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In recent years it became clear that dendrites possess a host of
ion channels that may be distributed nonuniformly over their
membrane surface. In cortical pyramids, for example, it was
demonstrated that the resting membrane conductance Gm(x) is
higher (the membrane is “leakier”) at distal dendritic regions
than at more proximal sites. How does this spatial nonunifor-
mity in Gm(x) affect the input–output function of the neuron?
The present study aims at providing basic insights into this
question. To this end, we have analytically studied the funda-
mental effects of membrane non-uniformity in passive cable
structures.

Keeping the total membrane conductance over a given mod-
eled structure fixed (i.e., a constant number of passive ion
channels), the classical case of cables with uniform membrane
conductance is contrasted with various nonuniform cases with
the following general conclusions. (1) For cylindrical cables with
“sealed ends,” monotonic increase in Gm(x) improves voltage

transfer from the input location to the soma. The steeper the
Gm(x), the larger the improvement. (2) This effect is further
enhanced when the stimulation is distal and consists of a
synaptic input rather than a current source. (3) Any nonunifor-
mity in Gm(x) decreases the electrotonic length, L, of the cylin-
der. (4) The system time constant t0 is larger in the nonuniform
case than in the corresponding uniform case. (5) When voltage
transients relax with t0 , the dendritic tree is not isopotential in
the nonuniform case, at variance with the uniform case. The
effect of membrane nonuniformity on signal transfer in recon-
structed dendritic trees and on the I/f relation of the neuron is
also considered, and experimental methods for assessing
membrane nonuniformity in dendrites are discussed.

Key words: cable theory; nonuniform membrane conduc-
tances; dendritic ion channels; dendritic signal transfer; com-
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Transmembrane ion channels are the main carriers of electrical
currents in neurons. Their type, kinetics, and spatial distribution
may critically determine the properties of the electrical signals
that are initiated and propagated in neurons. Importantly, these
ion channels are distributed nonuniformly over the neuron sur-
face. An obvious example is the myelinated axons where Ranvier
nodes bear a high density of Na1 channels, whereas the inter-
nodes are bare of these channels (Hille, 1992). This spatial
nonuniformity has functional implications for the propagation
speed of the action potential along the axon. Ion channels are
distributed nonuniformly also over the dendritic membrane. Are
there some design principles that govern the distribution of chan-
nels and optimize certain aspects of signal processing in
dendrites?

Early studies on excitable properties of dendrites can be found
in Lorente de No’ (1947), Spencer and Kandel (1961), Llinas and
Sugimori (1980), and Schwindt and Crill (1995); for review, see

Mel (1994). Recent experimental studies using infrared DIC
video microscopy, combined with patch-clamp techniques (Stuart
et al., 1993; Dodt and Zieglgansberger, 1994) directly showed
that, indeed, ion channels were distributed nonuniformly over the
dendritic surface (for review, see Johnston et al., 1996). Record-
ings from membrane patches, excised from the apical trunk of
hippocampal CA1 pyramidal neurons, showed that both the
A-type and the delayed rectifier K1 conductances linearly in-
creased with the distance from the soma (Hoffman et al., 1997).
The density of Ih currents also increase in these cells (Magee,
1998). An increase in the density of both Ih current and the
cesium-insensitive membrane conductance at distal dendritic re-
gions was also recently observed in neocortical layer V pyramids
(Stuart and Spruston, 1998). Nonuniformity in dendritic excitabil-
ity was also found in other neuron types (Stuart and Häusser,
1994; Turrigiano et al., 1995; Bischofberger and Jonas, 1997;
Kavalali et al., 1997; for review, see Segev and Rall, 1998).

Spatial distribution and spatiotemporal activation pattern of
transmitter-gated conductances may also cause nonuniformity of
the dendritic membrane. Thus, the dendritic membrane conduc-
tance is expected to develop time- and activity-dependent spatial
heterogeneities (Holmes and Woody, 1989).

Most of our intuitions regarding how the interplay between
dendritic morphology, physiology, and input conditions deter-
mine the input–output properties of dendrites rely on Rall’s cable
theory. In this framework, the effect of geometric nonuniformities
in the dendritic tree, including tapering and branching, was ana-
lyzed (Butz and Cowan, 1974; Horwitz, 1981, 1983; Poznanski,
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1988; Schierwagen, 1989; Abbott, 1992; Holmes et al., 1992;
Holmes and Rall, 1992a,b; Agmon-Snir and Segev, 1993; Major et
al., 1993a–c; Segev et al., 1995; Rall and Agmon-Snir, 1998), and
the impact of nonlinear voltage- and transmitter-gated dendritic
ion channels, as well as of massive synaptic input on the input–
output properties of neurons, was explored theoretically (Barrett
and Crill, 1974; Shepherd et al., 1985; Miller et al., 1985; Flesh-
man et al., 1988; Segev and Rall, 1988; Clements and Redman,
1989; Holmes, 1989; Bernander et al., 1991; Rapp et al., 1992;
Siegel et al., 1994; Bernander et al., 1994; De Schutter and Bower,
1994; Pinsky and Rinzel, 1994; Schwindt and Crill, 1995; Stuart
and Sakmann, 1995; Wilson, 1995; Mainen and Sejnowski, 1996).
A review of these issues can be found in Koch (1999). Experi-
mental studies on the input–output properties of nonlinear den-
drites can be found in Laurent et al. (1993), Nicoll et al. (1993),
Haag and Borst (1996), and Chen et al. (1997). However, there is
yet no systematic study on the effect of membrane nonuniformity
in dendrites, although previous studies did consider the possibility
that the soma membrane is leakier than the dendritic membrane
(Rall, 1962; Rall and Shepherd, 1968; Iansek and Redman, 1973;
Durand, 1984; Kawato, 1984; Major et al., 1993a).

Motivated by the recent experimental evidence about mem-
brane nonuniformity in dendrites, the present study explores,
using analytical tools, whether there is some functional advantage
of membrane nonuniformity for the transfer of synaptic signals
from the dendrites to the soma. In the tradition of W. Rall, we

treat here, as a first stage, the case in which the dendritic mem-
brane conductance Gm(x) is spatially nonuniform and passive. All
mathematical considerations are grouped in the Appendixes (on-
line at www.jneurosci.org).

MATERIALS AND METHODS
The cable equation (Rall, 1959) away from current sources for a passive
cylinder with nonuniform membrane conductance is:

l2~ x!
­2V

­ x2
2 tm~ x!

­V
­t

2 V 5 0, (1)

where tm(x) 5 Cm/Gm(x) is the (variable) passive membrane time con-
stant and l(x) 5 =d/(4Gm(x) Ri ) is the (variable) space constant, Gm(x)
is the specific membrane conductance, and d is the diameter of the
cylinder. In the uniform case, in which Gm(x) is constant, l(x) 5 l u, and
tm(x) 5 t m

u ; the superscript, “u” is used throughout this work to label the
uniform case. These and other quantities are defined in Table 1.

To understand the effects of different Gm(x) functions, we need to
impose some constraint that will allow us to compare these Gm(x)
functions. The most natural assumption is that the total membrane
conductance of the cable is preserved in all cases:

pdE
0

,

Gm~ x!dx 5 const. (2)

This implies that there is a fixed number of (passive) ion channels in the
modeled structure and that these channels are allocated to different
regions of the cable, depending on the shape of Gm(x).

