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Null Mutation of c-fos Causes Exacerbation of
Methamphetamine-Induced Neurotoxicity
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Methamphetamine neurotoxicity has been demonstrated in ro-
dents and nonhuman primates. These neurotoxic effects may
be associated with mechanisms involved in oxidative stress
and the activation of immediate early genes (IEG). It is not clear,
however, whether these IEG responses are involved in a
methamphetamine-induced toxic cascade or in protective
mechanisms against the deleterious effects of the drug. As a
first step toward clarifying this issue further, the present study
was thus undertaken to assess the toxic effects of metham-
phetamine in heterozygous and homozygous c-fos knock-out
as well as wild-type mice. Administration of methamphetamine
caused significant reduction in [ '2%1]RTI-121-labeled dopamine
uptake sites, dopamine transporter protein, and tyrosine hy-
droxylase-like immunohistochemistry in the striata of wild-type
mice. These decreases were significantly exacerbated in het-
erozygous and homozygous c-fos knock-out mice, with the

homozygous showing greater loss of striatal dopaminergic
markers. Moreover, in comparison with wild-type animals, both
genotypes of c-fos knock-out mice showed more DNA frag-
mentation, measured by the number of terminal deoxynucleo-
tidyl transferase-mediated dUTP nick-end-labeled nondopam-
inergic cells in their cortices and striata. In contrast, wild-type
mice treated with methamphetamine demonstrated a greater
number of glial fibrillary acidic protein—positive cells than did
c-fos knock-out mice. These data suggest that c-fos induction
in response to toxic doses of methamphetamine might be
involved in protective mechanisms against this drug-induced
neurotoxicity.
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Methamphetamine (METH) is an illicit drug that is abused
throughout the world (Miller, 1991; Greberman and Wada, 1994;
Shaw, 1999). The acute administration of this agent can cause
neuropsychiatric complications including psychosis, coma, and
death (Lan et al., 1998). Abrupt cessation of use can cause
withdrawal symptoms akin to a suicidal depressive state (Murray,
1998). Although the acute effects of the drug might be caused by
increases in the levels of synaptic dopamine (DA) (Stephans and
Yamamoto, 1995), the long-term effects might be secondary to
persistent perturbations in monoaminergic systems (Cadet and
Brannock, 1998). For example, the administration of METH can
cause marked depletion of dopaminergic or serotonergic markers
in rodents (Ricaurte et al, 1982; Matsuda et al., 1988;
O’Callaghan and Miller, 1994; Hirata and Cadet, 1997a,b; Fuku-
mura et al., 1998), nonhuman primates (Villemagne et al., 1998),
and human METH users (Wilson et al., 1996; McCann et al.,
1998).

Several laboratories are actively seeking to decipher the cellu-
lar and molecular mechanisms of METH-induced neurotoxicity.
A consensus has been built that indicates that superoxide radicals,
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hydrogen peroxide, and hydroxyl radicals (De Vito and Wagner,
1989; Cadet et al., 1994; Giovanni et al., 1995; Hirata et al., 1996,
1998b; Fumagalli et al., 1998, 1999; Itzhak et al., 1998a; Jayanthi
et al., 1998; Yamamoto and Zhu, 1998) as well as nitric oxide
(Itzhak and Ali, 1996; Sheng et al., 1996c; Itzhak et al., 1998b)
might play major roles in METH toxicity. However, because the
formation of reactive species is associated with complex patho-
physiological changes, much remains to be done to understand
fully the mechanisms involved in the pathobiological substrates
induced by this drug. This laboratory has conducted studies
aimed at elucidating possible roles of immediate early genes
(IEGs) and their relationships to METH-mediated free radical
production (Sheng et al., 1996a,b; Asanuma and Cadet, 1998;
Hirata et al., 1998a). These investigations have documented an
association between M ETH-induced superoxide radical produc-
tion and IEG activation because transgenic mice that overexpress
the antioxidant enzyme CuZn superoxide dismutase (SOD)
showed marked attenuation of these IEG responses, including
c-fos— (Hirata et al., 1998a) and AP-1-binding activity (Sheng et
al.,, 1996a,b). On the basis of these results, however, it is not clear
whether M ETH-associated c-fos induction results in either pro-
toxic or protective events. A protective role for c-fos is supported
by the demonstration that cells, which do not express c-fos, are
more sensitive to DNA-damaging agents (Haas and Kaina, 1995;
Kaina et al., 1997). c-fos has also been shown to be important for
activating some neurotrophic and/or neuroprotective factors
(Herdegen and Leah, 1998).

