investigate whether precursor cells with
ventral character were induced, we tested expression of the
marker Nkx-2.2. Nxk-2.2 was detected exclusively in the ventral
neural tube of 12.5 dpc wild-type embryos (Fig. 4C) but was
ectopically induced in the dorsal region of Shh-Tg embryos (Fig.
4D). Thus, populations of neural precursor cells with dorsal and
ventral character occupied a similar domain in the alar plate of
the spinal cord in 12.5 dpc Shh-Tg embryos. Pax-6 is expressed
predominantly at 12.5 dpc in the ventral ventricular zone of the
neural tube as well as in postmitotic ventral neurons (Fig. 4E).
Expression of Pax-6 can be repressed by Shh in neural plate
explants in culture (Ericson et al., 1997). However, we observed
dramatic upregulation of Pax-6 in the alar plate of Shh-Tg mice
(Fig. 4F), consistent with the findings of Monsoro-Burq et al.
(1995). Pax-6 expression appeared to be a sensitive indicator of
immature ventricular zone precursors exposed to ectopic Shh.

It was possible that hyperproliferating precursor cells in Shh-Tg
mice could be giving rise to cells with dorsal, ventral, or mixed
character. BMPs function as determinants of dorsal character in
the spinal cord and are expressed in the roofplate and adjacent
non-neural ectoderm of the embryonic neural tube (Liem et al.,
1997; Lee et al., 1998) as well as the meninges. Our results
indicated that BMP-7 expression in the meninges surrounding the
spinal cord was similar in wild-type and transgenic embryos (Fig.
4G,H). Analysis of Wnt-3a expression confirmed that a roofplate
population was maintained and expanded in Shh-Tg mice (Fig.
4 I,J). Moreover, dorsal neural tissues continued to express
GDF-7 (Fig. 4K,L) (Lee et al., 1998). Thus, BMP and Wnt gene
family members normally expressed in the roofplate were main-
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Figure 3. Analysis of spinal cord morphology, rates of precursor cell proliferation, and state of Shh signal transduction in wild-type (A–D, I–L, Q) and
Shh-Tg (E–H, M–P, R–T ) spinal cord at 12.5 and 18.5 dpc. A, E, I, M, Histological analysis of transverse sections taken at the forelimb level. E, M, Note
hyperplasia and expansion of dorsal regions of the spinal cord of Shh-Tg embryos. M, At 18.5 dpc the central canal of the spinal cord is grossly enlarged
and distended (hydromyelia). B, F, J, N, BrDU incorporation in dividing cells at (B, F ) 12.5 dpc and (J, N ) 18.5 dpc. Note that proliferative rates are
low at 18.5 dpc in both wild-type and mutant specimens. RNA in situ hybridization showing expression of Ptc-1 at 12.5 dpc (C, G) and 18.5 dpc (K, O).
Note ectopic dorsal expression in Shh-Tg tissues (G, O, arrows). Expression of Gli-1 at 12.5 dpc (D, H ) and 18.5 dpc (L, P). Note ectopic dorsal expression
in Shh-Tg spinal cord (H, P) and dorsal root ganglion (H, lef t arrow). Q–T, Tissue from 18.5 dpc fetuses. Q, R, Wild-type and Shh-Tg cervical spinal cord
tissues showing expression of Shh. S, Distribution of Shh protein demonstrated by immunostaining with anti-Shh serum (Marti et al., 1995a). T, In situ
hybridization showing expression of HNF3b. Note that expression is confined to the floorplate region (arrow).
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tained in Shh-Tg mice. To further characterize development of
dorsal populations, we tested expression of Lmx-1b (Chen et al.,
1998), which is expressed in cells throughout a large region of the
dorsal spinal cord and to a lesser extent in the floorplate (Fig. 4M).
Interestingly, we observed that the Lmx-1b domain was inter-
rupted in Shh-Tg mice (Fig. 4N). Taken together, these results
suggested that although Shh did not suppress the commitment to
early dorsal fates, hyperplastic tissue that was generated later
lacked certain dorsal characteristics. Further evidence for this
sequence was provided by examination of Brn-3a expression, a
marker of postmitotic dorsal neurons that can be suppressed when
a source of ectopic Shh is grafted into the early chick neural tube
(Fedtsova and Turner, 1997). Maintenance of Brn-3a expression
was observed in Shh-Tg embryos at 12.5 dpc, indicating that onset

