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Linear experimental designs have dominated the field of func-
tional neuroimaging, but although successful at mapping re-
gions of relative brain activation, the technique assumes that
both cognition and brain activation are linear processes. To test
these assumptions, we performed a continuous functional
magnetic resonance imaging (MRI) experiment of finger oppo-
sition. Subjects performed a visually paced bimanual finger-
tapping task. The frequency of finger tapping was continuously
varied between 1 and 5 Hz, without any rest blocks. After
continuous acquisition of fMRI images, the task-related brain
regions were identified with independent components analysis
(ICA). When the time courses of the task-related components
were plotted against tapping frequency, nonlinear “dose–
response” curves were obtained for most subjects. Nonlineari-

ties appeared in both the static and dynamic sense, with hys-
teresis being prominent in several subjects. The ICA decompo-
sition also demonstrated the spatial dynamics with different
components active at different times. These results suggest
that the brain response to tapping frequency does not scale
linearly, and that it is history-dependent even after accounting
for the hemodynamic response function. This implies that finger
tapping, as measured with fMRI, is a nonstationary process.
When analyzed with a conventional general linear model, a
strong correlation to tapping frequency was identified, but the
spatiotemporal dynamics were not apparent.
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The majority of functional neuroimaging studies have been based
on the assumption of fixed experimental effects. Under this
model, an experiment is designed so that a variable, or set of
variables, is explicitly controlled by the experimenter. The result-
ing data are then analyzed in terms of these explanatory vari-
ables, typically using a form of the general linear model (GLM).
Although this is a powerful approach for both the design and
analysis of functional neuroimaging experiments, it places strin-
gent constraints on the types of experiments that can be per-
formed. Because this type of analysis is hypothesis-driven, it can
only yield answers specific to those questions that are asked.
Often this results in a set of static activation maps that reach some
threshold of significance regarding a particular null hypothesis. In
this report, we describe the use of an alternative analysis (Mc-
Keown et al., 1998a,b) that reveals the complex spatiotemporal
dynamics of a finger-tapping task.

One aspect of the GLM that may be problematic for brain
imaging is the requirement of linearity. By definition, the GLM is
a linear combination of explanatory variables, which can be added
to or taken away from a given model in a modular manner.
Although “nonlinear” terms can be added to these models by
specifying higher-order effects (e.g., x2, or xy in the case of two
variables), the hypothesized shape of these effects must be spec-

ified in advance. This can make it difficult to test a hypothesized
relationship between brain activation and an experimental vari-
able if the nature of the relationship is not already known. A
second aspect of the GLM that can be troublesome for brain
imaging is the assumption of stationarity. To gain statistical
power, most GLMs are designed around repetitions of observa-
tions, but this assumes that repetitions of an experimental condi-
tion are true replicates. It can be argued that because of both
neuronal and cognitive adaptations, no observation is truly a
replicate of a previous one (Vazquez and Noll, 1998). Subjects
continually adapt to a particular task, resulting in at least subtle
changes in brain activation with time. Although one can assume
stationarity in the GLM, these adaptive processes add to the
within-subject variance, thereby weakening statistical power.

The GLM approach to neuroimaging has been used to great
success during the past 10 years. The simplest method is to design
a blocked, or “boxcar” experiment in which subjects perform a
task for a period of time, typically 30–60 sec, and then compare
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the average brain response during these blocks. Single-trial or
event-related functional magnetic resonance imaging (fMRI) has
demonstrated the potential for fine temporal resolution (Buckner
et al., 1996; Rosen et al., 1998). This approach can be considered
similar to blocked designs, except with very small blocks.

An extension of event-related fMRI would be to do away with
event interleaving and simply to let the measured signal stand on
its own. “Continuous fMRI” might have a subject perform a task,
perhaps with some slow variation in a task parameter, and con-
tinuously acquire functional images without any prespecified
comparison condition. A major impediment to this approach is
the presence of low-frequency “noise.” Multiple sources, both
physiological and artifactual, contribute to what are usually re-
ferred to as low-frequency noise. At long scan repetition times
(TRs), both cardiac and respiratory signals can be aliased back
into the sampled interval and appear as low-frequency signals.
Beyond this, a number of other sources contribute to the baseline
drift commonly observed in fMRI time series, some of which may
be correlated with the task (Biswal et al., 1997). The easiest, and
most common, method for dealing with this is to simply high-pass
filter the data so that all low-frequency components are removed
(Frackowiak et al., 1997).

