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Loss of Synaptic Depression in Mammalian Anterior Cingulate

Cortex after Amputation
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Two forms of activity-dependent long-term depression (LTD) in
the CNS, as defined by their sensitivity to the blockade of
NMDA receptors, are thought to be important in learning, mem-
ory, and development. Here, we report that NMDA receptor-
independent LTD is the major form of long-term plasticity in the
anterior cingulate cortex (ACC). Both L-type voltage-gated cal-
cium channels and metabotropic glutamate receptors are re-
quired for inducing LTD. Amputation of a third hindpaw digit in

an adult rat induced rapid expression of immediate early genes
in the ACC bilaterally and caused a loss of LTD that persisted
for at least 2 weeks. Our results suggest that synaptic LTD in
the ACC may contribute to enhanced neuronal responses to
subsequent somatosensory stimuli after amputation.
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The adult human somatosensory cortex is often represented with
a distorted human figure on its surface to illustrate the somato-
topic map. For a long period of time, it had been thought that this
figure remained relatively stable in adults. Studies over the past
20 years have dramatically changed this view (Wall, 1988; Kaas,
1991; Gilbert and Wiesel, 1992; Merzenich and Sameshima, 1993;
Ramachandran, 1993; Weinberger, 1995; Gilbert, 1996; Buono-
mano and Merzenich, 1998; Kilgard and Merzenich, 1998). Cor-
tical representations in the mammalian brain are rather dynamic
and can be modified by experience. Not only do plastic changes
occur in adults, but they can happen on a rapid time scale (from
a few minutes to several hours). It has been proposed that use-
dependent changes in synaptic strength, such as long-term poten-
tiation (LTP) and long-term depression (LTD), may serve as key
synaptic mechanisms of cortical plasticity (Tsumoto, 1992; Bliss
and Collingridge, 1993; Bear and Malenka, 1994; Linden, 1994;
Lisman, 1994; Larkman and Jack, 1995; Nicoll and Malenka,
1995; Singer, 1995; Bear and Abraham, 1996).

Although cortical reorganization acts as an adaptive mecha-
nism during development and learning, it could also play a det-
rimental role in traumatic events, such as the loss of a limb. It has
been demonstrated that cortical reorganization occurs after limb
or digit amputation (Wall, 1977; Merzenich et al., 1984; Pons et
al., 1991; Ramachandran et al., 1992, 1995; Florence et al., 1998;
Jones and Pons, 1998; Kaas, 1998; Merzenich, 1998). Most human
amputees experience phantom limb sensation or phantom pain
(Sherman et al., 1980; Melzack, 1990; Jensen and Rasmussen,
1994), and the amount of cortical reorganization correlates with
the extent of phantom pain (Flor et al., 1995; Birbaumer et al.,
1997; Lorenz et al., 1998). A critical question is whether synaptic
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mechanisms, which are implicated in the learning process, may
contribute to plastic changes in the CNS after amputation.

The anterior cingulate cortex (ACC) forms a large region
around the rostrum of the corpus callosum and is involved in
emotional and attentive responses to internal and external stim-
ulation (Devinsky et al., 1995; Rainville et al., 1997; Tolle et al.,
1999). Recently, neuroimaging and electrophysiological studies in
humans have shown that pain activates several limbic sites, in-
cluding the ACC (Talbot et al., 1991; Vogt et al., 1996; Davis et
al., 1997; Derbyshire et al., 1998; Lenz et al., 1998; Paulson et al.,
1998; Hutchison et al., 1999). Further experiments demonstrate
that the ACC receives nociceptive inputs in animals (Kenshalo et
al., 1988; Sikes and Vogt, 1992; Traub et al., 1996; Vogt et al.,
1996; Koyama et al., 1998). A previous report showed that only
short-term potentiation but not LTP was recorded in vitro in slices
from the ACC (Sah and Nicoll, 1991). LTD has not been inves-
tigated. In the present study, we first examined whether LTD
serves as a form of synaptic plasticity in slices of adult ACC. We
then examined the possible effect of hindpaw digit amputation on
the synaptic plasticity in the ACC.