The existence of a null mutation of c-fos in mice (Johnson et
al., 1992; Wang et al., 1992) offers a system in which the role of
c-fos in drug-induced neurodegeneration can be investigated. We,
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thus, used these mutant mice to assess M ETH-induced deleteri-
ous effects in the brain. We now report that the neurotoxicity of
METH on both dopaminergic and nondopaminergic systems is
exacerbated in heterozygous (+/—) and homozygous (—/—) c-fos
mutant mice.

MATERIALS AND METHODS

Animals, drug treatment, and temperature measurement. Homozygous
(Homo; —/—) and heterozygous (Het; +/—) c-fos knock-out as well as
wild-type (WT; +/+) mice obtained from The Jackson Laboratory (Bar
Harbor, ME) were used in these experiments. The generation and
derivation of these mice have been described previously in detail (John-
son et al., 1992). All animal use procedures were according to the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the local animal care committee.

Homo, Het, and WT mice were given four injections of 10 mg/kg
METH or saline at 2 hr intervals. Similar protocols of METH adminis-
tration have been used extensively by us (Hirata et al., 1996) and others
(Pu and Vorhees, 1995; Fumagalli et al., 1998). Core body temperature
was able to be recorded in WT and +/— c-fos mice at 30 min intervals by
the use of a mouse rectal probe (YSI, Yellow Springs, OH), whereas —/—
c-fos mice were very susceptible to rectal injury and did not survive this
procedure in conjunction with METH administration. The mice were
killed at various time points after drug treatment. Brain tissues were
processed for the various assays as described below.

Autoradiographic assays. Binding assays for DA transporters (DAT)
were performed essentially as described previously by this laboratory
with ["*T]RTI-121 (specific activity, 2200 Ci/mmol) and 10 um GBR-
12909 to determine nonspecific binding (Hirata et al., 1996; Asanuma et
al., 1998). ['*T]RTI-121 binding in striatum was quantified using a
Macintosh computer-based image analysis system (Image, NIH) with
standard curves generated from 2T microscales.

Tyrosine hydroxylase and glial fibrillary acidic protein immunohistochem-
istry. The animals were perfused transcardially, under deep pentobarbital
anesthesia, first with saline followed by 40 ml of 4% paraformaldehyde in
0.1 M phosphate buffer at 4°C. The brains were removed, post-fixed
overnight in 4% paraformaldehyde, and then allowed to equilibrate in
30% sucrose for 24 hr. Thirty micrometer coronal sections were then cut
in a cryostat (Bright Instrument Company, Huntindon, United King-
dom). Free-floating sections containing striatal areas were used for
tyrosine hydoxylase (TH) and glial fibrillary acidic protein (GFAP)
immunostaining. Briefly, sections were exposed to 1% hydrogen peroxide
for 20 min and then incubated for 30 min in 1% bovine serum albumin
and 0.3% Triton X-100, followed by incubation with either the TH
(Calbiochem, La Jolla, CA; polyclonal; 1:5000) or GFAP (Novo Labo-
ratories; monoclonal; 1:100) primary antibody. Subsequent processing
with biotinylated secondary antibody and ABC complex was performed
according to the manufacturer’s procedures described in the ABC kit
(Vector Laboratories, Burlingame, CA). The free-floating sections were
then reacted with 3,3'-diaminobenzidine (DAB) and hydrogen peroxide
to visualize the peroxidase reaction. At the end of the reaction, the
sections were mounted on microscope slides for further visualization and
analysis.

To measure the relative intensity of TH-immunoreactivity (TH-IR),
we collected striatal image from each photomicrograph using Adobe
Photoshop. Image analysis of optical density (arbitrary unit) used the
computer-based program NIH Image. A similar approach to the assess-
ment of TH-IR fiber density has been validated previously using 6-hy-
droxydopamine—induced destruction of nigrostriatal DA pathways in the
rat (Burke et al., 1990). In that report, it was shown that there was a
significant correlation between circling behavior and the density of TH
fibers measured by image analysis. Subsequently, that approach was used
to demonstrate increased TH-IR fiber density after perinatal asphyxia
(Burke et al., 1991). GFAP-positive astrocytes were counted in randomly
chosen striatal subfields (600 X 900 um). TH and GFAP immunobhisto-
chemistry data were obtained from six sections per animal (five to eight
animals per group). Statistical analyses are described below.