To assess the feasibility of using a continuous fMRI paradigm,
we conducted experiments using visually paced finger tapping.
Although finger tapping has been extensively studied with both
PET and fMRI (Blinkenberg et al., 1996; Rao et al., 1996; Sadato
et al., 1996, 1997; Schlaug et al., 1996; Jancke et al., 1998; Kan-
saku et al., 1998; Ramsey et al., 1998), the fundamental question
of how the brain performs finger tapping is still unanswered. The
primary sensorimotor cortex is consistently activated during fin-
ger tapping, and the magnitude of both regional cerebral blood
flow and blood oxygenation level-dependent (BOLD) changes
appears to be linearly related to the frequency of finger tapping.
If these regions are truly linear, then only the frequency of
tapping should be related to the magnitude of response. If not,
then any number of nonlinearities will be apparent. The goals of
this study were two-fold: (1) to assess the signal-to-noise ratio in
the absence of a “base condition,” and (2) to characterize both
the static and dynamic linearity of the BOLD response to finger
tapping frequency.

MATERIALS AND METHODS
Subjects. Nine normal volunteers were studied (five male, four female).
All subjects provided informed consent after the potential risks of MRI
were explained. The study was approved by the Emory University Hu-
man Investigations Committee.

Behavioral task . A personal computer connected to an LCD projector
was used to administer the task. The behavioral program was written in
Visual Basic. The visual stimuli consisted of a black background with the
outlines of two boxes on the screen. The boxes were alternately filled in
white, and the box that was filled in was simply switched back and forth
between the left and the right. This was the visual cue for the subject.
Subjects were instructed to tap their index finger to their thumb on both
hands and to keep pace with the visual cue. The frequency of tapping was
continuously varied by ramping the frequency up and down, ranging from
1 to 5 Hz. Each functional scan lasted 4 min, and a total of six scans were
performed on each subject (Table 1). The first two scans consisted of four
60 sec up–down cycles; the second two scans each had two 120 sec
up–down cycles; and the last two scans were the same as the first, except
that a red X appeared on the screen during the second and fourth cycles,
indicating that the subject should not finger tap. This was done for
comparison with the conventional task–rest paradigm.

Imaging. All imaging was performed at Emory University Hospital on
a Philips 1.5 T ACS/NT scanner equipped with a PowerTrak gradient
system (23 mT/m). Each imaging session consisted of a scout image, a
T1-weighted structural scan [spin-echo; echo time (TE), 20 msec; TR,

500 msec; flip angle, 90°), and the six functional scans described above.
The structural scan consisted of 10 8-mm-thick slices (0 mm gap), 256 3
256 matrix, and field of view of 24 cm. The scan planes were oriented
obliquely, pitched up 45° to the anterior commissure–posterior commis-
sure (AC–PC) line (Fig. 1). This imaged a region of the brain extending
from the premotor cortex down to the cerebellum, at the loss of prefron-
tal and orbitofrontal regions. Functional scans were obtained with
gradient-recalled echo-planar imaging (EPI) for T2* weighting of the
BOLD effect (TR, 1000 msec; TE, 40 msec; flip angle, 81°; 64 3 64
matrix; 8-mm-thick slices; 10 slices) (Kwong et al., 1992; Ogawa et al.,
1992). Because high-temporal resolution was desirable for the functional
scans, this limited the number of planes to ;10. Each run consisted of
240 acquisitions. Head motion was minimized with lateral padding and a
Velcro strap across the forehead. No motion correction was performed
on the images.