MATERIALS AND METHODS

In vitro electrophysiology. The ACC slices (200 wm) from 7- to 21-d-old
Sprague Dawley rats (Harlan Sprague Dawley, Indianapolis, IN) were
used for whole-cell patch-clamp recordings. Under visual guidance re-
cordings in individual layer II/III, cortical pyramidal cells were made
using 3-5 M( electrodes without fire polishing. Recording electrodes
contained (in mm): 110 Cs-MeSO; 5 MgCl,, 1 EGTA, 40 HEPES
sodium, 2 MgATP, and 0.1 Na;GTP, pH 7.2. The osmolarity was ad-
justed to 295-300 mOsm. Membrane potential was clamped at —70 mV
(liquid junction potential not corrected). Series resistance was 15-40 M{)
and monitored throughout the experiments. Synaptic EPSCs were
evoked by a bipolar stimulating electrode placed at layer V. Picrotoxin
(100 ™M) was added to the perfusion solution. Currents were filtered at
1 kHz and digitized at 5 kHz.

For field potential recordings, adult male Sprague Dawley rats (8—10
weeks) were anesthetized with 2% halothane and decapitated. Coronal
ACC slices, 400-um-thick, were rapidly prepared and maintained in an
interface chamber at 28°C in which they were perfused with oxygenated
(95% O, and 5% CO,) artificial CSF (ACSF) consisting of (in mm): 124



Wei et al. « Synaptic Plasticity After Amputation

Whole-cell patch

EPSP recording
recording electrode

electrode

Stimulating electrode

1 uM DPDPE

washout

’25 pA

10 ms

control

NaCl, 4.4 KCI, 25 NaHC O3, 1.0 NaH,PO;, 2.0 CaCl,, 2.0 MgSO,, and 10
D-glucose. A bipolar tungsten stimulating electrode was placed in layer V,
and extracellular field potentials were recorded with a glass microelec-
trode (filled with ACSF) inserted into layer II/III. Responses were
evoked at 0.02 Hz. In some experiments, two-pathway experiments were
performed. A surgical cut was made between two stimulating electrodes.
Responses to paired-pulse stimulation (with a 50 msec interval) were
used to confirm the independence of the two pathways. Low-frequency
stimulation was only delivered to one pathway. In other experiments, we
also recorded synaptic responses from the parietal cortex (PC) (see Fig.
7). Drugs were freshly prepared: voltage-gated L-type calcium channel
blocker nimodipine (10 um), NMDA receptor antagonist AP-5 (100 um),
and metabotropic glutamate receptor (mGluR) antagonist (+)-a-methyl-
4-carboxylphenylglycine (MCPG) (500 uM). Slices were pretreated with
a drug for at least 30 min before low-frequency stimulation.
Immunocytochemistry. Under brief anesthesia with halothane, the
third digit of the unilateral hindpaw of adult male rats was amputated. At
15 min (n = 3 rats), 45 min (n = 6), 90 min (n = 4), 120 min (n = 4),2d
(n = 4), and 2 weeks (n = 4) after the amputation, rats were deeply
anesthetized with halothane and perfused transcardially with 100 ml of
saline, followed by 500 ml of cold 0.1 M phosphate buffer (PB) containing
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10 uM CNQX

control

25 pA Figure 1. Excitatory synaptic trans-

2 mission in the ACC. A, Laminar distri-

10 bution of GluR2/3-immunoreactive
ms

neurons in the ACC (left) and high
magnification of the labeled pyramidal
neurons and their proximal dendrites in
layer II/III from the left photograph
(right). Scale bars: left, 250 um; right, 50
um. B, Diagram of a cingulate cortical
slice showing the placement of whole-
cell patch recording, field EPSP record-
ing, and stimulating electrodes. C, D,
Whole-cell patch recording of EPSCs
recorded at —70 mV holding potential
in normal medium (control) or 10 min
after addition of 10 um CNQX (C) or 1
uM DPDPE (D). In a total of five ex-
periments, CNQX blocked EPSCs, and
DPDPE inhibited EPSCs to 57.3 *
11.3% of control.