of Shh exposure likely followed that of early specification of
Brn-3a1 neurons (Fig. 4, compare O and P). In summary, our
results suggested that early dorsal patterning of the neural tube
was unaffected in Shh-Tg mice, consistent with the delayed onset
of Shh activation. However, later populations of precursors ex-
posed to the ectopic Shh signal gave rise to cells expressing
ventral markers. Ultimately, the resulting structure comprised a
hyperplastic and disorganized dorsal extension superimposed on
a spinal cord in which the dorsal–ventral pattern was largely
intact.

Cells of the expanded ventricular zone in Shh-Tg mice
are blocked in an undifferentiated state
We next investigated the ultimate cell fates acquired in the
hyperplastic dorsal spinal cord tissue of Shh-Tg mice. Because

Figure 4. Analysis of dorsal–ventral organization in the spinal cord of 12.5–14.5 dpc Shh-Tg embryos. In situ hybridization was performed on 12.5 dpc
(A–F, O, P) and 14.5 dpc (G–N) spinal cord from wild-type (A, C, E, G, I, K, M, O) and Shh-Tg (B, D, F, H, J, L, N, P) embryos. Expression of Pax-3
(A, B) is maintained in Shh-Tg tissue (arrow). C, D, Nkx-2.2 is expressed in ventral ventricular zone (C, arrow) and ectopically in Shh-Tg tissue (D, arrow).
E, F, Expression of Pax-6 normally occurs in the roofplate (rp) but is strongly upregulated in the Shh-Tg tissue (F, arrow). G, H, BMP-7 expression in
the meninges was unaffected in Shh-Tg mice (arrows). I, J, Maintenance and expansion of roofplate cells indicated by expression of Wnt-3a in Shh-Tg
tissue. K, L, Expression of GDF-7 was weakly detected in wild-type mice and strongly maintained in dorsal tissues of Shh-Tg mice. M, N, Pattern of
Lmx-1b expression. Note large dorsal region in which Lmx-1b expression is interrupted. fp, Floorplate. O, P, Expression of the postmitotic neuronal
marker Brn-3a in dorsal spinal cord (arrows) and dorsal root ganglion (drg).
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Wnt-1-GAL4 expression persists throughout the antenatal period,
it is possible to characterize effects of ongoing ectopic Shh path-
way activation in tissue until late fetal stages. A landmark struc-
ture in the wild-type spinal cord is the ependymal cell-lined
central canal (Fig. 5A,D). A striking finding in Shh-Tg mice is
that the central canal is massively enlarged and often has a folded
appearance in section (Fig. 5B). Of particular interest was a
cell-dense, pseudostratified periventricular layer that was re-
vealed by the nuclear stain DAPI (Fig. 5C,E). This was reminis-
cent of the periventricular neuroepithelial germinal zone, a struc-
ture normally found only at earlier time points in spinal cord
development, which disappears as neural precursors differentiate
and emigrate from this region. Consistent with this interpreta-
tion, we never observed labeling with mature (NeuN) or imma-
ture (TuJ1) neuronal markers within the persistent periventricu-
lar zones (Fig. 5E,G) or immunolabeling with the astrocyte
marker GFAP or the oligodendrocyte markers GalC or O4 (data

not shown). Antibodies against the N-terminal fragment of Shh
(Marti et al., 1995b) revealed that Shh proteins were produced
exclusively within the enlarged VZ (Figs. 3 R,S, 5F), a region of
dramatic Ptc-1 and Gli-1 upregulation in Shh-Tg mice (Fig. 3O,P).
Further confirmation of the immature character of the VZ cells
was provided by analysis of HES-1 (Sasai et al., 1992) and Pax-6
expression. Overexpression of HES-1 in the rodent neural tube
causes delay or inhibition of differentiation (Ishibashi et al., 1994),
whereas HES-1 loss of function results in premature differentia-
tion of neural plate precursor cells (Ishibashi et al., 1995). We
observed that HES-1 expression was upregulated in the ventric-
ular zone of Shh-Tg mice (Fig. 5L). Our finding of Pax-6 expres-
sion in the same region (Fig. 5M) further suggests that VZ cells at
18.5 dpc share similar properties with ventricular zone precursor
cells during the period of neurogenesis (Tanabe and Jessell,
1996). Thus, markers normally associated with precursor popula-
tions and dividing cells present during embryogenesis revealed