Table 1. Table of symbols

V Transmembrane voltage (relative to resting potential) mV
d Diameter of the dendritic cylinder cm
, Length of the dendritic cylinder cm
x Physical distance from the origin (usually the soma) cm
Gm(x) Specific membrane conductance S/cm 2

Gm 5 1/, *0
, Gm(x)dx Average membrane conductance S/cm 2

gm(x) 5 Gm(x)/Gm Dimensionless membrane conductance Dimensionless
Rm(x) Specific membrane resistance Vcm 2

Ri Specific cytoplasm resistivity Vcm
ri 5 4Ri /(pd 2) Internal resistance per unit length of cylinder V/cm
Cm Specific membrane capacitance F/cm 2

a Slope parameter (21 # a # 1) Dimensionless
l(x) 5 =d/4Gm(x)Ri Space constant (nonuniform case) cm
lu 5 =d/4GmRi Space constant (uniform case) cm
L 5 *0

, dx/l(x) Generalized electrotonic length Dimensionless
L u 5 ,/lu Electrotonic length (uniform case) Dimensionless
X u 5 x/lu Distance from location x to origin, in units of the uniform space constant Dimensionless
Rin(x) Input resistance at location x V

Gin(x) 5 1/Rin(x) Input conductance at location x S
Rx,y Transfer resistance from location x to location y V

Ia Axial current A
G`

u 5 (p/2) =Gmd 3/Ri Input conductance of a semi-infinite uniform cylinder S
GL Axial leak conductance at boundary S
B 5 GL /G`

u Boundary condition Dimensionless
tm(x) 5 Cm /Gm(x) Local membrane time constant sec
t m

u 5 Cm /Gm Membrane time constant (uniform case) sec
tn

u, tn
s n-th equalizing time constant (uniform and slope case, respectively) sec

d(x), d(t) Delta function
& (x, y, t) Green function
gsyn Synaptic conductance S
Esyn Synaptic reversal potential mV
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The case of membrane nonuniformity that will gain the main focus of
the present work is the slope case, in which Gm(x) linearly increases with
the distance from the “soma” (x 5 0), namely, Gm(x) 5 ax 1 b. This case
has received some recent experimental support (Hoffman et al., 1997).
All quantities are labeled, in this case, with the superscript “s.” In the
case of cylinder of length ,, the constraint of a fixed total conductance,
Equation 2, implies that:

Gm
s ~ x! 5 GmS1 1 2a

x 2 ,/ 2
, D , (3)

where Gm is the average membrane conductance over the membrane
area, x is the location along the cylinder (0 # x # ,), and the dimen-
sionless parameter a 5 a,/(2Gm ) is the slope a in units of 2Gm /,.
Because Gm(x) should be positive for all x, a is bounded, 21 # a # 1.
The uniform case is obtained when a 5 0, whereas for the case of
maximal slope, a 5 1. In this case, the membrane conductance increases
from 0 at x 5 0 to a maximum of 2Gm at x 5 ,.

For DC current injection, the membrane voltage (away from current
sources) satisfies the steady-state cable equation:

l2~ x!
d2V

dx2
2 V 5 0. (4)

Equation 4 can be analytically solved for several nonuniform conduc-
tance profiles. The solutions for typical increasing of Gm(x) functions
(power law, exponential, etc.) are given in Appendix B; they all involve
special functions (Abramowitz and Stegun, 1970). Mathematica software
(Wolfram, 1991) was used for numerical evaluations of these analytical
solutions; transient simulations and computations of transfer resistances
in reconstructed dendrites were implemented using NEURON simulator
(Hines and Carnevale, 1997).

The transient voltage–response of a cable with nonuniform membrane
conductance can be computed using the Green function, &(x, y, t), of the
problem which satisfies:

(lu)2
­2&~ x, y, t!

­ x2 2 tm
u

­&~ x, y, t!
­t

2
Gm~ x!

Gm
&~ x, y, t! 5 2d~ x 2 y!d~t!,

together with the imposed boundary and initial conditions. Separating
time and space variables, the Green function can be expressed as an
orthonormal expansion (Rall, 1969):

&~ x, y, t! 5 O
j50

`
cj&j~ x!&j~ y!e2 t/t j ,

where the basis functions &j satisfy:

1
, E

0

,
&j~ x!&k~ x!dx 5 H 1 j 5 k

0 j Þ k .

The system time constant t0 and the equalizing time constants tj (j $ 1),
together with the associated eigenfunctions &j ( j $ 0), are obtained by
solving the eigenvalue problem:

(lu)2
d2 &j~ x!

dx2 2 SGm~ x!

Gm
2

tm
u

tj D&j~ x! 5 0, (5)

with imposed boundary conditions at x 5 0 and x 5 ,. It is meaningful
to distinguish t0 from the other time constants (Rall, 1969). Indeed, t0
governs the slow relaxation of the voltage at large t, and for uniform
cables with sealed ends, t0 5 tm

u . The other, smaller time constants
control the faster spatial equalization of voltage gradients, and they
vanish in the limit of extremely compact cables (L u 3 0). As shown in
Appendix E, the eigenvalue problem is analytically tractable in the slope
case: the eigenvalues are determined by solving a transcendental equa-
tion, and the associated eigenfunctions can be expressed as linear com-
binations of Airy functions.

The eigenvalue Equation 5 is formally identical to the Schrödinger
eigenvalue problem for the one-dimensional bounded motion of a parti-
cle in quantum mechanics (Landau and Lifschitz, 1997). This analogy,
which is elaborated on in Appendix D.1, is useful because it provides a
visual representation of the Green function of the cable problem in terms

of discrete energy states in a potential well. It provides new insight on
how the system time constant and the equalizing time constants, together
with the associated eigenfunctions, depend on the membrane conduc-
tance profile and on other cable parameters such as the electrotonic
length. Note also that another representation of the Green function, as a
diffusion process, was proposed by Abbott et al. (1991), Abbott (1992),
and Bressloff and Taylor (1993); this approach also relies on concepts and
methods (i.e., path integrals or their discrete counterpart) that were
previously introduced in physics. These methods can be applied to any
profile of nonuniform specific conductance on the dendritic tree, but they
require the numerical evaluation of the contributions of many paths. This
limits its practical usefulness mostly to the accurate estimation of the
short-term transient behavior. In contrast, our approach is limited to
certain types of conductance profiles, but it provides analytical results
and enables us to accurately determine, through the computation of the
larger time constants, how the slow relaxation of transients proceeds.

RESULTS
Steady current input in nonuniform cylinders
The steady-state voltage profile along a cylinder with both ends
sealed, following constant current injection at different locations,
is shown in Figure 1A for the uniform case and the maximal slope
case (a 5 1). This figure shows that the voltage at x 5 0 (soma)
is always larger in the slope case, even when the local voltage
response at the input site is smaller than in the uniform case (e.g.,
at the distal end where x 5 , 5 1000 mm). As demonstrated in
Figure 1B, the voltage attenuation between any input point x and
the soma is smaller in the slope case. Note that this figure also
describes the attenuation of the time integral of the potential in the
case of transient current injection (Rall and Rinzel, 1973). Thus,
distributing the same total membrane conductance nonuniformly
rather than uniformly improves the voltage response at the soma.

To characterize the effect of steady current injection at point x
on the voltage response at the soma, the transfer resistance Rx,0 5
V(0)/I(x) is used. Figure 2A shows the normalized transfer resis-
tance between the input location and the soma for cylinders of
different electrotonic length. In the maximal slope case, the
transfer resistance is always larger (for every x) than in the
corresponding uniform case, and thus for all input locations
the voltage response at the soma is larger when the conductance
linearly increases in the cylinder. This property is independent of
the cylinder physical length. The difference between the two cases
grows with the electrotonic length of the cylinder. It is also true
for all the intermediate linear slopes (i.e., 0 , a # 1).