Analysis. Because it was hypothesized that nonlinear effects would play
a significant role in the brain response, it was not clear what the appro-
priate reference waveform should be. For example, the brain response
may be either linear or nonlinear in terms of the driving frequency, but
this may be different whether the subject is speeding up or slowing down.
The data-driven method used was an independent components analysis
(ICA) as developed by Sejnowksi and colleagues (Bell and Sejnowski,
1995; Makeig et al., 1997; McKeown et al., 1998b). The ICA algorithm is

Table 1. Design of continuous fMRI finger tapping experiment.

Figure 1. Sagittal image showing oblique orientation of both structural
and functional scans. Ten 8-mm-thick slices were oriented 45° to the
AC–PC line.
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similar to principal components analysis (PCA) in that it decomposes a
data set into discrete components. PCA orients the first component in the
direction of maximal variance in the data set with subsequent compo-
nents oriented orthogonally. This is often poorly suited to functional
imaging data sets in which the cognitive effect is small and contributes
relatively little to the overall variance. The ICA algorithm also decom-
poses the data set, but under the principle of minimizing the mutual
information between components. This means that although the result-
ant spatial maps are independent, the corresponding time courses are not
constrained to be independent. ICA may be better at identifying task-
related signals in the brain, signals that typically contribute relatively
little to the overall variance. It is particularly useful in paradigms in
which the time course of the brain response is unknown.

The ICA analysis was performed on an individual basis and was
limited to those voxels within the brain (based on the structural image).
Each subject’s structural image was edited to exclude nonbrain struc-
tures, and this was used to spatially transform each brain into the space
of the first subject, using the automated image registration program
(AIR 3.08) of Woods et al. (1998). The transformations for motion
correction, EPI to structural, and structural to template were computed
with AIR, and each EPI image was resliced only once using the com-
bined transformation matrix. The two repetitions of each run were
concatenated in time, creating a large matrix with each row representing
the brain voxels for a given time point. To eliminate transient magneti-
zation effects, the first nine and the last scan were discarded, creating a
single matrix of 460 rows (two runs of 230) 3 ;9000 columns (the
approximate number of brain voxels). Correction for the delay between
slice acquisitions was not performed, because this was relatively small
compared with the TR of 1000 msec. The ICA algorithm was then
applied after reducing the data set to 70 components with PCA (Mc-
Keown et al., 1998b). The PCA decomposition was used purely as a
means of dimensional reduction, because the number of components
must be less than the number of time points. This number of components
was empirically derived so that the reduced data set contained at least
99.95% of the variance of the original data set.

The time course of each ICA component was examined individually,
and a “dose–response” curve for finger tapping was obtained by plotting
the magnitude of this ICA component against the tapping frequency
(after convolution with a hemodynamic response function). An average
curve was obtained using a periodic average of points on the ICA curve,
with the period equal to 60 sec, which corresponded to the period of the
experiment. The ICA spatial map was interpolated to a 256 3 256 matrix
using the inverse AIR transformation and overlaid on the oblique T1-
weighted structural image. Many subjects had more than one component
that was related to the task, either consistently or transiently. The results
reported here are limited to three consistently task-related components
in each subject, and these were coded red, green, and blue before
overlaying on the structural image. Transiently task-related components
are not reported here because of the difficulty in identifying them in a
continuously varying task. All ICA analyses were performed on an
individual basis and without motion correction (motion was not consid-
ered significant enough to affect the task-related spatial maps).

For comparison to the GLM, a group analysis using the Statistical
Parametric Mapping (SPM96) package was performed. Using the spa-
tially normalized data, a fixed effects model was specified with the
convolved tapping rate waveform as the main covariate. Global intensity
differences were removed with an ANCOVA model.

All analyses were run on a 350 MHz personal computer running
FreeBSD (a Linux-like operating system) using MatLab 5.2. A typical
ICA analysis required ;15 min to process.

RESULTS
The SPM analysis identified several brain regions that were
significantly correlated with tapping frequency (Fig. 2). Bilateral
motor cortex activity was strongly correlated with tapping fre-
quency, but the dose–response curve of the maximally correlated
voxel was obviously nonlinear. Because the data were spatially
normalized into a common space, and global intensity effects
were removed, these represent mean cohort effects. Similar cor-
relations were found in a medial frontal region, most likely
supplementary motor area (SMA).

