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Abstract

Despite the state-of-the-art performance for medical image segmentation, deep convolutional 

neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation 

outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we 

analyze these different types of uncertainties for CNN-based 2D and 3D medical image 

segmentation tasks at both pixel level and structure level. We additionally propose a test-time 

augmentation-based aleatoric uncertainty to analyze the effect of different transformations of the 

input image on the segmentation output. Test-time augmentation has been previously used to 

improve segmentation accuracy, yet not been formulated in a consistent mathematical framework. 

Hence, we also propose a theoretical formulation of test-time augmentation, where a distribution 

of the prediction is estimated by Monte Carlo simulation with prior distributions of parameters in 

an image acquisition model that involves image transformations and noise. We compare and 

combine our proposed aleatoric uncertainty with model uncertainty. Experiments with 

segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) 

showed that 1) the test-time augmentation-based aleatoric uncertainty provides a better uncertainty 

estimation than calculating the test-time dropout-based model uncertainty alone and helps to 

reduce overconfident incorrect predictions, and 2) our test-time augmentation outperforms a 

single-prediction baseline and dropout-based multiple predictions.
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1 Introduction

Segmentation of medical images is an essential task for many applications such as 

anatomical structure modeling, tumor growth measurement, surgical planing and treatment 

assessment [1]. Despite the breadth and depth of current research, it is very challenging to 

achieve accurate and reliable segmentation results for many targets [2]. This is often due to 

poor image quality, inhomogeneous appearances brought by pathology, various imaging 

protocols and large variations of the segmentation target among patients. Therefore, 

uncertainty estimation of segmentation results is critical for understanding how reliable the 

segmentations are. For example, for many images, the segmentation results of pixels near the 

boundary are likely to be uncertain because of the low contrast between the segmentation 

target and surrounding tissues, where uncertainty information of the segmentation can be 

used to indicate potential mis-segmented regions or guide user interactions for refinement 

[3,4].

In recent years, deep learning with convolutional neural networks (CNN) has achieved the 

state-of-the-art performance for many medical image segmentation tasks [5–7]. Despite their 

impressive performance and the ability of automatic feature learning, these approaches do 

not by default provide uncertainty estimation for their segmentation results. In addition, 

having access to a large training set plays an important role for deep CNNs to achieve 

human-level performance [8,9]. However, for medical image segmentation tasks, collecting 

a very large dataset with pixel-wise annotations for training is usually difficult and time-

consuming. As a result, current medical image segmentation methods based on deep CNNs 

use relatively small datasets compared with those for natural image recognition [10]. This is 

likely to introduce more uncertain predictions for the segmentation results, and also leads to 

uncertainty of downstream analysis, such as volumetric measurement of the target. 

Therefore, uncertainty estimation is highly desired for deep CNN-based medical image 

segmentation methods.

Several works have investigated uncertainty estimation for deep neural networks [11–14]. 

They focused mainly on image classification or regression tasks, where the prediction 

outputs are high-level image labels or bounding box parameters, therefore uncertainty 

estimation is usually only given for the high-level predictions. In contrast, pixel-wise 

predictions are involved in segmentation tasks, therefore pixel-wise uncertainty estimation is 

highly desirable. In addition, in most interactive segmentation cases, pixel-wise uncertainty 

information is more helpful for intelligently guiding the user to give interactions. However, 

previous works have rarely demonstrated uncertainty estimation for deep CNN-based 

medical image segmentation. As suggested by Kendall and Gal [11], there are two major 

types of predictive uncertainties for deep CNNs: epistemic uncertainty and aleatoric 
uncertainty. Epistemic uncertainty is also known as model uncertainty that can be explained 
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away given enough training data, while aleatoric uncertainty depends on noise or 

randomness in the input testing image.

In contrast to previous works focusing mainly on classification or regression-related 

uncertainty estimation, and recent works of Nair et al. [15] and Roy et al. [16] investigating 

only test-time dropout-based (epistemic) uncertainty for segmentation, we extensively 

investigate different kinds of uncertainties for CNN-based medical image segmentation, 

including not only epistemic but also aleatoric uncertainties for this task. We also propose a 

more general estimation of aleatoric uncertainty that is related to not only image noise but 

also spatial transformations of the input, considering different possible poses of the object 

during image acquisition. To obtain the transformation-related uncertainty, we augment the 

input image at test time, and obtain an estimation of the distribution of the prediction based 

on test-time augmentation. Test-time augmentation (e.g., rotation, scaling, flipping) has been 

recently used to improve performance of image classification [17] and nodule detection [18]. 

Ayhan and Berens [14] also showed its utility for uncertainty estimation in a fundus image 

classification task. However, the previous works have not provided a mathematical or 

theoretical formulation for this. Motivated by these observations, we propose a mathematical 

formulation for test-time augmentation, and analyze its performance for the general aleatoric 
uncertainty estimation in medical image segmentation tasks. In the proposed formulation, 

we represent an image as a result of an acquisition process which involves geometric 

transformations and image noise. We model the hidden parameters of the image acquisition 

process with prior distributions, and predict the distribution of the output segmentation for a 

test image with a Monte Carlo sampling process. With the samples from the distribution of 

the predictive output based on the same pre-trained CNN, the variance/entropy can be 

calculated for these samples, which provides an estimation of the aleatoric uncertainty for 

the segmentation.