Figure 2B shows the normalized input resistance Rin(x) 5 Rx, x

for cylinders with electrotonic length Lu 5 1. In the uniform case,
Rin(x) is symmetric with respect to the midpoint x 5 ,/2, where
the minimum is obtained. This is no longer true in the maximal
slope case in which Rin(x) is larger in the proximal part of the
cylinder and smaller in its distal part compared with the uniform
case. This is expected because, in the slope case, the membrane is
“leakier” in distal regions of the cylinder. Because Rin is deter-
mined not only by the local membrane conductance but also by
the cable properties and the boundary conditions, the intersection
between Rin(x) in the two cases is not at the cylinder’s midpoint,
X u 5 0.5 (where Gm

s (x) 5 Gm
u ), but rather at Xu . 0.57. A given

current input at Xu . 0.57 will result in a smaller local voltage
response in the slope case because of the smaller input resistance
in these sites compared with that of the uniform case. Neverthe-
less, the resultant voltage at the soma is larger in the slope case
because of the larger transfer resistance in this case. In contrast,
for all X u , 0.57, both Rin and Rx,0 are larger in the slope case,
giving rise to a larger voltage response both locally and at the
soma. The “benefit,” in terms of the relative increase of the soma
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voltage, gained from having a maximal slope conductance rather
than a uniform conductance ranges from 3% for distal inputs to
16% for proximal inputs in cylinders with electrotonic length,
Lu 5 1 (see Fig. 4B, current input).

The focus in the above analysis was on the slope case, in which
Gm(x) is a linear function of x, and more specifically on the
limiting case where a 5 1. In Figure 3, the transfer resistance for
several power law functions of Gm(x) with increasing exponent (0,
1/2, 1, and 2) is computed. All cases with integer power are
actually analytically tractable (see Appendix B.2). Gm(x) is nor-
malized such that the constraint of a fixed average membrane
conductance (Eq. 2) holds, and in all nonuniform cases, Gm(0) 5
0. Figure 3 shows that, compared with the uniform case, the
transfer resistance is always increased by a gradient of membrane
conductance, and the difference compared with the uniform case
increases with the steepness of the conductance profile. Indeed,
when Gm(x) increases with an exponent of 2, the benefit, in terms

of the relative increase of the soma voltage, ranges from 6% for
distal inputs to 26% at more proximal sites, with an average of
17%. Note also that because of the reciprocity property of the
transfer resistance [Rx,y 5 Ry,x (Koch, 1999)], the effect of spa-
tially decreasing conductance profiles can be deduced from these
results (see Appendix C.3).

Finally, we note that the generalized electrotonic length of a given
cylinder, L 5 *0

, dx/l(x), is smaller for the slope case compared with
the uniform case. Indeed, for the slope case, L is given by:

L 5 Lu
~~1 1 uau!3/2 2 ~1 2 uau!3/2!

3uau .

L decreases with increasing uau and reaches its minimum, L 5
=8/9Lu, for a 5 61. More generally, Appendix A.1 shows that

Figure 1. Voltage attenuation is smaller in the slope case than in the
uniform case. A, Voltage profiles for a DC current injection at x 5 0, 100,
570, and 1000 mm in the uniform case (dotted line) and the maximal slope
case (continuous line; see inset). Voltage response at input locations
(arrows) is marked by circles in the uniform case and by crosses in the slope
case. Cable parameters are , 5 1000 mm, d 5 4 mm, Ri 5 200 Vcm, Rm

u

5 20,000 Vcm 2, and L u 5 1 (the slope per unit length in the maximal
slope case is 1E25(S/cm 2)/100 mm). The value of the DC current is
chosen so that the local voltage–response to current injection at x 5 0 is
1 mV in the uniform case. B, Log voltage attenuation, LAx,0 5 ln(V(x)/
V(x 5 0)), from the input site, x, to x 5 0.

Figure 2. Voltage transfer is enhanced in cables with nonuniform mem-
brane conductance. A, Transfer resistance, Rx,0 , from input location x to the
soma (x 5 0). The results are shown for three cylinders (L u 5 0.5, 1, and
2, respectively) in the uniform case (dotted lines) and the slope case (solid
lines). B, Input resistance, Rin , versus input location for the uniform case
(dotted line) and the slope case (solid line). L u 5 1. Note that both Rx,0 and
Rin are normalized by R`

u, the input resistance of the uniform cylinder when
extended to be semi-infinite. As shown by Rall (1959), uniform cylinders
with the same L value but with different specific properties have the same
transfer resistance, RX,0 , when each cylinder is normalized by its corre-
sponding R` value. This also holds true for cylinders with linearly increas-
ing membrane conductance, if the slope parameter a and the electrotonic
length L u of the corresponding uniform cylinder are the same for all
cylinders considered. The normalizing factor is then the input resistance R`

u

of the semi-infinite uniform cylinder of specific conductance Gm
u 5 Gm.
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any membrane conductance heterogeneity decreases L in com-
parison with the corresponding uniform case, making the cable
electrotonically more compact. However, this does not necessarily
imply that voltage attenuation is reduced in these more compact
cables (see Discussion).

Synapses as input
Realistic synaptic inputs involve conductance changes, which im-
plies that the synaptic current nonlinearly depends on the synap-
tic conductance change gsyn. The difference in input resistance
between the slope and the uniform case (Fig. 2B) leads to a
different degree of local voltage saturation in these two cases, and
consequently, to differences in the amount of current generated
by the synapse.

The voltage response at x 5 0, attributable to the steady-state
activation of a synapse at location x is:

V~0! 5 gsyn Esyn S Gin~ x!

gsyn 1 Gin~ x!D Rx,0, (6)

where Esyn is the reversal potential of the synaptic current, and
Gin(x) 5 1/Rin(x) is the input conductance at location x before the
activation of the synapse, as computed in Figure 2B. Note that the
right side of the equation is simply composed of the local input
current produced by the synapse, multiplied by the transfer resis-
tance from the input site to the soma. The derivation of this
equation is given in Appendix C.2.

Figure 4A shows the voltage at x 5 0 in response to the
steady-state activation of an excitatory synapse in the maximal
slope case and the uniform case (bottom two curves). As a
reference, the voltage response to a DC current input, I 5 gsyn

Esyn , is also shown (top two curves). This is the current that the
synapse would generate if the synaptic current were not limited by
saturation, and this is, therefore, the upper bound on the synaptic
current that is actually generated. The corresponding curves are
then proportional to Rx,0 (compare with Fig. 2A). As expected
from synaptic saturation, V(0) in both the uniform case and slope
case is smaller for the conductance input case compared with the
corresponding current input case. Still, as for the current input,
the soma voltage is larger in the slope case for all input locations

(Fig. 4A, two bottom curves). To highlight the effect of the
nonuniform membrane conductance in the case of synaptic in-
puts, we have plotted in Figure 4B the benefit (the relative change
in the soma voltage) of having a maximal slope membrane con-
ductance rather than a uniform membrane conductance. The
reference case of a DC current input, I 5 gsyn Esyn , is also shown
(current input curve); the corresponding curve is independent of
gsyn (because of linearity) and is given by (Rx,0

s 2 Rx,0
u )/Rx,0

u .
All of the curves in Figure 4B intersect at Xu . 0.57. At this

site, the input resistance in the slope case is the same as in the

Figure 3. Transfer resistance increases with the steepness of Gm(x).
Transfer resistance is plotted for a cylinder of length L u 5 1 for different
conductance profiles; uniform, Gm(x) 5 Gm (dotted line); square root,
Gm(x) 5 Gm (3/2=x/,) (dotted–dashed line); linear, Gm(x) 5 Gm(2x/,)
(continuous line); square, Gm(x) 5 Gm(3(x/,)2) (dashed line). The corre-
sponding Gm(x) functions are drawn in the inset.