Western blot. Analysis of DAT protein concentration in the striata of
c-fos knock-out and WT mice was performed by Western blot (Fumagalli
et al., 1999). Briefly, dissected striata were homogenized in a buffer
containing 320 mM sucrose, 5 mM HEPES, 1 pg/ml leupeptin, 1 pg/ml
aprotinin, and 1 pg/ml pepstatin. Homogenates were centrifuged at
2000 X g for 5 min, and the supernatant fraction was subsequently
centrifuged at 30,000 X g for 30 min. The resulting pellet was resus-
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pended in the sample buffer (62.5 mm Tris-HCI, 20% glycerol, 2% SDS,
0.01% bromphenol blue, and 1 mmMm dithiothreitol) and subjected to
SDS-PAGE (10%). Proteins were electrophoretically transferred to a
polyvinylidene difluoride (PVDF) membrane, and nonspecific sites were
blocked in 5% nonfat dry milk in Tris-buffered saline (135 mm NaCl, 2.5
mM KCI, 50 mMm Tris, and 0.1% Tween 20, pH 7.4). Membranes were
then incubated in the presence of a polyclonal antibody to the N terminus
of DAT (DAT-Nt) (Chemicon, Temecula, CA; 1:500) in Tris-buffered
saline. DAT antibody binding and chemiluminescence enhancement
were performed using the ECL Western blotting analysis system (Phar-
macia, Piscataway, NJ). Densitometric analysis was performed and cali-
brated to coblotted dilutional standards of control striatum. Blots were
then stripped for 20 min at 80°C (8 m urea, 100 mm 2-mercaptoethanol,
and 62.5 mM Tris, pH 6.8) and reprobed with an antibody to a-tubulin
(Sigma, St. Louis, MO; 1:2000).

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling
histochemistry. A standard terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL) procedure for frozen tissue
sections was performed according to the manufacturer’s manual (Boeh-
ringer Mannheim, Indianapolis, IN). Briefly, slide-mounted sections
were rinsed in 0.3% hydrogen peroxide—methanol to block endogenous
peroxidase. They were then rinsed in 0.1% Triton X-100 in 0.1% sodium
citrate for 2 min on ice to increase permeabilization of the cells. To label
damaged nuclei, 50 ul of the TUNEL reaction mixture was added onto
each sample in a humidified chamber followed by a 60 min incubation at
37°C. The peroxidase reaction was visualized with DAB-substrate solu-
tion. Procedures for negative controls were performed as described in the
manufacture’s manual and consisted of not adding the label solution
(terminal deoxynucleotidyl transferase) to the TUNEL reaction mixture.
No TUNEL-positive cells were observed in the negative controls.
TUNEL-positive cells were counted in the frontal cortex and striatum
using a Zeiss microscope (600 X 900 pm).

Statistical analyses. All data are presented as means = SEM. The data
were analyzed by ANOVA followed by Fisher’s protected least signifi-
cant difference test using the statistical program Statview 4.02. Criteria
for significance were set at the 0.05 level.

RESULTS

['#°I]RTI-121-binding autoradiography and Western
blotting for DAT

To test the long-term toxic effects of METH on DA terminals in
these mice, we performed DAT binding on coronal sections using
receptor autoradiographic technique and Western blot analysis of
DAT protein.

Representative photomicrographs of ['*IJRTI-121-labeled
DAT in the striata are shown in Figure 1. The intensity of binding
is similar in saline-injected animals from the three genotypes
(Fig. 14-C). As expected from our previous results (Hirata and
Cadet, 1997b; Tsao et al., 1998), METH injections caused
marked decreases in the intensity of labeling in the striata of mice
killed 1 week after drug treatment. The METH-induced de-
creases were more apparent in the c-fos knock-out mice (compare
Fig. 1F with D,E). Figure 1G shows the quantitative data ob-
tained from the image analysis. There was no significant differ-
ence in ['*’I|RTI-121-labeled DAT among animals of the three
genotypes treated with saline. Injections of METH caused
marked decreases in striatal ['**IJRTI-121-labeled DAT in the
three genotypes, with the Het and Homo c-fos knock-out mice
showing somewhat greater loss of binding. For example, METH
caused ~72.7, 79.1, and 87.0% loss of DAT binding in WT, Het,
and Homo c-fos mice, respectively.