The contribution of this work is three-fold. First, we propose a theoretical formulation of 

test-time augmentation for deep learning. Test-time augmentation has not been 

mathematically formulated by existing works, and our proposed mathematical formulation is 

general for image recognition tasks. Second, with the proposed formulation of test-time 

augmentation, we propose a general aleatoric uncertainty estimation for medical image 

segmentation, where the uncertainty comes from not only image noise but also spatial 

transformations. Third, we analyze different types of uncertainty estimation for the deep 

CNN-based segmentation, and validate the superiority of the proposed general aleatoric 
uncertainty with both 2D and 3D segmentation tasks.

2 Related works

2.1 Segmentation uncertainty

Uncertainty estimation has been widely investigated for many existing medical image 

segmentation tasks. As way of examples, Saad et al. [19] used shape and appearance prior 

information to estimate the uncertainty for probabilistic segmentation of medical imaging. 

Shi et al. [20] estimated the uncertainty of graph cut-based cardiac image segmentation, 

which was used to improve the robustness of the system. Sankaran et al. [21] estimated 

lumen segmentation uncertainty for realistic patient-specific blood flow modeling. Parisot et 
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al. [22] used segmentation uncertainty to guide content-driven adaptive sampling for 

concurrent brain tumor segmentation and registration. Prassni et al. [3] visualized the 

uncertainty of a random walker-based segmentation to guide volume segmentation of brain 

Magnetic Resonance Images (MRI) and abdominal Computed Tomography (CT) images. 

Top et al. [23] combined uncertainty estimation with active learning to reduce user time for 

interactive 3D image segmentation.

2.2 Uncertainty estimation for deep CNNs

For deep CNNs, both epistemic and aleatoric uncertainties have been investigated in recent 

years. For model (epistemic) uncertainty, exact Bayesian networks offer a mathematically 

grounded method, but they are hard to implement and computationally expensive. 

Alternatively, it has been shown that dropout at test time can be cast as a Bayesian 

approximation to represent model uncertainty [24,25]. Zhu and Zabaras [13] used Stochastic 

Variational Gradient Descent (SVGD) to perform approximate Bayesian inference on 

uncertain CNN parameters. A variety of other approximation methods such as Markov chain 

Monte Carlo (MCMC) [26], Monte Carlo Batch Normalization (MCBN) [27] and variational 

Bayesian methods [28,29] have also been developed. Lakshminarayanan et al. [12] proposed 

ensembles of multiple models for uncertainty estimation, which was simple and scalable to 

implement. For test image-based (aleatoric) uncertainty, Kendall and Gal [11] proposed a 

unified Bayesian deep learning framework to learn mappings from input data to aleatoric 
uncertainty and composed them with epistemic uncertainty, where the aleatoric uncertainty 

was modeled as learned loss attenuation and further categorized into homoscedastic 
uncertainty and heteroscedastic uncertainty. Ayhan and Berens [14] used test-time 

augmentation for aleatoric uncertainty estimation, which was an efficient and effective way 

to explore the locality of a testing sample. However, its utility for medical image 

segmentation has not been demonstrated.

2.3 Test-time augmentation

Data augmentation was originally proposed for the training of deep neural networks. It was 

employed to enlarge a relatively small dataset by applying transformations to its samples to 

create new ones for training [30]. The transformations for augmentation typically include 

flipping, cropping, rotating, and scaling training images. Abdulkadir et al. [6] and 

Ronneberger et al. [31] also used elastic deformations for biomedical image segmentation. 

Several studies have empirically found that combining predictions of multiple transformed 

versions of a test image helps to improve the performance. For example, Matsunaga et al. 

[17] geometrically transformed test images for skin lesion classification. [32] used a single 

model to predict multiple transformed copies of unlabeled images for data distillation. Jin et 

al. [18] tested on samples extended by rotation and translation for pulmonary nodule 

detection. However, all these works used test-time augmentation as an ad hoc method, 

without detailed formulation or theoretical explanation, and did not apply it to uncertainty 

estimation for segmentation tasks.

Wang et al. Page 4

Neurocomputing. Author manuscript; available in PMC 2019 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



3 Method

The proposed general aleatoric uncertainty estimation is formulated in a consistent 

mathematical framework including two parts. The first part is a mathematical representation 

of ensembles of predictions of multiple transformed versions of the input. We represent an 

image as a result of an image acquisition model with hidden parameters in Section 3.1. Then 

we formulate test-time augmentation as inference with hidden parameters following given 

prior distributions in Section 3.2. The second part calculates the diversity of the prediction 

results of an augmented test image, and it is used to estimate the aleatoric uncertainty related 

to image transformations and noise. This is detailed in Section 3.3. Our proposed aleatoric 
uncertainty is compared and combined with epistemic uncertainty, which is described in 

Section 3.4. Finally, we apply our proposed method to structure-wise uncertainty estimation 

in Section 3.5.

3.1 Image acquisition model

The image acquisition model describes the process by which the observed images have been 

obtained. This process is confronted with a lot of factors that can be related or unrelated to 

the imaged object, such as blurring, down-sampling, spatial transformation, and system 

noise. While blurring and down-sampling are commonly considered for image super-

resolution [33], in the context of image recognition they have a relatively lower impact. 