The ICA component time courses displayed more variability
between subjects than the SPM analysis suggested, and all sub-

jects showed varying types of nonlinear relationships between
tapping frequency and magnitude of response (Fig. 3). At least
one approximately linear ICA component was identified in each
subject (Fig. 3, red), but the amount of hysteresis varied dramat-
ically between subjects. Hysteresis refers to the property of time
dependence and in this experiment was apparent as different
curves for acceleration and deceleration (subjects A and C).
Other ICA components were identified that were related to tap-
ping frequency, but these components had strikingly nonlinear
dose–response curves (Fig. 3, green and blue). Whereas the more
linear ICA component (red) showed spatial distributions closely
overlapping with primary motor cortex, these other ICA compo-
nents had spatial distributions that localized more medially.
Higher tapping frequency did not simply result in more activity in
certain areas, but it changed the overall pattern of activity. Thus
the activity patterns were nonlinear in both the spatial and tem-
poral domains.

ICA decomposition of the runs obtained with rest blocks
showed substantial spatial overlap with the components obtained
during the continuous runs. All subjects showed a similar spatial
map of activity, but the magnitude of response, compared with
rest, was at least threefold greater in most subjects. In some
subjects there was no evidence of a parametric relationship to
tapping frequency during these blocked runs, because the mag-
nitude of response was dominated by tapping versus rest. This was
seen primarily in those subjects whose continuous time course
showed a saturating effect.

DISCUSSION
Finger tapping has been one of the most studied paradigms in
functional neuroimaging, yet the results shown here offer new
insights into how the brain accomplishes this relatively simple
task. The use of a continuously varying task without a baseline
allows for a more precise characterization of the mapping from
brain state to cognitive state. These results go beyond the para-
metric comparison to a rest condition. “Rest” is notoriously
difficult to control, and performing discrete analyses of one state
versus another inherently assumes that a state, rest or otherwise,
is stationary and can be maintained for a period of time. The
maps obtained in such experiments have been helpful in localiz-
ing patterns of activation and deactivation, but they are static
maps and do not capture the complex spatiotemporal patterns
that must be the hallmark of brain activity.

Several studies have already reported BOLD signal changes
during prolonged task blocks, which under some circumstances
suggest the feasibility of continuous fMRI. Bandettini et al.
(1997) reported on the stability of the BOLD signal during a
variety of stimulation paradigms and noted that finger opposition
resulted in no signal attenuation even after 20 min of continuous
tapping. The issue is unresolved, because several prolonged acti-
vation studies of visual cortex have yielded conflicting findings
about signal stability and possible neuronal habituation or recou-
pling of blood flow and metabolism (Hathout et al., 1994; Kruger
et al., 1996, 1998; Fransson et al., 1997; Howseman et al., 1998).
Our results lend further support to continuous paradigms in at
least the motor domain. Relatively little dose response was ob-
served in the visual cortex, which would be expected to show signs
of activation at higher frequencies because of the higher fre-
quency of visual stimulation.

Using finger tapping as a test of several new techniques, we
have begun to identify the temporal evolution of spatial patterns
of activity and how these correlate with at least one behavioral
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parameter, tapping rate. The fact that brain regions were identi-
fied in individual subjects that showed time courses highly corre-
lated with the driving frequency is significant in the context of a
continuous paradigm. There is ample evidence for a monotonic
relationship of cortical activation to tapping frequency in blocked
paradigms (Blinkenberg et al., 1996; Rao et al., 1996; Sadato et
al., 1996, 1997; Schlaug et al., 1996; Jancke et al., 1998; Ramsey et
al., 1998), but the nonlinearity of this relationship has been
difficult to demonstrate because of intersubject averaging. The
time courses shown in Figure 3 are all nonlinear in different ways.
The ICA decomposition showed that nonlinearities can also ap-
pear in the spatial domain, as evidenced by the appearance of
different spatial activity maps at different frequencies (Thick-
broom et al., 1998).