DAT binding reflects interaction of the radioactive ligand
['*T]RTI-121 with its binding site on the DAT protein. This
might not necessarily reflect the concentration of protein or loss
of DA terminals because a number of factors including redox
status can affect the interaction of receptors with their ligands.
Thus, a rapid decrease in DAT function has been reported after
METH administration, at a time when there is no evidence of
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Figure 1. A-F, Effects of METH on ['*I]RTI-121-labeled striatal DA
uptake sites in WT (A4, D), heterozygous (B, E), and homozygous (C, F)
c-fos mutant mice. Animals received saline (4-C) or METH (D-F) as
described in Materials and Methods. They were killed 1 week after drug
treatment. [ '**I]RTI-121-binding density is similar in the three saline-
treated genotypes (A-C). METH administration caused marked reduc-
tion of DA uptake sites (D-F), with the greatest decreases occurring in
c-fos —/— mice (F). G, The results of the statistical analyses of the
quantitative data obtained from the image analyses. Values represent
means = SEM of five to eight animals per group. Key to statistics: *p <
0.0001 in comparison with saline-treated mice of similar genotypes; ! p <
0.05, and !!p < 0.0001 in comparison with METH-treated WT mice.

loss of DA terminals (Fleckenstein et al., 1997). This loss of
function has been attributed to the production of superoxide
radicals (Fleckenstein et al., 1997). Therefore, the concentration
of DAT protein was measured by the use of Western blotting.
These experiments showed no significant differences in DAT
protein levels between the saline-injected WT, +/—, and —/—
c-fos knock-out mice (Fig. 2). Administration of METH reduced
the DAT protein expression by 44.6, 57.9, and 78.8% in WT, +/—,
and —/— c-fos mutant mice, respectively. Fumagalli et al. (1999)
have also reported significant METH-induced decreases in DAT
protein.

TH immunohistochemistry
The use of DAT binding and Western blotting, described above,
reflects events at the level of striatal DA terminals that might not
necessarily reflect the integrity (or lack thereof) of DA axons.
Thus, to test further the toxic effects of METH on the striatal
dopaminergic system, we also used TH immunohistochemistry to
examine the architecture and density of DA fibers in mice killed
1 week after treatment.

Representative striatal sections for TH-IR are shown in Figure
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Figure 2. Representative immunoblot of the effects of METH on DAT
protein concentration. Lanes 1, 3, 5, From saline-injected +/+, +/—, and
—/— c-fos mutant mice, respectively. Lanes 2, 4, 6, From METH-injected
+/+, +/—, and —/— c-fos knock-out mice, respectively. There were
significant changes in DAT concentration consisting of 44.6 = 4.7, 57.9 =
6.8, and 78.8 = 5.3% decreases in +/+, —/—, and —/— c-fos knock-out
mice, respectively. e-Tubulin is also shown and reveals similar loading for
all groups (6 mice per group). Nt, Antibody against N terminus of the
protein.

3. In the control groups, densely stained and closely packed
TH-positive nerve processes are observed throughout the striata
of all three genotypes (Fig. 34,C,E). In mice killed 1 week after
the last injection of the drug, there was a marked reduction in TH
staining that led to a looser-distributed TH fiber network (Fig.
3B,D,F). These changes were much more evident in —/— c-fos
knock-out mice, which showed a very substantial reduction in
TH-IR in their striata (Fig. 3F). Figure 3G shows the quantifi-
cation of METH-induced TH staining by the Image program.
There was no significant difference in the density of TH fibers
between animals from the three genotypes injected with saline.
However, there were marked differences in the toxic effects of
METH between the three genotypes, with the —/— c-fos knock-
out showing the greatest decreases. For example, in comparison
with mice of the same genotype injected with saline, the optical
density of fibers that remained TH-positive after METH treat-
ment were ~79.0, 60.3, and 23.6% in +/+, +/—, and —/— c-fos
knock-out mice, respectively. Those results are somewhat parallel
to those obtained for DAT protein, as reported above.