Therefore, we focus on the spatial transformation and noise, and highlight that adding more 

complex intensity changes or other forms of data augmentation such as elastic deformations 

is a straightforward extension. The image acquisition model is:

X = 𝒯β X0 + e (1)

where X0 is an underlying image in a certain position and orientation, i.e., a hidden variable. 

 is a transformation operator that is applied to X0. β is the set of parameters of the 

transformation, and e represents the noise that is added to the transformed image. X denotes 

the observed image that is used for inference at test time. Though the transformations can be 

in spatial, intensity or feature space, in this work we only study the impact of reversible 

spatial transformations (e.g., flipping, scaling, rotation and translation), which are the most 

common types of transformations occurring during image acquisition and used for data 

augmentation purposes. Let 𝒯β
−1 denote the inverse transformation of β, then we have:

X0 = 𝒯β
−1 X − e (2)

Similarly to data augmentation at training time, we assume that the distribution of X covers 

the distribution of X0. In a given application, this assumption leads to some prior 

distributions of the transformation parameters and noise. For example, in a 2D slice of fetal 

brain MRI, the orientation of the fetal brain can span all possible directions in a 2D plane, 

therefore the rotation angle r can be modeled with a uniform prior distribution r ~ U(0, 2π). 

The image noise is commonly modeled as a Gaussian distribution, i.e., e ~  (μ, σ), where 
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μ and σ are the mean and standard deviation respectively. Let p(β) and p(e) represent the 

prior distribution of β and e respectively, therefore we have β ~ p(β) and e ~ p(e).

Let Y and Y0 be the labels related to X and X0 respectively. For image classification, Y and 

Y0 are categorical variables, and they should be invariant with regard to transformations and 

noise, therefore Y = Y0. For image segmentation, Y and Y0 are discretized label maps, and 

they are equivariant with the spatial transformation, i.e., Y = β(Y0).

3.2 Inference with hidden variables

In the context of deep learning, let f(·) be the function represented by a neural network, and 

θ represent the parameters learned from a set of training images with their corresponding 

annotations. In a standard formulation, the prediction Y of a test image X is inferred by:

Y = f θ, X (3)

For regression problems, Y refers to continuous values. For segmentation or classification 

problems, Y refers to discretized labels obtained by argmax operation in the last layer of the 

network. Since X is only one of many possible observations of the underlying image X0, 

direct inference with X may lead to a biased result affected by the specific transformation 

and noise associated with X. To address this problem, we aim at inferring it with the help of 

the latent X0 instead:

Y = 𝒯β Y0 = 𝒯β f θ, X0 = 𝒯β f θ , 𝒯β
−1 X − e (4)

where the exact values of β and e for X are unknown. Instead of finding a deterministic 

prediction of X, we alternatively consider the distribution of Y for a robust inference given 

the distributions of β and e.

p Y X = p 𝒯β f θ, 𝒯β
−1 X − e , where β ∼ p β , e ∼ p e (5)

For regression problems, we obtain the final prediction for X by calculating the expectation 

of Y using the distribution p(Y|X).

E Y X = ∫ yp y X dy

= ∫
β ∼ p β , e ∼ p e

𝒯β f θ, 𝒯β
−1 X − e p β p e dβde

(6)

Calculating E(Y|X) with Eq. (6) is computationally expensive, as β and e may take 

continuous values and p(β) is a complex joint distribution of different types of 

transformations. Alternatively, we estimate E(Y|X) by using Monte Carlo simulation. Let N 
represent the total number of simulation runs. In the n th simulation run, the prediction is:
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yn = 𝒯βn
f θ, 𝒯βn

−1 X − en (7)

where βn ~ p(β), en ~ p(e). To obtain yn, we first randomly sample βn and en from the prior 

distributions p(β) and p(e), respectively. Then we obtain one possible hidden image with βn 

and en based on Eq. (2), and feed it into the trained network to get its prediction, which is 

transformed with βn to obtain yn according to Eq. (4). With the set  = {y1, y2, …, yN } 

sampled from p(Y|X), E(Y|X) is estimated as the average of  and we use it as the final 

prediction Ŷ for X:

Y = E Y X ≈ 1
N ∑

n = 1

N
yn (8)

For classification or segmentation problems, p(Y|X) is a discretized distribution. We obtain 

the final prediction for X by maximum likelihood estimation:

Y = arg max
y

p y X ≈ Mode 𝒴 (9)

where Mode( ) is the most frequent element in . This corresponds to majority voting of 

multiple predictions.

3.3 Aleatoric uncertainty estimation with test-time augmentation

The uncertainty is estimated by measuring how diverse the predictions for a given image are. 

Both the variance and entropy of the distribution p(Y|X) can be used to estimate uncertainty. 

However, variance is not sufficiently representative in the context of multi-modal 

distributions. In this paper we use entropy for uncertainty estimation:

H Y X = − ∫ p y X In p(y X) dy (10)

With the Monte Carlo simulation in Section 3.2, we can approximate H(Y|X) from the 

simulation results  = {y1, y2, …, yN}. Suppose there are M unique values in . For 

classification tasks, this typically refers to M labels. Assume the frequency of the mth 

unique value is pm, then H(Y|X) is approximated as:

H Y X ≈ − ∑
m = 1

M
pmIn pm (11)
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For segmentation tasks, pixel-wise uncertainty estimation is desirable. Let Yi denote the 

predicted label for the ith pixel. With the Monte Carlo simulation, a set of values for Yi are 

obtained 𝒴i = y1
i , y2

i , …, yN
i . The entropy of the distribution of Yi is therefore approximated 

as:

H Y i X ≈ − ∑
m = 1

M
pm

i In pm
i (12)

where pm
i  is the frequency of the mth unique value in i.