Figure 5. Absence of differentiation in cells lining the enlarged ventricular zone in 18.5 dpc Shh -Tg mice. A, B, Histological analysis of wild-type ( A)
and Shh-Tg (B) spinal cord at the forelimb level with hematoxylin–eosin. Note that the ventricular zone (VZ) is massively enlarged in Shh-Tg mice
(arrows). In addition, the tissue surrounding the VZ is hyperplastic. C, Cells lining the VZ have a pseudostratified columnar appearance as revealed by
the nuclear stain DAPI. D–G, Immunocytochemistry of VZ region in wild-type (D) and Shh-Tg (E–G) tissue. D, E, The mature neuronal marker NeuN
( green) counterstained with DAPI (blue). Compare the sizes of ventricular zone (arrows) and the absence of NeuN labeling. F, Shh expression (red) was
confined to VZ cells and did not overlap NeuN1 cells ( green) in the surrounding hyperplastic tissue (arrows). G, Labeling with b-tubulin III (TuJ1, green)
is excluded from the VZ (arrows). H–M, In situ hybridization of wild-type (H–J ) and Shh-Tg ( K–M ) fetuses. H, K, Bright-field images are shown for
orientation. I, L, Expression of HES-1 was upregulated in Shh-Tg (arrow) in cells lining the VZ. J, M, Pax-6 was maintained in a similar pattern of
expression (arrow).
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ectopic induction and striking persistence into late fetal stages in
the CNS of Shh-Tg mice.

Induction of neuronal and oligodendroglial lineages in
hyperplastic tissue adjacent to Shh-producing
ventricular zone cells
The preceding results demonstrated that regions of highest
Hedgehog pathway activation formed large ventricular zone
structures comprising cells maintained in an undifferentiated
state. In contrast, neuronal differentiation clearly occurred in the
hyperplastic tissue adjacent to the persistent VZ structures in
Shh-Tg mice, as demonstrated by immunolabeling with the ma-
ture neuronal marker Neu-N (Fig. 5E). Several lines of evidence
indicate that Shh is necessary and sufficient for ventral neuron (in
particular motor neuron) and oligodendrocyte induction (Marti
et al., 1995b; Roelink et al., 1995; Chiang et al., 1996; Ericson et

al., 1996; Poncet et al., 1996; Pringle et al., 1996; Orentas et al.,
1999). Thus, we determined whether ventral motor neurons or
oligodendrocytes were induced in Shh-Tg mice.

We initially tested expression of molecular markers associated
with postmitotic ventral neuronal populations including c-ret,
Isl-1, and En-1. Although ventrally located motor and interneu-
ronal populations were clearly identified, ectopic expression of
these markers was not observed (data not shown). Some dorsally
located neurons normally express Isl-1 (Liem et al., 1997). How-
ever, additional numbers of Isl-1/2 neurons were only observed in
1 out of 5 Shh-Tg animals analyzed (Fig. 6A). One possibility was
that the dose of Shh may have been either too low or too high for
efficient Isl-1 motor neuron induction, because concentration
dependence of motor neuron induction has been demonstrated in
chick neural explant culture (Roelink et al., 1995; Ericson et al.,