Figure 4. Distal synaptic inputs are more efficient when Gm(x) linearly
increases with distance. A, Soma voltage as a function of input location in
the cylinder for both a steady-state synaptic conductance change (gsyn 5
2 nS, Esyn 5 65 mV; bottom two curves) and for a DC current injection
(I 5 gsyn Esyn ; top two curves). The uniform case (dotted line) and the
maximal slope case (continuous line) are shown; cable properties are as in
Figure 1 A. B, The relative increase in soma voltage, (Vsoma

s 2 Vsoma
u )/

Vsoma
u , denoted as “Benefit,” attributable to the spatial gradient in the

membrane conductance, is displayed as a function of input location.
Current injection and three cases of steady-state synaptic conductance
change (gsyn 5 1, 10, and 100 nS) are shown as a function of input
location. The dashed curve corresponds to the limiting case in which gsyn
3 `. This curve was computed by taking the limit, gsyn3 `, in Equation
6. The relative increase in soma voltage is then given by (AFx,0

u 2
AFx,0

s )/AFx,0
s . This can be interpreted as the benefit attributable to the

difference in the attenuation factor. This is reasonable because, in this
limit, the local voltage is Esyn in both the slope and the uniform cases, and
only the difference in AFx,0 causes a difference in soma voltage. (Note that
in this limit, the soma voltage is inversely proportional to the attenuation
factor.)
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uniform case (Fig. 2B), and the difference between the two cases
(which is also independent of gsyn) is attributable only to differ-
ences in the transfer resistance, Rx,0 (Eq. 6). Most notable is that
the relative change in the soma voltage is always positive (and is
independent of Esyn). This means that when the input is a
synaptic conductance change, the nonuniformity in the mem-
brane conductance results in an increase of the soma voltage
compared with the uniform case, as was also the case for current
input. For input locations more distal than the point of intersec-
tion, the current input case sets a lower bound for this effect, and
the benefit of having a slope membrane conductance grows with
increasing gsyn , eventually reaching a limit (Fig. 4B, dashed
curve). In contrast, for proximal input locations, the current input
case sets an upper bound for the effect of the slope membrane
conductance. The benefit of having a slope conductance is
smaller when the input is a synapse rather than a current input,
and this benefit decreases with increasing gsyn.

These results can be explained as follows. First, in the slope
case, more synaptic current is generated at leakier distal inputs
sites because the local voltage saturation is reduced as a result of
the lower input resistance at these sites (Fig. 2B). The opposite is
true for proximal input sites. Second, the transfer resistance is
always larger in the slope case compared with the corresponding
uniform case (Fig. 2A). All in all, distal synaptic inputs benefit
twice from having slope membrane conductance. For proximal
synaptic inputs, however, there is a competition between the
reduction of the synaptic current on the one hand (caused by
stronger saturation) and the increase in the transfer resistance on
the other hand. Because the latter dominates, synapses are always
more effective in producing a larger soma voltage when Gm

linearly increases with distance. Distal synapses can exploit this
membrane nonuniformity more effectively, because of a de-
creased synaptic saturation, than do proximal synapses. As a
consequence, the largest relative benefit is obtained for weak
proximal synapses and for strong distal synapses.

Dendritic trees
The previous sections dealt with cylinders of constant diameter
with both ends “sealed.” There are two main difficulties in ex-
tending the insights gained in these sections to dendritic trees
with realistic geometries. The first arises from the “sealed ends”
assumption and the second from the assumption of constant
diameter. Real dendrites are complex branching structures with
frequent changes in diameters, and although sealed end boundary
condition is usually accepted for the termination of distal den-
dritic arbors, this condition is generally inappropriate at the
proximal end of dendrites, toward which the synaptic current

flows. At this end, the impedance load attributable to the soma
and the other dendritic trees emerging from it may result in
“leaky” boundary conditions. In the following, we will separately
deal with each of these issues and then explore their interplay by
considering relevant models of reconstructed neurons.

Boundary conditions
When the synaptic current flows from the “input dendrite” toward
the soma, the steady-state boundary condition at the soma is
given by the leak conductance, GL, which is the sum of the
individual input conductances of all the other dendrites, each
taken alone, plus the input conductance of the somatic membrane
(Rall, 1959). The “leakiness” of the boundary condition can then
be quantified by the parameter B 5 GL/G`, where G` is the input
conductance of a semi-infinite cylinder with the same diameter
and specific properties as the “input” dendrite. B 5 0 is the sealed
end boundary condition (no leak through the termination), and
B 5 ` is the “killed end” condition. Large B values indicate a
large “leak” at the boundary.

In Table 2, B was computed for three reconstructed dendritic
trees shown in Figure 7, assuming uniform membrane resistance
of 20,000 Vcm2 (fourth column) and 50,000 Vcm2 (fifth column).
The values obtained span two orders of magnitude, from 0.1 (in
Purkinje cells) to more than 10 for the (thin) basal dendrites of
hippocampal and neocortical pyramidal cells. For these basal
dendrites, the soma and all other dendrites impose a large con-
ductance load. The boundary conditions for the apical tree of
these two cells are less leaky.

How do leaky boundary conditions affect the results obtained
thus far? Figure 5A depicts the effect of varying boundary condi-
tions at x 5 0 on the transfer resistance Rx,0. When the proximal
termination becomes leaky (B ' 1), the transfer resistance curves
in the uniform case and in the slope case intersect; the intersec-
tion point moves closer to the proximal end as B increases. In
contrast to the sealed end case, in these cases distal current input
gives rise to a smaller somatic voltage in the slope case compared
with the uniform case.

The attenuation factor, however, remains smaller in the slope
case (Fig. 5B), even with large B value, although the difference
between the two cases progressively diminishes as the leakiness at
the termination increases. The results of Figure 5A, B demon-
strate that, with increasing B values, the longitudinal current flow
in the cylinder becomes more and more dominated by the leak-
iness at the boundary. Consequently, the effects of the membrane
nonuniformity become progressively less significant. This effect is
further demonstrated in Figure 5C. Here a DC current is injected
to the distal end of the cylinder, and the axial current Ia (given by

Table 2. Boundary condition (B) at the soma for the dendritic trees in Figure 7

Cell type Dendrite B20,000 B50,000 d (mm) max L20,000
u

Layer V pyramidal Apical 0.96 0.47 8.4 2.6
Basal (n 5 10) 12.1 6 8.7 6.7 6 4.8 2.5 6 1 0.66

Hippocampal CA1 Apical 1.6 1.1 2.75 3.65
Basal (n 5 6) 8.3 6 4.4 6.2 6 3.2 1.3 6 0.6 1.7

Cerebellar Purkinje 0.11 0.07 7.2 0.36

B values were computed at the point of connection between the soma and the dendrite indicated (e.g., the apical dendrite).
Computations were performed assuming uniform Rm

u of 20,000 Vcm 2 (third column) or 50,000 Vcm 2 (fourth column). In
both cases Ri 5 200 Vcm. For each dendrite B 5 (2/p) =RmRid0

23/2/R*in , where d0 is the diameter of the dendrite at the
connection point with the soma (fifth column), and R*in is the input resistance of the neuron at the soma when the dendrite
is removed. The last column denotes the longest electrotonic path, from the soma to a dendritic terminal, for the uniform
case (Rm

u 5 20,000 Vcm 2).
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21/ri ­V/­x) is plotted as a function of x for three boundary
conditions. First, notice that in both cases (slope and uniform),
the larger the B value, the larger is the axial current Ia. Note also
that the axial current in the slope case is everywhere smaller than

in the corresponding uniform case. This is true for this specific
distal input location and is the result of the larger current loss
(shunt) through the leakier distal membrane in the slope case.
One may erroneously conclude from this figure that the charge
transfer from x to the soma (x 5 0) is always smaller in the slope
case for all input locations and boundary conditions. However, for
many input locations, Vsoma is larger in the slope case (Fig. 5A),
which implies that the charge transfer to the soma is then larger
than in the uniform case. This is true because Ia(soma) 5
VsomaGL , and GL is the same in the uniform case and the slope
case (same B value). Hence, the charge that reaches the soma can
be easily derived by scaling Figure 5A by the appropriate GL value
that corresponds to a given value of B. Then, for a given B value
and input location x, the axial current that reaches the soma is
larger in the slope case if Rx,0

s . Rx,0
u .