3.4 Epistemic uncertainty estimation

To obtain model (epistemic) uncertainty estimation, we follow the test-time dropout method 

proposed by [24]. In this method, let q(θ) be an approximating distribution over the set of 

network parameters θ with its elements randomly set to zero according to Bernoulli random 

variables. q(θ) can be achieved by minimizing the Kullback–Leibler divergence between 

q(θ) and the posterior distribution of θ given a training set. After training, the predictive 

distribution of a test image X can be expressed as:

p Y X = ∫ p Y X, ω q ω dω (13)

The distribution of the prediction can be sampled based on Monte Carlo samples of the 

trained network (i.e, MC dropout): yn = f (θn, X) where θn is a Monte Carlo sample from 

q(θ). Assume the number of samples is N, and the sampled set of the distribution of Y is 

= {y1, y2, …, yN }. The final prediction for X can be estimated by Eq. (8) for regression 

problems or Eq. (9) for classification/segmentation problems. The epistemic uncertainty 

estimation can therefore be calculated based on variance or entropy of the sampled N 
predictions. To keep consistent with our aleatoric uncertainty, we use entropy for this 

purpose, which is similar to Eq. (12). Test-time dropout may be interpreted as a way of 

ensembles of networks for testing. In the work of Lakshminarayanan et al. [12], ensembles 

of neural networks was explicitly proposed as an alternative solution of test-time dropout for 

estimating epistemic uncertainty.

3.5 Structure-wise uncertainty estimation

Nair et al. [15] and Roy et al. [16] used Monte Carlo samples generated by test-time dropout 

for structure/lesion-wise uncertainty estimation. Following these works, we extend the 

structure-wise uncertainty estimation method by using Monte Carlo samples generated by 

not only test-time dropout, but also test-time augmentation described in Section 3.2. For N 
samples from the Monte Carlo simulation, let  = {v1, v2, …, vN} denote the set of volumes 

of the segmented structure, where vi is the volume of the segmented structure in the ith 

simulation. Let μ  and σ  denote the mean value and standard deviation of  respectively. 

We use the volume variation coefficient (VVC) to estimate the structure-wise uncertainty:
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VVC =
σ𝒱
μ𝒱

(14)

where VVC is agnostic to the size of the segmented structure.

4 Experiments and results

We validated our proposed testing and uncertainty estimation method with two segmentation 

tasks: 2D fetal brain segmentation from MRI slices and 3D brain tumor segmentation from 

multi-modal MRI volumes. The implementation details for 2D and 3D segmentation are 

described in Sections 4.1 and 4.2 respectively.

In both tasks, we compared different types of uncertainties for the segmentation results: 1) 

the proposed aleatoric uncertainty based on our formulated test-time augmentation (TTA), 2) 

the epistemic uncertainty based on test-time dropout (TTD) described in Section 3.4, and 3) 

hybrid uncertainty that combines the aleatoric and epistemic uncertainties based on TTA + 

TTD. For each of these three methods, the uncertainty was obtained by Eq. (12) with N 
predictions. For TTD and TTA + TTD, the dropout probability was set as a typical value of 

0.5 [24].

We also evaluated the segmentation accuracy of these different prediction methods: TTA, 

TTD, TTA + TTD and the baseline that uses a single prediction without TTA and TTD. For 

a given training set, all these methods used the same model that was trained with data 

augmentation and dropout at training time. The augmentation during training followed the 

same formulation in Section 3.1. We investigated the relationship between each type of 

uncertainty and segmentation error in order to know which uncertainty has a better ability to 

indicate potential mis-segmentations. Quantitative evaluations of segmentation accuracy are 

based on Dice score and Average Symmetric Surface Distance (ASSD).

Dice = 2 × TP
2 × TP + FN + FP (15)

where TP, FP and FN are true positive, false positive and false negative respectively. The 

definition of ASSD is:

ASSD = 1
S + G ∑

s ∈ S
d s, G + ∑

g ∈ G
d g, S (16)

where S and G denote the set of surface points of a segmentation result and the ground truth 

respectively. d(s, G) is the shortest Euclidean distance between a point s ∈ S and all the 

points in G.
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4.1 2D fetal brain segmentation from MRI

Fetal MRI has been increasingly used for study of the developing fetus as it provides a better 

soft tissue contrast than the widely used prenatal sonography. The most commonly used 

imaging protocol for fetal MRI is Single-Shot Fast Spin Echo (SSFSE) that acquires images 

in a fast speed and mitigates the effect of fetal motion, leading to stacks of thick 2D slices. 

Segmentation is a fundamental step for fetal brain study, e.g., it plays an important role in 

inter-slice motion correction and high-resolution volume reconstruction [34,35]. Recently, 

CNNs have achieved the state-of-the-art performance for 2D fetal brain segmentation [36–

38]. In this experiment, we segment the 2D fetal brain using deep CNNs with uncertainty 

estimation.

4.1.1 Data and implementation—We collected clinical T2-weighted MRI scans of 60 

fetuses in the second trimester with SSFSE on a 1.5 Tesla MR system (Aera, Siemens, 

Erlangen, Germany). The data for each fetus contained three stacks of 2D slices acquired in 

axial, sagittal and coronal views respectively, with pixel size 0.63–1.58 mm and slice 

thickness 3–6 mm. The gestational age ranged from 19 weeks to 33 weeks. We used 2640 

slices from 120 stacks of 40 patients for training, 278 slices from 12 stacks of 4 patients for 

validation and 1180 slices from 48 stacks of 16 patients for testing. Two radiologists 

manually segmented the brain region for all the stacks slice-by-slice, where one radiologist 

gave a segmentation first, and then the second senior radiologist refined the segmentation if 

disagreement existed, the output of which were used as the ground truth. We used this 

dataset for two reasons. First, our dataset fits with a typical medical image segmentation 

application where the number of annotated images is limited. This leads the uncertainty 

information to be of high interest for robust prediction and our downstream tasks such as 

fetal brain reconstruction and volume measurement. Second, the position and orientation of 

fetal brain have large variations, which is suitable for investigating the effect of data 

augmentation. For preprocessing, we normalized each stack by its intensity mean and 

standard deviation, and resampled each slice with pixel size 1.0 mm.