Figure 6. Analysis of neuronal and oligodendroglial cell fate in the dorsal spinal cord of Shh-Tg mice. Immunocytochemistry of wild-type (E, F ) and
Shh-Tg (A–D, G–I ) 18.5 dpc fetuses. A, Isl-1/2 (red) labeled cells of the dorsal root ganglion (drg, white arrow) and a few cells in the dorsal spinal cord
in one of five specimens analyzed (hollow arrow). Note absence of counterstain with the mature neuronal marker NeuN ( green) in dorsal cells. B,
Numerous Nkx-2.21 cells were detected in regions surrounding the VZ (diagonal arrow) but not the drg. C, The area boxed in B at higher power. Not
all Nkx-2.21 cells (e.g., solid arrow) counterstained with NeuN (hollow arrow), which suggests relative immaturity. D, Region adjacent to VZ analyzed
with Lim-3 demonstrating numerous positive cells (red, arrows). E, F, Analysis of Lmx-1b populations (red) in the substantia gelatinosa region (boxed
in E, and F ) and roofplate (F, hollow arrow) counterstained with NeuN ( green). Contrast the organization of Lmx-1b1 cells in the wild-type (G) with
those of Shh-Tg spinal cord tissue. H, Labeling of cells with the dorsal marker Pax-7 ( green, hollow arrows) compared with the ventral neuronal marker
Nkx-2.2 (red, solid arrows). Cells expressing both markers were not detected. I, Oligodendrocyte precursors are induced in regions adjacent to the
Shh-expressing VZ, as indicated by the marker PDGFaR ( green). Counterstain with DAPI is blue.
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1997). We therefore analyzed tissue for the presence of Lim-3
and Nxk-2.2 neurons. These markers indicate cell populations
lying immediately dorsal and ventral to the region normally
giving rise to motor neurons in the ventricular zone (Tanabe et
al., 1998; Briscoe et al., 1999), and they can be induced with lower
and higher concentrations of N-Shh, respectively (Ericson et al.,
1997). As shown (Fig. 6B–D), we readily detected ectopic induc-
tion of Nkx-2.21 and Lim-31 cells in regions adjacent to the
enlarged ventricular zone. Thus, it is unlikely that the failure to
form Isl-11 neurons is related to the dosage of Shh in Shh-Tg
mice. A second possibility was that Shh actually inhibited the
differentiation of Isl-1 motor neurons, as suggested from in vitro
studies (Kalyani et al., 1998). We therefore analyzed Shh-Tg
dorsal spinal cord cells in dispersed explant cultures for genera-
tion of Isl-1 neurons. Although numerous Lim-31 and Nkx-2.21
neurons were detected, we failed to detect Isl-11 neurons after
5–7 d in culture (data not shown). Thus, the most likely explana-
tion for the lack of Isl-1 motor neuron induction is that temporal
restrictions on competence are exceeded by the time of Shh
production in Shh-Tg mice.

We next investigated the dorsal nature of tissue in Shh-Tg mice
at 18.5 dpc with the marker Lmx-1b. Although Lmx-1b is ex-
pressed in the floorplate and dorsal spinal cord at embryonic
stages (Fig. 4J), Lmx-1b antisera only labels dorsal cells at both
embryonic and fetal stages (data not shown). In the wild-type
fetus, Lmx-1b is detected broadly in neurons of the substantia
gelatinosa (orange/yellow) and the roofplate (red) (Fig. 6F). In
contrast, the distribution of Lmx-1b cells is disorganized in
Shh-Tg mice (Fig. 6G). We conclude from this that Lmx-1b cells
persist in the dorsal spinal cord and are interspersed with cells of
ventral character (e.g., Nkx-2.21 neurons). These results do not
rule out the possibility that cells with mixed dorsal–ventral char-
acter were elaborated in Shh-Tg mice. To assess this, we immu-
nolabeled dorsal spinal cord tissue with antibodies against the
ventral neuronal marker Nkx-2.2 and the dorsally restricted
marker Pax-7 (Tanabe and Jessell, 1996). As shown (Fig. 6H), we
did not detect cells that expressed both markers.

Oligodendrocyte precursors arise from a similar region of the
neural tube that gives rise to motor neurons (Sun et al., 1998) and
can be induced at an identical concentration of N-Shh in neural
explant culture (Pringle et al., 1996). To determine whether
oligodendrocyte precursors were induced in Shh-Tg mice, we
performed immunolabeling with PDGFaR (Pringle and Richard-
son, 1993). As shown in Figure 6I, we observed numerous
PDGFaR1 cells in regions adjacent to the VZ, the source of
ectopic Shh. Induction of O41 cells was observed in a similar
distribution; however, GalC1 oligodendrocytes were only
detected in the axons of the dorsal funiculus (data not shown).
These results confirmed that the oligodendrocyte lineage was
induced in the hyperplastic tissue surrounding the VZ in
Shh-Tg mice.