4% paraformaldehyde. Sham operations without amputation were per-
formed as controls (n = 10). The brains were removed, post-fixed for 4
hr, and then cryoprotected by storing in 30% sucrose in 0.1 m PB for 2 d
at 4°C. Coronal sections (25-um-thick) through the ACC were cut using
a cryostat. Sections from sham and experimental animals were processed
simultaneously for immunostaining of three immediate-early gene
(IEG)-encoded proteins. Primary rabbit antibodies used included: anti-
c-Fos  (1:20,000; Oncogene Science, Uniondale, NY), anti-
phosphorylated cAMP response element-binding protein (pCREB) (1:
1000; Upstate Biotechnology, Lake Placid, NY), and anti-NGFI-A (1:
5000; a gift from Dr. Jeffrey D. Milbrandt at Washington University, St.
Louis, MO). Secondary reactions with biotinylated goat anti-rabbit im-
munoglobulin (1:400; Vector Laboratories, Burlingame, CA) for 1 hr
were followed by avidin-biotin—peroxidase complexes (1:100; Vector
Laboratories) for 1 hr. Diaminobenzadine with nickel was used as the
final chromogen. In addition, for identification of AMPA receptor dis-
tribution in the cortical area, some ACC sections from normal rats (n =
3) were performed with anti-GluR2/3 antibody(1:200; Chemicon, Te-
mecula, CA) and then processed as above. Alternate sections, incubated
in the absence of a primary antibody as an immunocytochemical control,
showed no immunostaining. Sections from the bilateral ACC from 1.0
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mm rostral to 0.8 mm caudal to bregma (Paxinos and Watson, 1997) were
used for quantity. The number of IEG-expressed cells within an area of
750 X 600 wm, including layers II-VI of the ACC, was plotted and
counted. Two-way ANOVA was used to compare the number of labeled
cells in different groups of animals. Post hoc Scheffe F test was used to
identify significant differences. p < 0.05 was considered statistically
significant.

RESULTS

Glutamate-mediated postsynaptic transmission in

the ACC

Previous studies indicated that glutamate is the major fast exci-
tatory neurotransmitter in the ACC (Sah and Nicoll, 1991;
Tanaka and North, 1994). Thus, we first examined distribution of
immunoreactivity for glutamate receptor subunit 2/3, a represen-
tative of AMPA receptors. Many neurons in layers II-V of the
ACC area were labeled. Most ACC pyramidal neurons in layers
II/III and V display intense GluR2/3 immunostaining in the
perikarayal cytoplasm and proximal dendrites (Fig. 14). Whole-
cell patch-clamp recordings from ACC pyramidal cells showed
that fast EPSCs were elicited by delivering focal electrical stim-
ulation to layer V (Fig. 1B). When cells were held at —70 mV,
EPSCs were completely blocked by the AMPA /kainate receptor
antagonist CNQX (10 um) (Fig. 1C). Consistent with a previous
report (Tanaka and North, 1994), EPSCs were subject to opioid
modulation. [p-Pen*°]-enkephalin (DPDPE) (1 um), a selective 8
receptor agonist, significantly inhibited EPSCs (n = 5; 57.3 =
11.3% of control; p < 0.05) (Fig. 1D).

LTD induced by low-frequency stimulation

Excitatory synaptic transmission in slices from the ACC under-
goes LTD. Field EPSPs recordings from ACC slices of adult rats
showed that fast EPSPs induced by a bipolar electrode placed in

layer V were mediated by AMPA /kainate receptors, because 10
uM CNQX blocked the response (n = 5). A stimulation protocol
for inducing LTD in both the hippocampus and visual cortex (1
Hz for 15 min) (Dudek and Bear, 1992; Mulkey and Malenka,
1992; Kirkwood et al., 1993) was used. Low-frequency stimula-
tion produced long-lasting depression of synaptic responses (Fig.
2A,B). Depression was frequency related. Repetitive stimulation
at 5 Hz but not 10 Hz with the same number of pulses (n = 900)
produced depression of synaptic responses (Fig. 2C.D).