We used 2D networks of Fully Convolutional Network (FCN) [39], U-Net [31] and P-Net 

[4]. The networks were implemented in TensorFlow1 [40] using NiftyNet2 [25,41]. During 

training, we used Adaptive Moment Estimation (Adam) to adjust the learning rate that was 

initialized as 10−3, with batch size 5, weight decay 10−7 and iteration number 10k. We 

represented the transformation parameter β in the proposed augmentation framework as a 

combination of fl, r and s, where fl is a random variable for flipping along each 2D axis, r is 

the rotation angle in 2D, and s is a scaling factor. The prior distributions of these 

transformation parameters and random intensity noise were modeled as fl ~ Bern(μf), r ~ 

U(r0, r1), s ~ U(s0, s1) and e ~ N(μe, σe). The hyper-parameters for our fetal brain 

segmentation task were set as μf = 0.5, r0 = 0, r1 = 2π, s0 = 0.8 and s1 = 1.2. For the random 

noise, we set μe = 0 and σe = 0.05, as a median-filter smoothed version of a normalized 

image in our dataset has a standard deviation around 0.95. We augmented the training data 

1https://www.tensorflow.org.
2http://www.niftynet.io.
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with this formulation, and during test time, TTA used the same prior distributions of 

augmentation parameters as used for training.

4.1.2 Segmentation results with uncertainty—Fig. 1 shows a visual comparison of 

different types of uncertainties for segmentation of three fetal brain images in coronal, 

sagittal and axial view respectively. The results were based on the same trained model of U-

Net with train-time augmentation, and the Monte Carlo simulation number N was 20 for 

TTD, TTA, and TTA + TTD to obtain epistemic, aleatoric and hybrid uncertainties 

respectively. In each subfigure, the first row presents the input and the segmentation 

obtained by the single-prediction baseline. The other rows show these three types of 

uncertainties and their corresponding segmentation results respectively. The uncertainty 

maps in odd columns are represented by pixel-wise entropy of N predictions and encoded by 

the color bar in the left top corner. In the uncertainty maps, purple pixels have low 

uncertainty values and yellow pixels have high uncertainty values. Fig. 1(a) shows a fetal 

brain in coronal view. In this case, the baseline prediction method achieved a good 

segmentation result. It can be observed that for epistemic uncertainty calculated by TTD, 

most of the uncertain segmentations are located near the border of the segmented 

foreground, while the pixels with a larger distance to the border have a very high confidence 

(i.e., low uncertainty). In addition, the epistemic uncertainty map contains some random 

noise in the brain region. In contrast, the aleatoric uncertainty obtained by TTA contains less 

random noise and it shows uncertain segmentations not only on the border but also in some 

challenging areas in the lower right corner, as highlighted by the white arrows. In that 

region, the result obtained by TTA has an over-segmentation, and this is corresponding to 

the high values in the same region of the aleatoric uncertainty map. The hybrid uncertainty 

calculated by TTA + TTD is a mixture of epistemic and aleatoric uncertainty. As shown in 

the last row of Fig. 1(a), it looks similar to the aleatoric uncertainty map except for some 

random noise.

Fig. 1(b) and (c) show two other cases where the single-prediction baseline obtained an 

over-segmentation and an under-segmentation respectively. It can be observed that the 

epistemic uncertainty map shows a high confidence (low uncertainty) in these mis-

segmented regions. This leads to a lot of overconfident incorrect segmentations, as 

highlighted by the white arrows in Fig. 1(b) and (c). In comparison, the aleatoric uncertainty 

map obtained by TTA shows a larger uncertain area that is mainly corresponding to mis-

segmented regions of the baseline. In these two cases, The hybrid uncertainty also looks 

similar to the aleatoric uncertainty map. The comparison indicates that the aleatoric 
uncertainty has a better ability than the epistemic uncertainty to indicate mis-segmentations 

of non-border pixels. For these pixels, the segmentation output is more affected by different 

transformations of the input (aleatoric) rather than variations of model parameters 

(epistemic).

Fig. 1(b) and (c) also show that TTD using different model parameters seemed to obtain 

very little improvement from the baseline. In comparison, TTA using different input 

transformations corrected the large mis-segmentations and achieved a more noticeable 

improvement from the baseline. It can also be observed that the results obtained by TTA + 
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TTD are very similar to those obtained by TTA, which shows TTA is more suitable to 

improving the segmentation than TTD.

4.1.3 Quantitative evaluation—To quantitatively evaluate the segmentation results, we 

measured Dice score and ASSD of predictions by different testing methods with three 

network structures: FCN [39], U-Net [31] and P-Net [4]. For all of these CNNs, we used 

data augmentation at training time to enlarge the training set. At inference time, we 

compared the baseline testing method (without Monte Carlo simulation) with TTD, TTA and 

TTA + TTD. We first investigated how the segmentation accuracy changes with the increase 

of the number of Monte Carlo simulation runs N. The results measured with all the testing 

images are shown in Fig. 2. We found that for all of these three networks, the segmentation 

accuracy of TTD remains close to that of the single-prediction baseline. For TTA and TTA + 

TTD, an improvement of segmentation accuracy can be observed when N increases from 1 

to 10. When N is larger than 20, the segmentation accuracy for these two methods reaches a 

plateau.