In the figure above we imposed the same leak conductance
(GL ) at the boundary for both the slope case and the uniform
case. However, if we impose the slope condition on a realistic
dendritic tree, we expect that for each dendrite, B will be different
from its value in the corresponding uniform case. This is because
the input resistance at the somatic end is increased in the slope
case compared with the corresponding uniform case (Fig. 2), and
thus Gin into this dendrite is decreased. This decreases GL for all
the other dendrites (and thus the B value becomes smaller). Note
that Figure 5A also shows that in both the uniform and slope
cases, the smaller B is, the better the voltage transfer from the
dendrites to the soma. This means that a dendrite with a slope
conductance gradient will impose a lesser conductance load to the
other dendrites stemming from the soma, compared with a den-
drite with uniform membrane conductance. Signal transfer from
these other dendrites to the soma will then be improved because
the boundary condition at their somatic end will be less leaky. To
assess what are the effects of this interplay between conductance
gradients and boundary conditions, it is necessary to consider
reconstructed neurons (see below).

Branching
The results derived above for cylinders cannot be readily ex-
tended to branching structures. Consider the simple case of a
branched cable consisting of a father branch and two daughter
branches, one thick and one thin, such that this structure is
equivalent to a single cylinder in the uniform case (Rall, 1959).
This implies that the thick daughter branch is physically longer
than the thin daughter branch. Now consider the maximal slope
case in which the specific membrane conductance increases with
a constant slope per unit length from the proximal end of the
father branch to the distal terminals of the daughter branches.
This case is analytically handled in Appendix A.2 and illustrated
in Figure 6. Because the thin branch is physically shorter (and the
conductance is growing as a function of distance from the soma),
the total membrane conductance in this thin and shorter branch
is smaller than in the thicker sibling branch, and the membrane at
its termination is less leaky. Indeed, most of the membrane
conductance is now allocated to the thick branch.

One consequence of this asymmetry in the allocation of ion
channels is that the branched structure is no longer equivalent to
a single cylinder in the slope case; the thin branch is now elec-
trically shorter than the thick branch. Another consequence is
that the total conductance along a given path from the soma to
some terminal is not the same in the uniform case and the
nonuniform case. Thus, when comparing the electrotonic prop-
erties of this structure between the uniform and slope case, the

Figure 5. Leaky boundary conditions reduce the effects of membrane
nonuniformity. A, Transfer resistance Rx,0(x); B, log voltage attenuation
(LAx,0 ); C, axial current along the cylinder in response to a DC current
injection at x 5 ,. Results are displayed for a cylinder of length L u 5 1,
with “sealed end” at x 5 , and for three different boundary conditions at
x 5 0 (B 5 0.1, B 5 1, and B 5 10). Both the uniform case (dotted lines)
and the slope case (solid lines) are shown.
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insights gained from a single cylinder are not directly valid be-
cause the constraint of the total amount of conductance imposed
on the whole structure is not satisfied for each path separately.

Because of the asymmetry in the electrotonic properties of the
two daughter branches in the slope case, the transfer resistances
from the terminals of these branches to the soma are no longer
equal as they were in the uniform case. Figure 6A shows that Rx,0

from distal sites in the thin branch is larger than Rx,0 from the
corresponding sites of the thick branch. Still, Rx,0 is larger in the
slope case than in the uniform case, whatever the input location x
is, as was the case for single cylinders. This is true even when the
asymmetry between the two daughter branches is very strong. In
that case, the diameters of the father branch and of the thick
daughter branch are nearly equal, and these two branches almost
constitute a single cylinder of constant diameter, whereas the

second (very thin and short) daughter branch now has negligible
membrane conductance.

A branched dendritic structure is generally not equivalent to a
cylinder even in the uniform case, and in principle, the transfer
resistance from distal sites to the soma may then be smaller in the
slope case than in the uniform case. An example is shown in
Figure 6B in which the thin branch is physically longer than the
sibling thick branch (see inset), so that the specific conductance of
its terminal is larger than in the other branch. The transfer
resistance for distal input locations on this branch steeply de-
creases with x, and it reaches lower values in the distal part
(arrow) in the slope case compared with the uniform case. This
effect is observed in the models of reconstructed dendritic trees
analyzed below, where some of the distal branches are much
longer than others.

It is important to note that other rules for increasing membrane
conductance could be implemented on dendrites displaying geo-
metrical nonuniformities such as branching, tapering, or flare. For
instance, a reasonable alternative is that the specific membrane
conductance increases with distance as a function of the mem-
brane area rather than with distance (i.e., Gm(x) ; p E

0

x d(z)dz).
Another possibility is that the membrane conductance increases
as a function of the electrotonic distance from the soma (i.e.,
Gm(x) ;E

0

x dz/lu(z)). In the latter case, a branching structure that
is equivalent to a single cylinder in the uniform case is also
equivalent to a cylinder in the nonuniform case.

Reconstructed trees
The net effect of membrane nonuniformity on the transfer resis-
tance for three reconstructed dendritic trees (all known to have
active, and spatially nonuniform, dendritic properties) is shown in
Figure 7. In all cases, Gm

u 5 20,000 S/cm 2. In the slope cases, the
membrane conductance linearly increases with the physical dis-
tance from the soma, but the total amount of conductance was
kept equal to the uniform case (such that the average value of
membrane conductance, Gm, computed with respect to mem-
brane area, was equal to Gm

u ).
We first consider the case of the cerebellar Purkinje cell (Fig.

7A) where only one profuse dendritic tree stems from the soma.
As can be seen, the transfer resistance from most of the dendritic
locations to the soma is larger in the slope case (heavy line). For
this neuron, the boundary condition at the soma end is close to a
sealed end (Table 2); this is a favorable condition for the en-
hancement of signal transfer by the conductance gradient (see
above). However, notice that because this cell is electrically very
compact, the net effect of membrane nonuniformity is rather
small (Fig. 2A, Lu 5 0.5; Table 2, last column).

We next consider a neocortical pyramidal cell (Fig. 7B) where
a clear distinction exists between short basal dendrites and an
apical tree, with a large and thick trunk and a distal tuft. In the
slope case (heavy line), Gm(x) linearly increases with the same
slope in all dendrites. In the basal trees, the transfer resistance is
almost twice as large in the slope case compared with the uniform
case. Rx,0 is also larger in the slope case for the main trunk of the
apical tree. In the apical tuft, however, Rx,0 is lower compared
with the uniform case. This is because of the combination of the
higher total Gm of the apical dendrite in the slope case (producing
a larger shunt, on the average) and the conductance gradient
along this dendrite that produces a strong local shunt at distal
sites. As a consequence, distal inputs are less efficient in this case
compared with the uniform case. Note that this example encap-
sulates many of the points discussed so far. The boundary condi-

Figure 6. Signal transfer in nonuniform branching geometries. Transfer
resistance Rx,0 is plotted as a function of input location, x, in a branched
structure. The uniform case (dotted lines) and the maximal slope case
(continuous line), in which Gm(x) linearly increases with the same slope
along all the branches, are shown. The geometry of the branched structure
(inset) is as follows. A, , 5 500 mm and d 5 4 mm for the father branch;
for the thin daughter branch, , 5 316 mm, d 5 1.6 mm, and for the thick
daughter branch, , 5 453 mm, d 5 3.3 mm. In the uniform case this
structure is equivalent to a single cylinder of length L u 5 1. B, Same as
in A, but the thin daughter branch is 200 mm longer (see inset). In both A
and B the constraint of a fixed total membrane conductance (Eq. 2) was
imposed. This yields a slope conductance of 1.042E25(S/cm 2)/100 mm in
case A and 0.967E25(S/cm 2)/100 mm in case B.
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tions at the soma end are leaky (Table 2), there is a reallocation
of conductance from the shorter basal dendrites to the longer
apical tree, and there are long paths in this tree where the specific
membrane conductance becomes very high.