To test whether LTD in the ACC is input specific, we per-
formed two-pathway experiments in some slices (Fig. 3). Condi-
tioning stimulation (1 Hz for 15 min) was only delivered to one
pathway. As showed in Figure 3B-D, whereas synaptic responses
were significantly depressed in the stimulated pathway (n = 6;
52.0 = 7.3%; p < 0.01 compared with EPSPs before the stimu-
lation), synaptic responses in the second, independent pathway
were not significantly affected (101.1 = 6.2% of control). This
result indicates that LTD in the ACC is input-specific.

Several types of postsynaptic receptors or channels have been
reported to contribute to the induction of LTD, including voltage-
gated calcium channels, NMDA receptors, and mGluRs (Bashir
et al., 1993; Kato 1993; Boshakov and Siegelbaum, 1994; Cum-
mings et al., 1996; Deisseroth et al., 1996; Oliet et al., 1997). To
test their roles in cingulate LTD, we performed experiments in
the presence of selective antagonists. Nimodipine (10 um) com-
pletely blocked the induction of LTD (Fig. 44), although basal
synaptic responses were not significantly affected. In contrast, 100
uM AP-5 did not affect LTD (Fig. 4B). MCPG (500 um), a
metabotropic glutamatergic receptor antagonist, also blocked
LTD (Fig. 4C). These results suggest that both L-type calcium
channels and mGluRs are critical for the induction of LTD in the
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Figure 3. Two-pathway experiments showed that LTD is input-specific.
A, Diagram of an ACC slice showing the placement of stimulating
electrodes in two divided pathways (S, $2). B, Representative records of
the EPSP recorded before and 30 min after 1 Hz stimulation in the
stimulated pathway (S1) and control pathway (S2). C, D, Responses to
paired-pulse stimulation (with a 50 msec interval) were used to confirm
the pathway-dependent induction of LTD (r = 6). Stimulation of S1 led
to LTD only in the S1 pathway as shown by the synaptic response (C). D,
Summary results of two-pathway experiments (n = 6).

ACC. LTD was not affected in the presence of picrotoxin (100
uM), a GABA, receptor antagonist, indicating that inhibitory
influences are not required for LTD (Fig. 4D).

Expression of immediate early genes after amputation

Previous studies in the somatosensory cortex showed that a large-
scale functional reorganization occurs after peripheral amputa-
tion in both adult animals and humans (Wall, 1977; Merzenich et
al.,, 1984; Pons et al.,, 1991; Ramachandran et al., 1992, 1995;
Florence et al., 1998; Jones and Pons, 1998; Kaas, 1998; Mer-
zenich, 1998). However, potential plastic changes within the ACC
have not been studied. In contrast to somatosensory cortex neu-
rons, which have topographical representation of the sensory
receptive field of the body, ACC neurons often have a diffuse
receptive field and respond to stimuli applied to anywhere on the
body surface (Vogt et al., 1979; Kenshalo et al., 1988; Devinsky et
al., 1995; Sikes and Vogt, 1992). As a marker for synaptic activity
in the ACC, the expression of two major IEGs, c-fos and
NGFI-A, were examined at different time points after the ampu-
tation. c-fos and NGFI-A are transcription factors that are mem-
bers of the leucine zipper and zinc finger families, respectively
(Morgan and Curran, 1991; Munglani and Hunt, 1995). In ani-
mals receiving sham treatment, there was little expression of
c-Fos and a basal level of NGFI-A (Fig. 54, Table 1). However,
we found that single-digit amputation in rats induced significant
bilateral increases in the numbers of ACC cells expressing c-Fos
or NGFI-A from 15 min to 2 d, with maximum expression at 45
min (Fig. 54, Table 1). c-fos has Ca*"/CRE-like sequences in its
promoter regions, and its transcription is regulated by pCREB
(Ginty et al., 1993). Significant increases in the expression of
pCREB were also found bilaterally in ACC after amputation
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compared with a basal level in sham-operated rats (Fig. 5B, Table
1). Unlike c-Fos and NGFI-A, the level of pCREB 2 weeks later
was lower than that in normal rats.