TUNEL histochemistry in the frontal cortex and

the striatum

The data about DAT and TH reflect the typical toxic effects of
METH on striatal dopaminergic systems. Recently, however, it
has been reported that METH can cause apoptosis both in vitro
(Cadet et al., 1997; Stumm et al., 1999) and in vivo (Iwasa et al.,
1996). Thus, to assess the time course of possible METH-induced
DNA fragmentation, detected by the TUNEL reaction, we used
animals killed at 3 d and at 1 week after drug treatment. These
time points correspond to times used previously by us (Hirata and
Cadet, 1997a,b) and others (Pu et al., 1996; Sonsalla et al., 1996)
to assess the toxic effects of METH mostly on dopaminergic
systems. In the case of apoptotic DNA fragmentation, it is im-
portant to assess early time points because cells undergoing
apoptosis might be removed by endogenous phagocytes and mi-
croglias before the damaged cells can lyse and spill their contents
into surrounding areas. Removal of these cells helps to preserve
the functional integrity of the surrounding tissue (Ferrer et al.,
1995; Sonnenfeld and Jacobs, 1995). Thus, attempts to detect and
quantify cells with double-stranded DNA breaks at much later
time points might be unsuccessful because the presence of these
changes might have occurred much earlier after a course of drug
treatment.

As is observed in Figures 4, 5, and 6, very few TUN EL-positive
cells are seen in the frontal cortices and the striata of animals
from the three genotypes injected with saline. However, the
administration of doses of METH that are known to cause
significant perturbation in dopaminergic systems (Hirata and
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Figure 3. Effects of METH on TH-like immunoreactivity in mice. A-F,
Animals were treated with either saline (4, C, E) or METH (B, D, F) 1
week after drug treatment as described in Materials and Methods. The
intensity of staining is comparable in the saline-treated mice of the three
genotypes (4, C, E). METH administration caused a visually obvious
reduction of TH staining (B, D, F'), which was more severe in homozygous
c-fos knock-out mice (F). G, The results of the statistics for the semi-
quantitative data obtained using image analysis are shown. Values rep-
resent means = SEM of five to eight animals (6 sections per animal) per
group. Key to statistics: *p < 0.001, and **p < 0.0001 in comparison with
saline-treated mice of similar genotypes; !p < 0.001, and !/p < 0.0001 in
comparison with METH-treated WT mice. Scale bar, 100 uwm.

Cadet, 1997b) (see above) caused marked increases in TUNEL-
positive staining in nondopaminergic cells in the cortex and
striatum at both time points used in the present study. In addition,
the increases were more prominent at the 3 d time point (Figs.
4-6). Counterstaining with toluidine blue indicated that the
TUNEL-positive cells were of neuronal origin (data not shown).

Quantification of these changes revealed that, at the 3 d time
point, METH caused ~5.2-, 10.2-, and 17.1-fold increases in
TUNEL-positive cells in the cortices of +/+, +/—, and +/— c-fos
mice, respectively; these increases at 1 week were ~2.7-, 5.0-, and
9.3-fold, respectively. A recent paper has also reported that de-
generating Fluoro-Jade—positive nondopaminergic neurons in
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Figure 4. Representative photomicrographs of TUNEL-stained frontal
cortices of mice. Very few positive cells appeared in the frontal cortices of
saline-treated mice of the three genotypes (4, D, G). METH caused
marked increases in TUNEL-positive cellsat 3d (B, E, H) and 1 week (C,
F, I) after drug treatment. The arrows point to typical positive cells.
These photomicrographs were generated by using a Carl Zeiss Laser
Scanning Confocal System with Axiovert 135—inverted microscopy. The
objective lens was 40X. Quantitative data are provided below (see Fig. 6).

the rat cortex occurred in the greatest number at 3 d after METH
treatment (Eisch et al., 1998). In the striatum, at the 3 d time
point, the changes were ~5.0-, 7.3-, and 10.8-fold in the +/+,
+/—, and —/— c-fos knock-out mice, respectively; at 1 week, these
increases were 2.8-, 4.3- and 6.0-fold, respectively (Fig. 6).