The same general behavior also holds true for the hippocampal
CA1 neuron (Fig. 7C), but the advantage of having slope conduc-
tance is also apparent at distal apical arbors. We should empha-
size that the results shown in Figure 7 are for steady current
input; with a synaptic conductance change, this effect is expected
to be even larger, especially in thin arbors in which local synaptic
saturation may become significant (Fig. 4B).

The enhancement of signal transfer in basal dendrites of pyra-
midal cells on Figure 7B, C is caused mainly by the reallocation of
the conductance in the slope case from the short basal tree to the
long apical tree. This effect is analyzed on a very simple model in
Appendix A.2. To control for the effect of conductance realloca-
tion from one sub-tree to the other (e.g., basal to apical), we
model in Figure 7D the case in which each of these sub-trees
conserves its own total conductance as it has in the uniform case.
Note that this implies that the slope per unit length is different
between the two sub-trees (see inset). The enhancement of volt-
age transfer in the basal tree is now drastically reduced compared
with Figure 7B. For the same reason, the difference between the
slope and uniform cases in the hippocampal neuron (Fig. 7C) is
less dramatic than in the layer 5 pyramid. Indeed, the asymmetry
between the apical and basal tree of the CA1 neuron is smaller,
and thus, the reallocation of Gm is less marked in this case.

As shown in Table 2, the B values at the soma are quite
different between the basal and apical tree. For the basal trees, a
large conductance load is imposed by the soma and apical den-
drite (B ' 10), especially when conductance reallocation to the
apical tree is allowed (Figs. 7B, C). Because the effect of gradients

in membrane conductance diminishes with large B values, one
expects that nonuniformity in membrane conductance will have a
relatively small effect for the basal tree. This was verified by
comparing the case where the conductance linearly increases in
the basal tree with the case in which the same total conductance
in the basal tree is uniformly distributed (results not shown). For
the apical tree, however, the soma and the basal tree impose a
much smaller conductance load (B values are smaller), especially
if conductance reallocation between the basal and apical trees is
allowed. This explains why gradient membrane conductance can
improve signal transfer in the apical tree.

Transient current injections
In the above we dealt with the steady-state case, which is also
applicable to the behavior of the time-integral of transient volt-
ages (Barrett and Crill, 1974; Rinzel and Rall, 1974). In this
section we consider transient current injection I(x, t) and restrict
ourselves to the case of a single cylinder.

The solution of the time-dependent cable equation, which
linearly depends on the current input I(x, t), can be obtained by
convolving this current input and the Green function &(x, t) of the
problem. &(x, t) is the voltage response at x , t to a current pulse
at time t 5 0 and location x 5 xin. In the uniform case, &(x, t) can
be written as a infinite sum of functions, which exponentially
decay with time:

&~ x, t! 5 O
0

`
cj&je2t/tj.

The coefficients, cj , are given by the expansion of the current
impulse I(x, t) 5 d(x 2 xin)d(t) on the set of orthonormal func-
tions &j , so that cj 5 &j(xin)/, (Rall, 1969). For sealed ends

Figure 7. Voltage transfer is enhanced
in dendritic trees with slope membrane
conductance. Transfer resistance in the
slope case and the uniform case for
three reconstructed trees: A, cerebellar
Purkinje cell (provided by M. Rapp, He-
brew University); B, D, layer V neocor-
tical pyramidal cell (provided by J. C.
Anderson, K. A. C. Martin, and R. J.
Douglas, ETH, Zurich); C, hippocam-
pal CA1 cell (provided by D. Turner,
Duke University). D, Same as B but now
the total conductances of the apical tree
and of the basal dendrites both retain
separately in the slope case the values
they have in the uniform case. In A–C,
the constraint of a fixed total membrane
conductance in slope and uniform cases
was imposed for the whole dendritic ar-
borization. In all four cases Gm

u 5 20,000
S/cm 2 and Ri 5 200 Vcm. To keep the
constraint of a fixed total membrane
conductance, a slope of 2.5E25(S/cm 2)/
100 mm was used in A, 1.5E25(S/cm 2)/
100 mm in B, and 8.6E26(S/cm 2)/100
mm in C. In D a slope of 9.2E26(S/cm 2)/
100 mm was used for the apical dendrite,
and a slope of 4.5E25(S/cm 2)/100 mm
was used for all the basal dendrites.
Scale bar, 100 mm.
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boundary conditions, the system time constant t0 is equal to the
membrane time constant, tm

u 5 Cm/Gm, and the associated func-
tion, &0 5 1, is spatially constant. The smaller “equalizing” time
constants t1 . t2 . . . . are given by:

tj 5
tm

u

1 1 S jp
LuD 2

The associated functions &j 5 cos( jpx/,)z=2 are delocalized over
the whole interval [0, ,]; only their phase varies with the position
x, whereas their amplitude remains constant. This stems from the
uniformity of the cable that precludes that any particular spatial
location be privileged.

Figure 8 (lef t) displays the voltage profile along a cable of
intermediate electrotonic length (Lu 5 1.5) at successive times,
after a brief current injection. It highlights the striking differences
between the maximal slope case and the uniform case. At time
t 5 1ms, after the onset of the input current, the voltage profiles
are essentially similar in the uniform case and maximal slope case
(Fig. 8, t 5 1 ms), but once the asymptotic regime is reached,
where the decay of transients is governed by t0 , the voltage profile
always remains nonuniform in the slope case, whereas the cable is
isopotential (up to exponentially small corrections) in the uni-
form case (Fig. 8, t 5 20 and t 5 80). The behavior of the
transients at right is elaborated in Discussion. This nonuniformity
reflects the behavior of &0(x) in the slope case, which decreases
from the proximal low conductance region to the distal high
conductance region, as is proved in Appendix E.3. Moreover, the
final relaxation phase proceeds more slowly in the nonuniform
case. These differences can be understood by studying the Green
function &s(x) of the slope case.

An expansion of time-dependent solutions as a sum of orthog-
onal functions that decrease exponentially in time can also be
derived in the nonuniform case. The time constants, tj , and the

associated eigenfunctions, &j , are solutions of the eigenvalue
problem (Eq. 5), which can be recast into the dimensionless form:

~Lu!2
d2 &j~ y!

d y2 2 Sgm~ y! 2
tm

u

tj
D &j~ y! 5 0,

where y 5 x/, and gm(y) 5 Gm(y)/Gm. The normalization of &j

then becomes *0
, &j

2(y)dy 5 ,. In the slope case, this eigenvalue
problem is analytically tractable (see Appendix E). The eigenval-
ues and eigenfunctions depend not only on the conductance
profile, gm (y), but also on the electrotonic length, L u, which plays
the role of a diffusion constant in the above equation and controls
the degree of spatial averaging. In particular, full spatial averag-
ing occurs in the limit L u 3 0, where the diffusion length lu

becomes large with respect to the length of the cable, so that the
time constants tend to the values obtained for the uniform case,
whatever the actual conductance profile along the cable is. For the
benefit of the physics-oriented reader, the effects of L u are dis-
cussed in Appendix D.1 using a formal analogy with quantum
mechanics.