Loss of LTD after amputation

LTD is modified during development, learning, and stress in the
neocortex and hippocampus (Abraham and Bear, 1996; Hensch
and Stryker, 1996; Kirkwood et al., 1996; Xu et al., 1997; Feldman
et al., 1998; Rittenhouse et al., 1999). We next tested whether
LTD in the ACC may be affected in rats receiving a third-digit
amputation. In vitro experiments were performed in slices ob-
tained from adult rats 45 min after amputation, a time when
significant increases in the expression of the three IEGs were
found (Table 1). LTD was almost completely abolished in slices
taken at 45 min after amputation (Fig. 6B). The changes were
bilateral; slices obtained from the cingulate cortex ipsilateral or
contralateral to the amputated hindpaw digit showed a similar
loss of LTD (ipsilateral, n = 3; contralateral, n = 5). Similar
results were obtained with stimulation at another frequency (5 Hz
for 3 min) (n = 5; data not shown). The loss of LTD persisted for
many days after amputation. In slices taken 2 d (n = 5; 115.1 =
10.7% of control 30 min after the stimulation) or 2 weeks (Fig.
6C) after amputation, LTD in the ACC was abolished.

To test whether the loss of LTD after amputation may be
restricted to the ACC, we performed the same experiment in the
PC from normal and amputated animals. Low-frequency stimu-
lation (1 Hz, 15 min) produced long-lasting depression of synaptic
responses in slices from both groups of rats (Fig. 7).

DISCUSSION

Peripheral deafferentation or amputation could cause massive
plastic changes within cortical and subcortical structures (Kaas et
al., 1999). For early changes, it is likely that plastic changes may
occur between existent neuronal synapses, and for late changes,
structural changes within the CNS, including formation of new
synapses, could occur. In the present study, we found that ampu-
tation of a single digit of one hindpaw caused rapid and prolonged
plastic changes in sensory synaptic responses. Altered synaptic
plasticity in the ACC, a region critical for processing pain infor-
mation in the CNS, may serve as an important synaptic mecha-
nism for enhanced nociceptive transmission after deafferentation
or amputation.

LTD caused by repetitive stimulation in adult

cingulate cortex

Two forms of LTD have been reported in the CNS, distinguished
by their sensitivity to the blockade of NMDA receptor antago-
nists: NMDA receptor-dependent LTD and NMDA receptor-
independent LTD (see Boshakov and Siegelbaum, 1994; Deis-
seroth et al., 1996; Oliet et al., 1997). Physiological roles of
NMDA receptor-dependent LTD have been indicated in several
areas, such as in the visual cortex and hippocampus (Bear and
Malenka, 1994). In this study, we have found that NMDA
receptor-independent LTD is the major form of synaptic depres-
sion in slices from the ACC of adult rats. Unlike the posterior
cingulate cortex, LTD in the ACC did not require activation of
NMDA receptors (Hedberg and Stanton, 1996). In contrast,
activation of L-type calcium channels and mGluRs is required for
the induction of LTD.