GFAP immunohistochemistry

Increased gliosis has been reported after a number of toxic
injuries to brain (Norton et al., 1992). Similar results have been
observed after METH administration to rodents (Pu and Vo-
rhees, 1995; Fukumura et al., 1998). We, thus, sought to deter-
mine whether METH-induced toxicity would be associated with
reactive gliosis in the present model. A few small GFAP-positive
astrocytes were observed in the brains of mice from all three
genotypes injected with saline (Fig. 74, C,E). These astrocytes are
characterized by small cell bodies and very fine and short pro-
cesses. As reported previously (Pu and Vorhees, 1995; Fukumura
et al., 1998), METH treatment causes marked increases in the
number of astrocytes in the striata of mice killed 1 week after
drug treatment (Fig. 7B,D,F). The METH-induced astrocytes in
the wild-type mice were characterized by large densely stained
cell bodies as well as longer and extensive processes (Fig. 7B).
However, the METH-induced astrocytes in the +/— and —/—
c-fos knock-out mice did not show much of an increase in their
size, in the number of processes, or in the intensity of GFAP
staining (compare Fig. 7B with D,F). Moreover, the number of
METH-induced astrocytes in the striata of the c-fos knock-out
mice was less than the number in the WT mice. Figure 7G shows
the quantitative data and revealed that the increases in METH-
induced glial cells showed a gene-dosage phenomenon, with the
heterozygous and homozygous c-fos knock-out mice showing
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Figure 5. Representative photomicrographs of TUNEL-stained striata
of mice. Very few positive cells could be seen in the striata of saline-
treated mice (4, D, G). As in the cortex, METH caused marked increases
in TUNEL-positive cells at 3d (B, E, H) and 1 week (C, F, I). The arrows
point to typical positive cells. The photomicrographs were generated as
described in Figure 4. Quantitative data are provided below (see Fig. 6).

respective changes that were 77.4 and 48.1% of those observed in
wild-type mice.

Temperature fluctuation

Because it has been reported that METH neurotoxicity is gener-
ally related to increases in core body temperature (Bowyer et al.,
1992; Miller and O’Callaghan, 1994), we measured the effects of
METH on these mice. Figure 8 shows that METH caused in-
creases of core body temperature from 37.2 to ~39.5°C both in
WT and +/— c-fos knock-out mice. Statistical analyses revealed
no significant differences between the wild-type and heterozygous
mice.

DISCUSSION
The main finding of this study is that METH neurotoxicity is
exacerbated in c-fos mutant mice. This is supported by the fol-
lowing observations. First, METH caused greater depletion of
markers of dopaminergic systems in the striata of +/— and —/—
c-fos knock-out mice, with markers at the levels of DA terminals
(DAT binding and DAT protein) being more severely affected by
METH. Second, M ETH-induced DNA fragmentation, measured
by TUNEL-positive cells, was also more prominent in nondo-
paminergic cells of the cortices and striata of these c-fos mutant
mice. It should be noted that this is the first demonstration, using
the TUNEL approach, that METH can cause apoptotic DNA
fragmentation in the brain. These results are consistent with both
in vitro (Cadet et al., 1997; Stumm et al., 1999) and in vivo (Iwasa
et al., 1996) studies showing that METH can cause cell death via
an apoptotic process.

Increased core body temperature has been reported to play a
role in METH neurotoxicity (Bowyer et al., 1992, 1994; Miller
and O’Callaghan, 1994; LaVoie and Hastings, 1999). Although
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Figure 6.  METH caused greater increases in TUNEL-positive cells in
the frontal cortex and striatum of c-fos knock-out than in WT mice. The
animals were treated and the brains were processed as described in
Materials and Methods. Values represent means = SEM of five to eight
mice per group. Key to statistics: *p < 0.05, **p < 0.001, and ***p <
0.0001 in comparison with METH-treated WT mice killed at similar time
points; Ip < 0.05, !!p < 0.001, and !!!/p < 0.0001 in comparison with
saline-treated mice of similar genotypes.

most drugs that cause hypothermia tend to offer protection
against METH-induced damage (Ali et al., 1994; Albers and
Sonsalla, 1995), treatment with reserpine, a well known hypother-
mic agent, has actually been reported to exacerbate METH-
induced toxicity (Wagner et al., 1983). When taken together,
these data suggest that increased temperature is one participant
in a complex series of events that cause the toxicity of METH. In
the present experiments, we did examine the possible contribu-
tion of temperature in the exacerbation of METH-induced dam-
age in the c-fos mutant mice; however, because there were no
significant differences in temperature elevation between WT and
+/— c-fos mice, it is very likely that the observed increased
toxicity in c-fos mutants is not secondary to a temperature effect.