DISCUSSION
Ectopic Hedgehog signaling has been implicated in the etiology
of CNS tumors (Hahn et al., 1996; Johnson et al., 1996); however,
mechanisms underlying Hedgehog-mediated tumorigenesis are
poorly understood. We have used a GAL4/UAS bigenic system
(Ornitz et al., 1991; Brand and Perrimon, 1993; Wang et al.,
1997), which allows for the production of stable transgenic lines to
produce large numbers of embryos that express a lethal trans-
gene, to explore the effects of maintaining ectopic Shh activity in
the dorsal neural tube as a model of deregulated Hedgehog

signaling in the developing CNS. Analysis of bigenic embryos
revealed dramatic neural hyperplasia and enhanced proliferative
levels at 12.5 dpc. However, at 18.5 dpc, neural tissue was post-
mitotic, despite the fact that cells were exposed to Shh and still
responsive, as demonstrated by upregulation of two general tran-
scriptional targets, Ptc-1 and Gli-1.

Shh proliferative effects in the developing spinal cord
Several studies using primary CNS precursor cell cultures have
demonstrated proliferative effects of the biologically active N-Shh
protein after treatment for 36–48 hr (Jensen and Wallace, 1997;
Kalyani et al., 1998). Whether Shh functions as a direct mitogen
in vitro, however, has not been established (Jensen and Wallace,
1997). In a transgenic gain-of-function model, resolving whether
proliferative effects of Shh are direct is difficult, because Shh
could lead to induction of other mitogens (e.g., Wnts/BMPs)
(Dickinson et al., 1994). Unfortunately, it is not feasible to re-
move all Wnt/BMP function from this model to determine
whether the phenotype also depends on these activities. However,
the expansion and patterning abnormalities clearly require Shh,
and the induction of ventral cell types (e.g., Nkx-2.2) is most
consistent with direct Shh signaling. Moreover, our observations
are entirely consistent with a number of in vitro studies of Shh
proliferative effects on CNS precursors (Jensen and Wallace,
1997; Kalyani et al., 1998; Wechsler-Reya and Scott, 1999) and
the finding that Patched mutations in mice result in highly prolif-
erative cerebellar tumors (Goodrich et al., 1997). An obvious
question remains whether Shh has a role in regulating prolifera-
tion during normal spinal cord development, as has been reported
recently for cerebellar granule cells (Wechsler-Reya and Scott,
1999).

Our findings from analysis of proliferation in vivo indicate that
CNS precursors are competent to proliferate in response to
activation of the Shh signal transduction pathway only at selected
periods during embryogenesis. Overexpression of the Hedgehog
transcriptional target Gli-1 resulted in increased levels of prolif-
eration in the developing mouse brain (Hynes et al., 1997) and
Xenopus ectoderm (Dahmane et al., 1997); moreover, GLI up-
regulation has been associated with brain tumors and basal cell
carcinoma in humans (Dahmane et al., 1997). We have used Gli-1
and Patched-1 to confirm activation of Shh signal transduction at
both 12.5 and 18.5 dpc in the CNS of Shh-Tg mice. However,
given that levels of proliferation were significantly elevated only at
embryonic stages, it is clear that Gli-1 overexpression is itself
insufficient for proliferation in neural tissues at 18.5 dpc. Rather,
it is possible that Gli-1 acts in concert with other determinants of
cell cycle regulation to effect a proliferative state, as has been
suggested previously (Ruppert et al., 1991). In preliminary anal-
ysis, we have observed that explant cultures of dorsal spinal cord
tissue from 17.5 dpc Shh-Tg fetuses resume proliferation after 3 d
in serum-free media. Further work will be required to determine
whether dispersal of such tissue liberates environmental (i.e.,
secreted or matrix-associated) signals that antagonize Shh prolif-
erative effects.

Shh signaling prevents differentiation of
neural precursors
Although our results are consistent with a mitogenic role for Shh
in the neural tube, a second possibility is that proliferative effects
are an indirect consequence of preventing or delaying differenti-
ation of neural precursors. A ventricular zone germinal matrix-
like structure comprising primitive undifferentiated yet nondivid-
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ing cells persisted in the dorsal spinal cord of Shh-Tg mice. At
18.5 dpc, cells in these regions expressed markers indicative of
mitotically active neural precursors such as Pax-6, HES-1, and
Dbx-1. Whether these cells represent true multipotential precur-
sors or are restricted in their potential to form neural cell types is
under study.