In Figure 9A, the system time constant, t0
s , and the first two

equalizing time constants, t1
s and t2

s , are plotted in the maximal
slope case and for sealed ends boundary conditions, as a function
of Lu in the range 0 # Lu # 10. This range should cover all
physiologically relevant situations, even when strong background
synaptic activity increases the effective electrotonic length of the
dendritic tree (Bernander et al., 1991; Rapp et al., 1992). In this
range, the system time constant t0 in the slope case is larger than
in the corresponding uniform case. This is actually true for all
values of Lu, and not only in the slope case, but also whenever the
membrane conductance is not uniform (as proved in Appendix
D.2). For the general slope case, it can be shown that conversely
t0 , tm

u /(1 2 a) (see Appendix E.3). Moreover, t0
s monotonically

Figure 8. Voltage transients in a cyl-
inder with nonuniform Gm. The volt-
age profile V(x) along a cylinder (L u 5
1.5, tm

u 5 20 msec) is plotted as a func-
tion of the dimensionless variable X u 5
x/lu at successive times (t 5 1, 5, 11, 20,
80 msec), after a brief current injection
at X u 5 1.05. Both the uniform case
(dotted line) and the maximal slope
case (solid line) are shown. The right
two graphs show the voltage response
at X u 5 1.05 (large initial transient)
and at X u 5 0.45 as a function of time
for both the uniform case (bottom) and
slope case (top). The arrows mark
the times at which V(x) is displayed on
the lef t.
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increases with Lu. In the limit of small Lu, it can be shown (see
Appendix E) that:

t0
s 5

tm
u

1 2
~Lu!2

30
1 2~~Lu!6!

,

in the maximal slope case. In the opposite limit of large Lu, t0

goes to Cm/min Gm(y), as shown in Appendix D.3 (so that it
diverges to infinity in the maximal slope case, because min
Gm(y) 5 0). As a consequence of this behavior, the final relax-
ation of the potential, after fast equalization has occurred, pro-
ceeds more slowly in all nonuniform cases compared with the
uniform case.

The equalizing time constants tj , j . 1, all vanish with Lu as
(Lu)2, as in the uniform case (see Appendix E). However, at
variance with t0

s , they are smaller in the maximal slope case than
in the uniform case for small Lu values, as proved in Appendix
E.2. This is in contrast with their behavior at large L u, where they
are larger than in the uniform case and go to infinity with Lu (see
Appendix E.2). For instance, t1

s is smaller than t1
u as long as Lu ,

10, and then becomes larger than t1
u, as can be seen in Figure 9A.

Note also that tj
s significantly departs from tj

u only for large
enough Lu (typically Lu . jp). This means that, at variance with
t0 , the time course of voltage equalization is little affected by the
conductance gradient for physiologically reasonable values of Lu.
In this range, differences with respect to the uniform case occur
only for the first equalizing time constants and only for rather
large values of Lu (Lu . 3) and do not exceed 20%.

As in the uniform case, the eigenfunctions oscillate faster and
faster as j increases, the function &j vanishing exactly j times on
the open interval (0, ,). This is illustrated in Figures 9B, C, where
the first two modes, &0

s(y) and &1
s(y), are plotted for the maximal

slope case and sealed end boundary conditions. At variance with
the uniform case, they are not pure Fourier modes: they show
some degree of spatial localization, their amplitude being larger
in the low conductance region of the cable (Fig. 9B, C). In
particular, &0

s(x) is not a constant. For sealed end boundary
conditions, it is a monotonic function of x, as proved in Appendix
E, reaching its maximum at the proximal end (x 5 0), where the
membrane conductance is minimal, whereas its minimum is ob-
tained at the distal end (x 5 ,) where the membrane conductance
is maximal. This means that in the final stage of voltage relax-
ation when the voltage decays everywhere at the same rate t0

s , the
cable is not isopotential, at variance with the uniform case. At this
time, axial current constantly flows from the low membrane
conductance region to the high conductance region, maintaining
a voltage gradient. The nonuniformity of &0

s increases with Lu. It
disappears when Lu goes to 0; the uniform solution &0

u(y) 5 1 is
then recovered. For large values of Lu (Lu 5 10), &0

s(y) develops
an exponentially decreasing tail in the high conductance region
(this feature is discussed in Appendix D.1). Slow voltage tran-
sients will then be observed only in the low conductance region
during the final relaxation phase. We note that current injection
in the high conductance region will lead to small voltage tran-
sients. The other eigenfunctions display a similar behavior as
&0(y), as illustrated in Figure 9C in the case of &1

s(y). As previ-
ously noticed for tj

s, compared with &0
s(y), larger values of Lu are

required to observe strong departures of &1
s(y) from the cosine

profiles of the uniform case. This supports the general conclusion
that for values of L u typical of dendrites (Lu 5 1 2 3), conduc-
tance gradients affect the slow asymptotic relaxation of the po-

Figure 9. Time constants and eigenfunctions. A, The system time con-
stant t0 and the first two equalizing time constants, t1 and t2 , are
normalized to the membrane time constant tm

u and plotted for a cylinder
with sealed ends, as a function of the electrotonic length L u (L u # 10).
Both the uniform case (dotted lines) and the maximal slope case (solid
lines) are shown. Explicit analytical solutions are available in the uniform
case. The values in the slope case were computed by solving a transcen-
dental equation as explained in Appendix E. B, Eigenfunction &0

s as a
function of the dimensionless variable y 5 x/, in the maximal slope case
for two values of L u (2 and 10) and in the limit L u3 0 (where the uniform
case is recovered). &0

s(y) was computed as explained in Appendix E. C,
Same for the eigenfunction &1

s(y). The convention that &j
s(0) . 0 was

adopted. The reader is referred to Appendix D.1 for further elaborations.
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tential but have little effect on the faster “equalization” process.
Note also that steeper conductance profiles lead to a slower
relaxation and a stronger localization of &0 (result not shown).

DISCUSSION
Main results and insights
The first general conclusion drawn from this work is that for
cylindrical cables with both ends sealed, monotonic increase in
Gm increases the transfer resistance from any input location to
the proximal end (soma) compared with the corresponding uni-
form case. Thus, an increasing Gm(x) results in an increase of the
voltage response at the soma. This effect is more pronounced
when the steepness of Gm(x) increases. Importantly, this improve-
ment, caused by monotonic increase in Gm , is also generally valid
in reconstructed passive dendritic trees, although exceptions are
expected for relatively long distal dendritic arbors. When synaptic
inputs (rather than current inputs) are involved, the advantage of
membrane nonuniformity becomes even more pronounced (dou-
ble “benefit”) for distal synaptic inputs. This is caused by the
larger leakiness of the membrane at distal dendritic sites in the
nonuniform case, which results in a decrease in the local synaptic
saturation, and thus, with the generation of more current by these
distal synapses [see also Bernander et al. (1994)].

The second general result is that any membrane nonuniformity
decreases the electrotonic length (L) of the cable, compared with
the corresponding uniform case. However, this increase in the
cable “compactness” in nonuniform cylinders does not necessarily
imply an increase in voltage (or charge) transfer because L is not
the sole parameter of importance in this case. Indeed, for (both
geometrically and electrically) nonuniform cylinders, voltage at-
tenuation also depends on the direction of current flow. For
example, in cylinders with both ends sealed and with a monotonic
increase in membrane conductance, the attenuation of voltage
from the leaky end to the other end is smaller than in the reverse
direction.

Another general result, which holds true for all cable structures
with sealed ends (as neurons typically are), is that any membrane
heterogeneity slows the final relaxation of voltage as compared
with the corresponding uniform case. In other words, for any
nonuniformity, the slowest time constant, t0 , is always larger than
tm

u , the slowest time constant in the corresponding uniform case.
Thus, the final decay (the “tail”) of the excitatory synaptic poten-
tials (e.g., the somatic EPSPs) is expected to be slower when the
dendritic membrane conductance is spatially nonuniform, and
this effect increases with L. The slowing down of the final decay
attributable to membrane nonuniformity has important implica-
tions for synaptic integration and for the experimental estimation
of L (see below).