More importantly, we demonstrate that slices of adult rats,
after a third hindpaw digit amputation, fail to undergo synaptic
depression induced by repetitive, low-frequency stimulation. Sev-
eral mechanisms may contribute to the loss of LTD after ampu-
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0.01 compared with the control group.

tation. First, occlusion of synaptic transmission could be induced
by cortical depression after amputation. However, this seems
unlikely to be the case. Basal synaptic responses to presynaptic
transmission do not seem to be significantly different from that of
control animals. More importantly, we found that synaptic re-
sponses to peripheral electrical stimulation were enhanced after
amputation (our unpublished observations), although the exact
central loci for these changes have not been determined. Second,
amputation could cause plastic changes in the postsynaptic cells
and thus affect the induction of LTD. We have shown that
amputation leads to a large-scale activation of neurons in the
ACC and potentiation of synaptic transmission. Therefore, it is
likely that enhanced postsynaptic excitability contributes to the
failure to induce LTD after amputation. Previous studies in both
hippocampus and visual cortex showed that postsynaptic mem-
brane depolarization could determine whether synaptic transmis-
sion undergoes potentiation or depression (Stanton and Se-
jnowski, 1989; Artola et al., 1990; Stevens, 1990). Our results
using different kinds of I EG staining also found that many cells in
the ACC showed plastic changes of synaptic activity after ampu-
tation. We favor the second possibility that postsynaptic changes
affect the induction of LTD. However, we cannot exclude possible
unknown presynaptic mechanisms, which could also contribute to
the loss of LTD by amputation.

Plasticity in the ACC after amputation

In primitive sensory neurons of invertebrates, both condition-
related learning and injury of peripheral axons are reported to
cause an increase in excitability (Walters et al., 1991; Woolf and
Waters, 1991). In mammalians, similar changes have been studied
in the dorsal horn of the spinal cord (Woolf, 1992). Prolonged
activation of nociceptive afferent fibers or tissue and nerve injury
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induced a long-term increase in sensory transmission in dorsal
horn neurons, including ascending projection neurons. The in-
volvement of supraspinal structures has been less investigated,
although there is cumulative evidence suggesting that many su-
praspinal structures, including those that send descending projec-
tion pathways, play an important role after tissue or nerve injury
(e.g., amputation). The present study shows that synaptic plastic-
ity of excitatory glutamatergic transmission in the ACC was
altered after amputation of a single digit of the hindpaw. This,
together with numerous reports using divergent approaches
(Katz and Melzack, 1990; Merzenich and Sameshima, 1993),
suggests that memory mechanisms in both invertebrates and
vertebrates may have evolved from animals’ adaptive responses to
injury. Changes in glutamatergic synaptic responses have been
implicated in development, learning, and memory storage
(Tsumoto, 1992; Bliss and Collingridge, 1993; Bear and Malenka,
1994; Linden, 1994; Lisman, 1994; Larkman and Jack, 1995;
Nicoll and Malenka, 1995; Singer, 1995; Bear and Abraham,
1996). Our results support previous evidence of cortical reorga-
nization in the somatosensory cortex during learning or after
amputation (Wall, 1977; Merzenich et al., 1984; Pons et al., 1991;
Ramachandran et al., 1992, 1995; Florence et al., 1998; Jones and
Pons, 1998; Kaas, 1998; Merzenich, 1998).

Functional implications

Studies from animals and humans consistently suggest that the
ACC plays an important role in nociception and pain, in addition
to its important roles in other physiological functions (Devinsky
et al., 1995). Lesion of the rat medial frontal cortex, including the
ACC, significantly increased hot-plate latency (Pastoriza et al.,
1996). In patients with frontal lobotomies or cingulotomies, the
unpleasantness of pain is abolished (Foltz and White, 1962; Hurt
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Figure 5. Potentiation of IEG expres-
sion in the ACC after the amputation.
Photomicrographs showing expression
of c-Fos and NGFI-A (A4) and phos-
phorylation of CREB (B) in the coro-
nal ACC sections from sham animals
(Ctrl) and animals at different times
after the amputation of the unilateral
hindpaw third digit. Scale bars, 500
pm. The numbers of c-Fos-, NGFI-A-,
and pCREB-immunoreactive cells in-
creased bilaterally after the amputa-
tion (see Table 1 for summary).