Another mechanism for the potentiation of METH-induced
neurotoxicity involves the possibility that METH metabolism
might have been altered in the c-fos mutant mice in such a way
that METH might have accumulated to a higher concentration in
the brains of these mice. This accumulation in METH might have
occurred because the absence of c-fos could have led to down-
regulation of the cytochrome P450 isoenzymes that are involved
in the metabolism of the drug (Baba et al., 1988; Lin et al., 1995,
1997) because of a lack of stimulation of putative AP-1-binding
sites that have been found in some cytochrome P450 genes (Shaw
et al., 1996; Quattrochi et al., 1998). This hypothesized increase
in METH levels might have caused greater increases in DA
release, higher temperature, as well as increased toxicity in the
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Figure 7. A-F, Effects of METH on GFAP-like immunohistochemistry
in the striata of +/+ (4, B), +/— (C, D), and —/— (E, F) c-fos knock-out
mice. A few small positive astrocytes are seen in the striata of saline-
treated mice (4, C, E). METH caused marked increases in the number of
astrocytes in the striatum in mice killed 1 week after drug treatment (B,
D, F). METH-induced astrocytes were hypertrophic and densely stained
in the WT mice (B). However, in the c-fos +/— (D) and —/— (F) mice,
METH treatment caused a measurable increase in the number of astro-
cytes, but these were small in size and weakly stained. The arrows point
to typical positive cells. G, The statistical analyses of the data obtained
from the counts of GFAP-positive cells in the striatum. Values represent
means = SEM from five to eight animals (6 sections per mouse) per
group. Key to statistics: *p < 0.0001 in comparison with saline-treated
mice of similar genotypes; |p < 0.01 in comparison with METH-treated
WT mice. Scale bar, 100 wm.
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Figure 8. Effects of METH on core temperature in WT and heterozy-
gous c-fos mutant mice. Core temperature was recorded in animals every
30 min during the administration of METH. Values represent means *+
SEM from seven mice per group. There were no statistical differences in
the METH-induced temperature elevation between the two genotypes of
mice. Saline-treated animals did not exhibit changes in core body tem-
perature over time (data not shown for the sake of clarity). Recorded
ambient temperature was between 20.5 and 21.2°C.

mutant mice. However, we failed to find any evidence of differ-
ences in METH-induced temperature regulation in the WT and
c-fos mutants, thus suggesting that changes in METH metabolism
might not be sufficient to explain the exacerbation in toxicity
observed in these mice. Nevertheless, it could still be argued that,
even in the absence of increased METH levels in the brains of
c-fos mutants, it is still possible that METH might have caused
greater displacement of DA from storage vesicles into the cytosol
with secondary generation of reactive oxygen species (ROS)
within that compartment. However, this argument would hold for
only the exacerbations observed in the deleterious effects of
METH on striatal DA terminals of the c-fos knock-out mice.

Possible role of oxidative stress in

METH-induced apoptosis

Although this discussion of METH-mediated toxicity via ROS
had been applied mainly to the pathological changes observed in
monoaminergic terminals (for review, see Cadet and Brannock,
1998), it is becoming quite clear that METH can exert its nefar-
ious effects beyond these systems. In the present study, we have
shown that METH administration is associated with DNA frag-
mentation in intrinsic nondopaminergic neurons located in cor-
tical and striatal regions of mouse brains. The observations in the
cortex are compatible with other reports that METH can damage
cortical cell bodies in rats (Pu et al., 1996; Eisch et al., 1998).
Although similar findings are now being reported in mice for the
first time, these results are consistent with observations that
METH can alter the dynamics of antioxidant enzymes in cortical
regions of mice (Jayanthi et al., 1998). It is also consistent with the
recent demonstration that METH can cause apoptosis and acti-
vation of cell death-related genes in cortical cell cultures (Stumm
et al., 1999). The observations of DNA fragmentation in intrinsic
striatal cell bodies are also consistent with our recent suggestions
that METH can damage cells located postsynaptic to DA termi-
nals (Cadet et al., 1998). Although this remains to be fully
clarified, it is very likely that there are links between the pathways
that cause perturbations in DA terminals and DA axons and the
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mechanisms that damage intrinsic cell bodies. Therefore, when
taken together, the exacerbation of METH-induced toxic effects
on both dopaminergic (terminal and fiber damage) and nondo-
paminergic (apoptosis) systems suggests that c-fos might be in-
volved in stimulating coordinated protective pathways against
toxic injuries.