In addition to the previous scenario using augmentation at both training and test time, we 

also evaluated the performance of TTD and TTA when data augmentation was not used for 

training. The quantitative evaluations of combinations of different training methods and 

testing methods (N =20) are shown in Table 1. It can be observed that for both training with 

and without data augmentation, TTA has a better ability to improve the segmentation 

accuracy than TTD. Combining TTA and TTD can further improve the segmentation 

accuracy, but it does not significantly outperform TTA (p-value > 0.05).

Fig. 3 shows Dice distributions of five example stacks of fetal brain MRI. The results were 

based on the same trained model of U-Net with train-time augmentation. Note that the 

baseline had only one prediction for each image, and the Monte Carlo simulation number N 
was 20 for TTD, TTA and TTA + TTD. It can be observed that for each case, the Dice of 

TTD is distributed closely around that of the baseline. In comparison, the Dice distribution 

of TTA has a higher average than that of TTD, indicating TTA’s better ability of improving 

segmentation accuracy. The results of TTA also have a larger variance than that of TTD, 

which shows TTA can provide more structure-wise uncertainty information. Fig. 3 also 

shows that the performance of TTA + TTD is close to that of TTA.

4.1.4 Correlation between uncertainty and segmentation error—To investigate 

how our uncertainty estimation methods can indicate incorrect segmentation, we measured 

the uncertainty and segmentation error at both pixel-level and structure-level. For pixel-level 

evaluation, we measured the joint histogram of pixel-wise uncertainty and error rate for 

TTD, TTA, and TTA + TTD respectively. The histogram was obtained by statistically 

calculating the error rate of pixels at different pixel-wise uncertainty levels in each slice. The 

results based on U-Net with N = 20 are shown in Fig. 4, where the joint histograms have 

been normalized by the number of total pixels in the testing images for visualization. For 

each type of pixel-wise uncertainty, we calculated the average error rate at each pixel-wise 

uncertainty level, leading to a curve of error rate as a function of pixel-wise uncertainty, i.e., 

the red curves in Fig. 4. This figure shows that the majority of pixels have a low uncertainty 

with a small error rate. When the uncertainty increases, the error rate also becomes higher 
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gradually. Fig. 4(a) shows the TTD-based uncertainty (epistemic). It can be observed that 

when the prediction uncertainty is low, the result has a steep increase of error rate. In 

contrast, for the TTA-based uncertainty (aleatoric), the increase of error rate is slower, 

shown in Fig. 4(b). This demonstrates that TTA has fewer overconfident incorrect 

predictions than TTD. The dashed ellipses in Fig. 4 also show the different levels of 

overconfident incorrect predictions for different testing methods.

For structure-wise evaluation, we used VVC to represent structure-wise uncertainty and 

1−Dice to represent structure-wise segmentation error. Fig. 5 shows the joint distribution of 

VVC and 1−Dice for different testing methods using U-Net trained with data augmentation 

and N = 20 for inference. The results of TTD, TTA, and TTA + TTD are shown in Fig. 5(a)–

(c) respectively. It can be observed that for all the three testing methods, the VVC value 

tends to become larger when 1−Dice grows. However, the slope in Fig. 5(a) is smaller than 

those in Fig. 5(b) and (c). The comparison shows that TTA-based structure-wise uncertainty 

estimation is highly related to segmentation error, and TTA leads to a larger scale of VVC 

than TTD. Combining TTA and TTD leads to similar results to that of TTA.

4.2 3D brain tumor segmentation from multi-modal MRI

MRI has become the most commonly used imaging methods for brain tumors. Different MR 

sequences such as T1-weighted (T1w), contrast enhanced T1-weighted (T1wce), T2-

weighted (T2w) and Fluid Attenuation Inversion Recovery (FLAIR) images can provide 

complementary information for analyzing multiple subregions of brain tumors. Automatic 

brain tumor segmentation from multi-modal MRI has a potential for better diagnosis, 

surgical planning and treatment assessment [42]. Deep neural networks have achieved the 

state-of-the-art performance on this task [7,43]. In this experiment, we analyze the 

uncertainty of deep CNN-based brain tumor segmentation and show the effect of our 

proposed test-time augmentation.

4.2.1 Data and implementation—We used the BraTS 20173 [44] training dataset that 

consisted of volumetric images from 285 studies, with ground truth provided by the 

organizers. We randomly selected 20 studies for validation and 50 studies for testing, and 

used the remaining for training. For each study, there were four scans of T1w, T1wce, T2w 

and FLAIR images, and they had been co-registered. All the images were skull-stripped and 

re-sampled to an isotropic 1 mm3 resolution. As a first demonstration of uncertainty 

estimation for deep learning-based brain tumor segmentation, we investigate segmentation 

of the whole tumor from these multi-modal images (Fig. 6). We used 3D U-Net [6], V-Net 

[5] and W-Net [43] implemented with NiftyNet [41], and employed Adam during training 

with initial learning rate 10−3, batch size 2, weight decay 10−7 and iteration number 20k. W-

Net is a 2.5D network, and we compared using W-Net only in axial view and a fusion of 

axial, sagittal and coronal views. These two implementations are referred to as W-Net(A) 

and W-Net(ASC) respectively. The transformation parameter β in the proposed 

augmentation framework consisted of fl, r, s and e, where fl is a random variable for flipping 

along each 3D axis, r is the rotation angle along each 3D axis, s is a scaling factor and e is 

3http://www.med.upenn.edu/sbia/brats2017.html.
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intensity noise. The prior distributions were: fl ~ Bern(0.5), r ~ U(0, 2π), s ~ U(0.8, 1.2) and 

e ~ N(0, 0.05) according to the reduced standard deviation of a median-filtered version of a 

normalized image. We used this formulated augmentation during training, and also 

employed it to obtain TTA-based results at test time.