Table 1. Expression of c-Fos, pCREB, and NGFI-A in the rat ACC after unilateral amputation of a single digit of the hindpaw

. Amputation
Baseline
(n = 10 rats) 45 min (n = 6) 2d(n=4) 2 weeks (n = 4)
c-Fos Contralateral 185 217 + 48* 115 = 22* 38+ 15
Ipsilateral 19+4 173 £ 52% 63 + 18* 184
pCREB Contralateral 530 = 63 1011 = 112* 769 *= 60* 39 = 20*
Ipsilateral 516 = 57 910 * 143* 706 * 81* 29 + 14*
NGFI-A Contralateral 250 =27 494 + 86* 585 £ 57* 282 + 64
Ipsilateral 255 + 38 367 + 57* 545 + 54* 269 *+ 49

Data are expressed as mean * SE. *p < 0.05 compared with the expression level in sham animals.
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Figure 6. Long-lasting loss of LTD in the ACC after the amputation.
LTD recorded from ACC slices in sham animals (A4) (n = 5; 284 *
14.0%) and rats at 45 min (B) (n = 7; 76.5 = 7.8%; p < 0.05 compared
with the control group) and 2 weeks (C) (n = 5; 91.1 = 18.3%; p < 0.05
compared with the control group) after the amputation. Inset in C,
Representative records of the EPSP recorded before and 30 min after 1
Hz stimulation.

and Ballantine, 1973; Yarnitsky et al., 1988; Stanton and Se-
jnowski, 1989; Artola et al., 1990; Stevens, 1990; Davis et al., 1994;
Talbot et al., 1995; Craig et al., 1996). Electrophysiological re-
cordings from both animals and humans demonstrate that neu-
rons within the ACC respond to noxious stimuli, including noci-
ceptive specific neurons (animals: Devinsky et al., 1995; Kenshalo
et al., 1988; Sikes and Vogt, 1992; Vogt et al., 1979; humans:
Hutchison et al., 1999). Neuroimaging studies further confirm
these observations and show that the ACC, together with other
cortical structures, are activated by acute noxious stimuli (Talbot
et al., 1991; Vogt et al., 1996; Davis et al., 1997; Derbyshire et al.,
1998; Lenz et al., 1998; Paulson et al., 1998; Hutchison et al.,
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Figure 7. Selective loss of LTD in the ACC but not the PC after the
amputation. 4, Diagram of a cortical slice showing the placement of
recording and stimulating electrodes in the PC. B, Repetitive stimulation
(1 Hz, 15 min; open bar) induced a long-lasting depression of synaptic
response in sham animals (open squares; n = 3; 27.6 = 6.3% of control;
p < 0.01). At 45 min after amputation of the third hindpaw digit, similar
LTD was induced in slices of PC ( filled squares; n = 4;24.0 = 11.0%). C,
The amputation produced a selective loss of LTD in the ACC but not the
PC areas in the same cortical slices.

1999). Our present studies using IEG-encoded protein immuno-
staining techniques and neuronal plasticity showed that neurons
within the ACC could show plastic changes to amputation. In the
same animals, behavioral hyperalgesia to noxious stimuli was also
observed (our unpublished observations). Although it is unlikely
that changes in synaptic plasticity within the ACC alone explain
behavioral hyperalgesia, long-lasting changes within the ACC
could certainly contribute to various pain-related functional al-
terations after amputation. In the present study, we did not
address potential changes in other cortical and subcortical areas,
such as the somatosensory cortex, thalamus, and spinal cord. It is
possible that similar plastic changes may occur in these areas as
well. Understanding plastic changes within the areas involved in
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pain transmission and modulation after amputation could allow
us to treat phantom pain in human amputees. From a clinical
perspective, our studies provide a cellular model for studying
synaptic mechanisms for phantom pain. These synaptic changes
provide a probe to evaluate the effect of different drugs that could
be potentially useful for preoperative and postoperative treat-
ment (Jacobson and Chabal, 1989; Katz and Melzack, 1990;
Richmond et al., 1993; Woolf and Chong, 1993).
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