Possible role of c-fos in protective mechanisms

The IEG c-fos, a component of the AP-1 transcription factor
(Rauscher et al., 1988), is widely distributed in the CNS (Senba
and Ueyama, 1997) and is easily induced by multiple stimuli
(Herdegen and Leah, 1998). In addition to its activation being
dependent on cellular redox status (Chakraborti and
Chakraborti, 1998), c-fos can also activate some antioxidant en-
zymes. For example, c-fos can interact with the promoter of the
glutathione S-transferase gene and cause an increase in enzymatic
activity (Moffat et al., 1994; Pinkus et al., 1995). Glutathione
S-transferase is known to act in the glutathione pathway as a
detoxifying enzyme, which gets rid of free radicals (Hayes and
Strange, 1995). c-fos can also stimulate the antioxidant response
element in the human NAD(P)H:quinone oxidoreductase gene
(Li and Jaiswal, 1992). Moreover, c-fos can increase the levels of
trophic or scaffolding factors via interaction with AP-1-binding
sites located on the promoters of their genes (for review, see
Herdegen and Leah, 1998). These include nerve growth factor,
basic FGF, and BDNF (Shibata et al., 1991; Herdegen and Leah,
1998). Some of these factors can increase the activity of antioxi-
dant enzymes in addition to acting as survival factors (Mattson et
al., 1995; Skaper et al., 1998). Thus, c-fos induction by toxic doses
of METH (Sheng et al., 1996a,b; Hirata et al., 1998a) might serve
as an oxidative stress response that could activate downstream
molecular and cellular events that participate in a coordinated
protective response against METH. These arguments for c-fos as
a protective agent are supported by reports that cells lacking c-fos
are more sensitive to some DNA-damaging agents in vitrro (Haas
and Kaina, 1995; Kaina et al., 1997), in concordance with our
present observations of increased METH toxicity in c-fos knock-
out mice. Thus, the prolonged absence of c-fos could have ren-
dered the brain more susceptible to METH-induced injury by
altering cellular redox status in the mice.

Possible role of c-fos in reactive gliosis

An unexpected finding in this report is the observation that,
although c-fos mutants are more susceptible to the toxicity of
METH, these mice show much less of a reactive gliotic response
to the drug. The attenuated gliotic response in the c-fos mutant
might be caused by a lack of stimulation of the AP-1-binding site
located on the promoter of the GFAP gene (Sarid, 1991) and
suggests that transcription control of the GFAP gene might be
dependent mostly on c-fos. This line of reasoning is compatible
with previous data that had implicated c-fos expression in astro-
cytic replication (Masood et al., 1993; Pennypacker et al., 1996).
Thus, it might not be unreasonable to suggest that, because of the
blunted glial response in the c-fos mutant mice, METH-induced
astrogliosis might actually be involved in mechanisms aimed at
protecting the brain or meant to help in axonal regeneration, in
addition to being a marker of neurotoxicity. This notion, although
speculative, is supported by reports that astrocytes can synthesize
and release neurotrophic factors that protect neurons from injury
and death (Ridet et al., 1997; Kariko et al., 1998). For example,
conditioned media from nigral astrocytes have been shown to
improve the survival of dopaminergic neurons (O’Malley et al.,
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1992, 1994). Moreover, these ideas are also supported by obser-
vations that astrocytes contain high intracellular concentrations
of antioxidants (Juurlink, 1997; Wilson, 1997). These ideas will
need to be evaluated in these mutants using various neurotoxic
models that feature reactive gliosis.

Summary

In conclusion, this is the first report showing that c-fos mutant
mice are more sensitive to the toxic effects of METH on both
dopaminergic and nondopaminergic systems in the brains. These
data indicate that METH-induced c-fos activation is probably
involved in a cascade that stimulates pleiotropic protective mech-
anisms against the deleterious effects of the drug. The present
study also provides more evidence to support the view that
METH not only causes degeneration of monoaminergic termi-
nals but also causes damage to intrinsic striatal and cortical cells
via an apoptotic process. Further studies are also needed to
dissect the roles that METH-induced activated astrocytes might
play, via epigenetic mechanisms, in the repair of brain regions
affected by the drug.
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