4.2.2 Segmentation results with uncertainty—Fig. 6 demonstrates three examples 

of uncertainty estimation of brain tumor segmentation by different testing methods. The 

results were based on the same trained model of 3D U-Net [6]. The Monte Carlo simulation 

number N was 40 for TTD, TTA, and TTA + TTD to obtain epistemic, aleatoric and hybrid 

uncertainties respectively. Fig. 6(a) shows a case of high grade glioma (HGG). The baseline 

of single prediction obtained an over-segmentation at the upper part of the image. The 

epistemic uncertainty obtained by TTD highlights some uncertain predictions at the border 

of the segmentation and a small part of the over-segmented region. In contrast, the aleatoric 
uncertainty obtained by TTA better highlights the whole over-segmented region, and the 

hybrid uncertainty map obtained by TTA + TTD is similar to the aleatoric uncertainty map. 

The second column of Fig. 6(a) shows the corresponding segmentations of these 

uncertainties. It can be observed that the TTD-based result looks similar to the baseline, 

while TTA and TTA + TTD based results achieve a larger improvement from the baseline. 

Fig. 6(b) demonstrates another case of HGG brain tumor, and it shows that the over-

segmented region in the baseline prediction is better highlighted by TTA-based aleatoric 
uncertainty than TTD-based epistemic uncertainty. Fig. 6(c) shows a case of low grade 

glioma (LGG). The baseline of single prediction obtained an under-segmentation in the 

middle part of the tumor. The epistemic uncertainty obtained by TTD only highlights pixels 

on the border of the prediction, with a low uncertainty (high confidence) for the under-

segmented region. In contrast, the aleatoric uncertainty obtained by TTA has a better ability 

to indicate the under-segmentation. The results also show that TTA outperforms TTD for 

better segmentation.

4.2.3 Quantitative evaluation—For quantitative evaluations, we calculated the Dice 

score and ASSDe for the segmentation results obtained by the different testing methods that 

were combined with 3D U-Net [6], V-Net [5] and W-Net [43] respectively. We also 

compared TTD and TTA with and without train-time data augmentation, respectively. We 

found that for these networks, the performance of the multi-prediction testing methods 

reaches a plateau when N is larger than 40. Table 2 shows the evaluation results with N = 40. 

It can be observed that for each network and each training method, multi-prediction methods 

lead to better performance than the baseline with a single prediction, and TTA outperforms 

TTD with higher Dice scores and lower ASSD values. Combining TTA and TTD has a slight 

improvement from using TTA, but the improvement is not significant (p-value < 0.05).

4.2.4 Correlation between uncertainty and segmentation error—To study the 

relationship between prediction uncertainty and segmentation error at voxel-level, we 

measured voxel-wise uncertainty and voxel-wise error rate at different uncertainty levels. 

For each of TTD-based (epistemic), TTA-based (aleatoric) and TTA + TTD-based (hybrid) 

voxel-wise uncertainty, we obtained the normalized joint histogram of voxel-wise 

uncertainty and voxel-wise error rate. Fig. 7 shows the results based on 3D U-Net trained 
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with data augmentation and using N = 40 for inference. The red curve shows the average 

voxel-wise error rate as a function of voxel-wise uncertainty. In Fig. 7(a), the average 

prediction error rate has a slight change when the TTD-based epistemic uncertainty is larger 

than 0.2. In contrast, Fig. 7(b) and (c) show that the average prediction error rate has a 

smoother increase with the growth of aleatoric and hybrid uncertainties. The comparison 

demonstrates that the TTA-based aleatoric uncertainty leads to fewer over-confident mis-

segmentations than the TTD-based epistemic uncertainty.

For structure-level evaluation, we also studied the relationship between structure-level 

uncertainty represented by VVC and structure-level error represented by 1−Dice. Fig. 8 

shows their joint distributions with three different testing methods using 3D U-Net. The 

network was trained with data augmentation, and N was set as 40 for inference. Fig. 8 shows 

that TTA-based VVC increases when 1−Dice grows, and the slope is larger than that of 

TTD-based VVC. The results of TTA and TTA + TTD are similar, as shown in Fig. 8(b) and 

(c). The comparison shows that TTA-based structure-wise uncertainty can better indicate 

segmentation error than TTD-based structure-wise uncertainty.

5 Discussion and conclusion

In our experiments, the number of training images was relatively small compared with many 

datasets of natural images such as PASCAL VOC, COCO and ImageNet. For medical 

images, it is typically very difficult to collect a very large dataset for segmentation, as pixel-

wise annotations are not only time-consuming to collect but also require expertise of 

radiologists. Therefore, for most existing medical image segmentation datasets, such as 

those in Grand challenge4, the image numbers are also quite small. Therefore, investigating 

the segmentation performance of CNNs with limited training data is of high interest for 

medical image computing community. In addition, our dataset is not very large so that it is 

suitable for data augmentation, which fits well with our motivation of using data 

augmentation at training and test time. The need for uncertainty estimation is also stronger 

in cases where datasets are smaller.