Our results suggest possible mechanisms downstream of Shh
signaling that could function to inhibit neuronal differentiation.
In Shh-Tg mice, superimposition of endogenous dorsalizing sig-
nals (e.g., GDF-7, BMP-7) with Shh resulted in a broad overlap
of the ventral marker Nkx-2.2 with dorsally expressed Pax-3 at
12.5 dpc. We evaluated whether the mixed signals in the dorsal
compartment might have prevented differentiation of cells along
a coherent pathway. However, we did not detect any cells coex-
pressing the ventral and dorsal markers Nkx-2.2 and Pax-7, mak-
ing such a mechanism unlikely. Another possibility is that persis-
tent expression of Pax-6 or other factors associated with neural
precursors could institute a block to terminal differentiation.
Upregulation of HES-1, in particular, suggests that such a mech-
anism may be functioning in Shh-Tg mice. Interestingly, Kalyani
et al. (1998) and Wechsler-Reya and Scott (1999) recently re-
ported that Shh can directly inhibit differentiation of neuronally
restricted precursor cells in vitro.

Absence of ectopic floorplate in Shh-Tg mice
We determined that Shh effects on proliferation and differentia-
tion were not mediated by ectopic floorplate. Conversion of the
entire spinal cord to floorplate has been observed in Patched-
deficient mice (Goodrich et al., 1997), establishing the compe-
tence of the lateral (future dorsal) neural plate to respond to Shh
signaling at early stages. The kinetics of Wnt-1/GAL4-X UAS-Shh
expression initiates Shh expression at ;9.5–10 dpc in the spinal
cord, when dorsalizing signals (e.g., from roofplate and non-
neural ectoderm) (Liem et al., 1997; Lee et al., 1998) have already
commenced. In the face of non-naive tissues, Shh is inadequate to
convert the dorsal spinal cord to floorplate (Placzek et al., 1993;
Ericson et al., 1996). Indeed, maintenance of Wnt-3a and GDF-7
expression in Shh-Tg mice indicates that important dorsal orga-
nizing properties of the roofplate cannot be suppressed by Shh
beyond an early naive phase.

Developmental neuropathology of CNS tumors
Given that CNS tumors can arise in tissues well after primary
patterning events have taken place, it is relevant to consider the
temporal role of the Hedgehog signaling pathway. Our results
indicate that activation of Hedgehog signaling at 10.5 dpc in
neural tissue that has already acquired dorsal character can result
in mixed and complex morphology. The persistent and massively
enlarged ventricular zone in Shh-Tg mice was surrounded by
hyperplastic and largely nestin-positive tissues comprising both
dorsal and ventral neuronal cell types. For example, we observed
patches of cells expressing the dorsal marker Lmx-1b adjacent to
tissue containing ectopic Lim-31 and Nkx-2.21 neurons. Al-
though Shh is capable of ventral motor neuron induction at early
developmental stages, we did not detect induction of Isl-11 motor
neurons, most likely because Shh is produced at 10.5 dpc in
Shh-Tg mice, beyond the period when neural tube is capable of
forming ectopic floorplate or motor neurons. In addition, foci of
both astrocytes and oligodendrocyte were also observed.

Whether these findings are relevant as an indication of effects
of active Hedgehog signal transduction contributing to a tumor-
igenic state in humans requires further analysis. Although inac-

tivating mutations of PATCHED can result in medulloblastoma, a
tumor of cerebellar granule cells, the spinal cord is not affected in
such patients. Nevertheless, Shh causes proliferation in spinal
cord precursor cells in vitro (Kalyani et al., 1998) and in vivo
(present study). Our results suggest that severe temporal restric-
tions on cellular competence could limit a putative “tumorigenic
window” to only a few days of embryogenesis in the spinal cord.
In this regard it is interesting to note that cerebellar granule cells
are the latest population of CNS precursors to undergo terminal
differentiation. Thus it is possible that the relatively long period
of granule cell competence may facilitate stochastic events re-
quired for tumorigenic transformation in response to Hedgehog
pathway activation in humans and mice.
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