A general insight from studying the transient signals is that the
system time constant t0 is a global quantity (i.e., it is the same
everywhere, even in an heterogeneous cable). This results from
the spatial averaging that takes place in the dendritic tree. Con-
sequently, the properties of local electrical signals in dendrites are
shaped, to a large extent, by the passive characteristics of the
dendritic tree. Even an active local signal is strongly affected by
the passive properties of the not-yet-activated adjacent regions.
Thus, one cannot fully understand active phenomena in neurons
without understanding the interplay between the underlying pas-
sive and active mechanisms.

Finally, we have shown that in cable structures with membrane
nonuniformity and both ends sealed, there is a voltage gradient
(an axial current) when the voltage relaxes according to t0 ,

whereas in the uniform case, the whole structure is isopotential at
this time. In the former case, the voltage is larger at sites with less
leaky membrane conductance (namely, axial current constantly
flows from these sites to the leakier regions). The experimental
implication of this result is highlighted below.

Implications for experiments: estimating L and
assessing membrane nonuniformity
The theoretical results presented in this work have two direct
implications from the experimental viewpoint. The first concerns
the estimation of the electrotonic length, L, of the dendritic tree.
One of the most powerful experimental outcomes of Rall’s cable
theory for dendrites was his “peeling” method for estimating L
from the two slowest time constants (t0 and t1), which were
“peeled” from experimental transients (Rall, 1969). Rall has
analytically shown that, in uniform passive cylinders with both
ends sealed:

L 5
p

Ît0 /t1 2 1
. (7)

What happens when this equation is used with the first two time
constants estimated by peeling transients in the nonuniform case,
namely, when t0

s and t1
s (in the slope case for example) are used

in the above equation? We have shown above that t0
s is larger

than tm
u and that, for relatively short cables, t1

s is smaller than t1
u.

Therefore, one expects that the estimated L value, Lpeel
s , in the

slope case will be smaller than L u in the corresponding uni-
form case.

This is indeed the case as shown in Figure 10 where the L value
estimated from peeling transients in the uniform case is compared
with the estimate obtained when voltage transients of the slope
case are peeled. In the uniform case, the L value estimated from
peeling is very close to the actual value of Lu for the full range of
Lu value tested (45° line, L). In the slope case, however, this
estimate saturates for cylinder with Lu . 2 (C). Namely, for Lu .
2, Ls

peel underestimates Lu. One could rightly argue that the
estimate should be compared with the generalized electrotonic
length (L 5 *0

, dx/l(x)) rather than with Lu. Yet, the generalized
electrotonic length is not expected to saturate (Fig. 10, ●) as does
Lpeel

s . We thus conclude that when the peeling method is used in
cases with monotonic increase in Gm, the value obtained for L
may severely underestimate both the value of L in the corre-
sponding uniform case (Lu) as well as the value of the generalized
electrotonic length of the structure. We note that because t0

s and
t1

s are independent of input location, the estimated L value is,
generally, also independent of the location of current input (and
voltage recording).

Another theoretical prediction that has a direct experimental
relevance is the “crossing,” in the nonuniform case, of voltage
transients measured simultaneously at distal and proximal loca-
tions (Fig. 8, right traces, top). As discussed above, in nonuniform
cables there is a constant current flow from low-conductance
regions to high-conductance regions when the voltage transient
relaxes with t0. In the nonuniform case, when the input is deliv-
ered to distal leaky regions, the resultant voltage is initially larger
near the input site, but at later times it becomes larger at proxi-
mal, less leaky sites. This implies a crossing of the voltage tran-
sients measured proximally and distally in the nonuniform case
but not in the corresponding uniform case (where the structure is
isopotential at large times), as indeed shown in Figure 8 (right
traces). Crossing of transients may take place also in the uniform
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case in the experimentally less likely situation where one elec-
trode is near a sealed end boundary. At this location, charge tends
to accumulate, and voltage transients relax slower than in more
proximal locations. This may yield voltage crossing between
faster decaying proximal transients and voltage transients mea-
sured near this boundary.

In conclusion, when voltage transients recorded at two den-
dritic locations cross each other, this strongly suggests that the
membrane conductance is not uniformly distributed over the
dendrites. Such a “cross-over” was indeed recently described in
the experiments of Stuart and Spruston (1998) [see also “cross-
ing” in Rapp et al. (1994), their Fig. 8].

Implications on membrane nonuniformity for the input–
output function of neurons
This work analyzes the flow of current from the dendrites to the
soma, showing that transfer impedance to the soma increases
when relatively fewer ion channels are allocated near the soma
and more are allocated distally. This gradient of ion channels also
implies that the dendritic tree imposes a smaller load (current
sink) on the spike mechanism in the axon compared with the
corresponding uniform case. This is demonstrated in Figure 11
where the I/f curves of a modeled neuron with uniform (dotted
curve) versus slope (continuous line) dendritic membrane conduc-
tance are shown. In both cases, the same excitable axon is at-
tached to the soma. As can be seen, relatively less current is
required to reach threshold for action potential firing in the slope
case, and the I/f in this case is somewhat more linear (at low firing
rates) than in the corresponding uniform case. Thus, a smaller
number of excitatory synapses are required to fire the axon when
the dendrites have a slope conductance.

One may wonder why the dendritic membrane should possess
ion channels at all. One could argue that signal transfer would be
most efficient when the dendritic tree is essentially bare of ion
channels (no current loss via the dendritic membrane). However,

this would imply that the membrane time constant is very large,
and consequently, that the resetting of the dendritic voltage is
very slow. Another undesirable consequence of very low mem-
brane conductance is that each synaptic input (conductance
change) will dramatically change the effective membrane time
constant and input resistance. Leaky resting membrane ensures
that the effective (integration) time constant and the input resis-
tance remain within a reasonable value even when a massive
synaptic input bombards the neuron (Bernander et al., 1991;
Rapp et al., 1992). Redistribution of approximately the same
number of ion channels in the dendritic tree enables one to
modulate signal processing in the dendritic tree, still ensuring that
both the temporal characteristics of the signal and its amplitude
will remain within a desired operating regime.

The present study explored the most straightforward case in
which the total number of ion channels within the modeled
structure remains fixed. There is, of course, the possibility that the
number (and type) of effective dendritic ion channels change both
very rapidly (e.g., because of the activation of synaptic-gated
conductances as well as of voltage-gated ion currents with fast
kinetics such as IA) or at a slower time scale where the production
of new ion channels is involved. Whatever the mechanism is, it is
clear that because of its membrane ion channels, the dendritic

Figure 10. Errors in estimating L in the slope case. The electrotonic
length of the cylinders was estimated using Rall’s (1969) peeling method
(Eq. 7). The values of the first two time constants, t0 and t1 , were peeled
from a voltage response to a short current pulse injected to the compart-
mental model of the corresponding cylinder. The estimate is accurate for
uniform cylinders (L), but in the slope case (E), both L u and the
generalized electrotonic lengths (F) are underestimated for cylinders
with L u . 2.

Figure 11. The conductance profile, Gm(x), in the dendrites affects the I/f
relation of the neuron. An excitable axon (Mainen and Sejnowski, 1996)
was added to the passive dendritic model of layer V pyramid shown in
Figure 7B. Constant current I was injected to the soma in both the
uniform case (dotted line) and the slope case (continuous line). In the later
case the dendritic tree imposes a smaller “current sink” on the firing
mechanism at the axon. Consequently, the I/f curve is shifted to the lef t.
The bottom trace shows the action potentials in the uniform case (dotted
line) and the slope case (continuous line) on a 100 msec time interval for
I 5 0.25 nA.
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tree becomes a very flexible electrical device that can dynamically
modulate, at different time scales its input–output capabilities.
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