A nonlinear dose–response curve for finger tapping frequency
has already been suggested (Sadato et al., 1996, 1997; Ramsey et
al., 1998), but equally interesting was the demonstration of hys-
teresis (Fig. 3). Speeding up was not the same as slowing down,
even at a specific frequency. This raises the question of whether
this is a property of the tissue itself, or whether speeding up and
slowing down are different cognitive states. Behavioral responses

were not acquired during this task, so neither reaction times nor
error rates were available for correlation, but the observation is
sufficient to state that history effects are important and that
assumptions about stationarity are potentially suspect.

The subjective perception of the task gives some insight into
the cognitive state. Most subjects reported that slowing down was
more difficult than speeding up. Considering this as a simple
stimulus–response task, during the acceleration phase, the stim-
ulus always arrives slightly earlier than expected, and thus triggers
a response. During the deceleration phase, each stimulus is de-
layed, and the subject must actively inhibit their tendency to
respond until the stimulus arrives. It is tempting to postulate
attentional effects, but alternatively one can simply allow the data
themselves to define what constitutes a cognitive state. Although
subjects were all apparently doing the same task, finger tapping,
the hysteresis of the brain activity patterns differentiated between
the parts of the task. The appearance of other spatial modes at
different frequencies also supports the notion that different cog-
nitive processes may be involved at higher tapping frequencies.

New analytic methods, such as ICA, have made it possible to
identify task-related components of brain activity even when one

Figure 2. Results from a linear correlational analysis across subjects. Areas of significant linear correlation with tapping frequency were thresholded at
p , 0.001 (corrected for spatial extent at p , 0.05) and overlaid on the mean MRI of all subjects (after spatial normalization). The top and bottom image
planes are not shown, because there was no significant effect observed in these regions. The waveform of tapping frequency was convolved with a
hemodynamic response function before correlation. A mean dose–response curve for both the left and right motor region demonstrates this correlation
but shows that this is a nonlinear relationship.
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does not know the shape of the relationship beforehand (Mc-
Keown et al., 1998a,b). This is a powerful approach, because it
allows one to design experiments in the absence of fixed effects,
which are necessary for conventional ANOVA-type models. It
also demonstrates the possibilities of continuous fMRI. Compar-
ison conditions are notoriously difficult to design, because one
must hypothesize about the relevant cognitive dimension to the

task and then design an appropriate control condition along this
dimension. Even parametric, but discrete, tasks, such as working
memory tasks in which the number of items retained in memory
is varied (Cohen et al., 1997; Callicott et al., 1998; Courtney et al.,
1998), do not allow for the possibility that dramatic alterations in
both brain state and cognitive strategy occur between levels in the
task. Continuously varying tasks afford the opportunity to see

Figure 3. Spatial maps and dose–response curves of ICA components related to tapping frequency in three subjects. The three components (red, green,
blue) showing the strongest relationship to tapping frequency are displayed for each subject. The spatial maps were interpolated to 256 3 256 resolution
and overlaid on each subject’s structural image. To improve localization, the spatial maps were thresholded to exclude any pixels with magnitude ,10%
of the maximal pixel value. The dose–response curve for each of these components is shown to the right (placed above each other for visualization
purposes only). Most subjects displayed at least one linear component (red), but this had different amounts of hysteresis between subjects. Other
components showed nonlinear relationships to tapping frequency and with varying amounts of hysteresis ( green, blue). There was a tendency for more
medial components (A, B, green; C, blue) to display a relationship opposite to the motor cortex. This region was situated close to the SMA. Animation
(linked to this figure) of the first slice from subject B demonstrates the full spatiotemporal dynamics. The animation was created by modulating each
spatial component by the corresponding time course. The slider bar indicates the instantaneous tapping frequency and cycles between 1 and 5 Hz. The
red component was linearly related to tapping frequency, independent of history effects, but the green component showed substantial hysteresis. It was
relatively inactive during the acceleration phase but became increasingly active during deceleration.
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whether there are smoothly varying brain regions or whether they
go through discrete jumps to different states and whether these
transitions are history-dependent.
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