In our mathematical formulation of test-time augmentation based on an image acquisition 

model, we explicitly modeled spatial transformations and image noise. However, it can be 

easily extended to include more general transformations such as elastic deformations [6] or 

add a simulated bias field for MRI. In addition to the variation of possible values of model 

parameters, the prediction result is also dependent on the input data, e.g., image noise and 

transformations related to the object. Therefore, a good uncertainty estimation should take 

these factors into consideration. Figs. 1 and 6 show that model uncertainty alone is likely to 

obtain overconfident incorrect predictions, and TTA plays an important role in reducing such 

predictions. In Fig. 3 we show five example cases, where each subfigure shows the results 

for one patient. Table 1 shows the statistical results based on all the testing images. We 

found that for few testing images TTA + TTD failed to obtain higher Dice scores than TTA, 

but for the overall testing images, the average Dice of TTA + TTD is slightly larger than that 

of TTA. Therefore, this leads to the conclusion that TTA + TTD does not always perform 

4https://grand-challenge.org/challenges.
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better than TTA, and the average performance of TTA + TTD is close to that of TTA, which 

is also demonstrated in Figs. 1 and 6.

We have demonstrated TTA based on the image acquisition model for image segmentation 

tasks, but it is general for different image recognition tasks, such as image classification, 

object detection, and regression. For regression tasks where the outputs are not discretized 

category labels, the variation of the output distribution might be more suitable than entropy 

for uncertainty estimation. Table 2 shows the superiority of test-time augmentation for better 

segmentation accuracy, and it also demonstrates the combination of W-Net in different views 

helps to improve the performance. This is an ensemble of three networks, and such an 

ensemble may be used as an alternative for epistemic uncertainty estimation, as 

demonstrated by [12].

We found that for our tested CNNs and applications, the proper value of Monte Carlo 

sample N that leads the segmentation accuracy to a plateau was around 20–40. Using an 

empirical value N = 40 is large enough for our datasets. However, the optimal setting of 

hyper-parameter N may change for different datasets. Fixing N = 40 for new applications 

where the optimal value of N is smaller would lead to unnecessary computation and reduce 

efficiency. In some applications where the object has more spatial variations, the optimal N 
value may be larger than 40. Therefore, in a new application, we suggest that the optimal N 
should be determined by the performance plateau on the validation set.

In conclusion, we analyzed different types of uncertainties for CNN-based medical image 

segmentation by comparing and combining model (epistemic) and input-based (aleatoric) 

uncertainties. We formulated a test-time augmentation-based aleatoric uncertainty estimation 

for medical images that considers the effect of both image noise and spatial transformations. 

We also proposed a theoretical and mathematical formulation of test-time augmentation, 

where we obtain a distribution of the prediction by using Monte Carlo simulation and 

modeling prior distributions of parameters in an image acquisition model. Experiments with 

2D and 3D medical image segmentation tasks showed that uncertainty estimation with our 

formulated TTA helps to reduce overconfident incorrect predictions encountered by model-

based uncertainty estimation and TTA leads to higher segmentation accuracy than a single-

prediction baseline and multiple predictions using test-time dropout.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Visual comparison of different types of uncertainties and their corresponding segmentations 

for fetal brain. The uncertainty maps in odd columns are based on Monte Carlo simulation 

with N = 20 and encoded by the color bar in the left up corner (low uncertainty shown in 

purple and high uncertainty shown in yellow). The white arrows in (a) show the aleatoric 
and hybrid uncertainties in a challenging area, and the white arrows in (b) and (c) show mis-

segmented regions with very low epistemic uncertainty. TTD: test-time dropout, TTA: test-

time augmentation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 2. 
Dice of 2D fetal brain segmentation with different N that is the number of Monte Carlo 

simulation runs.
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Fig. 3. 
Dice distributions of segmentation results with different testing methods for five example 

stacks of 2D slices of fetal brain MRI. Note TTA’s higher mean value and variance 

compared with TTD.
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Fig. 4. 
Normalized joint histogram of prediction uncertainty and error rate for 2D fetal brain 

segmentation. The average error rates at different uncertainty levels are depicted by the red 

curves. The dashed ellipses show that TTA leads to a lower occurrence of overconfident 

incorrect predictions than TTD. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 5. 
Structure-wise uncertainty in terms of volume variation coefficient (VVC) vs 1−Dice for 

different testing methods in 2D fetal brain segmentation.
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Fig. 6. 
Visual comparison of different testing methods for 3D brain tumor segmentation. The 

uncertainty maps in odd columns are based on Monte Carlo simulation with N = 40 and 

encoded by the color bar in the left up corner (low uncertainty shown in purple and high 

uncertainty shown in yellow). TTD: test-time dropout, TTA: test-time augmentation. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 7. 
Normalized joint histogram of prediction uncertainty and error rate for 3D brain tumor 

segmentation. The average error rates at different uncertainty levels are depicted by the red 

curves. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 8. 
Structure-wise uncertainty in terms of volume variation coefficient (VVC) vs 1–Dice for 

different testing methods in 3D brain tumor segmentation.
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Table 1

Dice (%) and ASSD (mm) evaluation of 2D fetal brain segmentation with different training and testing 

methods. Tr – Aug: training without data augmentation. Tr + Aug: training with data augmentation. * denotes 

significant improvement from the baseline of single prediction in Tr – Aug and Tr + Aug respectively (p-value 

< 0.05). † denotes significant improvement from Tr – Aug with TTA + TTD (p-value < 0.05).

Train Test Dice (%) ASSD (mm)

FCN U-Net P-Net FCN U-Net P-Net

Tr – Aug Baseline 91.05 ± 3.82 90.26 ± 4.77 90.65 ± 4.29 2.68 ± 2.93 3.11 ± 3.34 2.83 ± 3.07

TTD 91.13 ± 3.60 90.38 ± 4.30 90.93 ± 4.04 2.61 ± 2.85 3.04 ± 2.29 2.69 ± 2.90

TTA 91.99 ± 3.48* 91.64 ± 4.11* 92.02 ± 3.85* 2.26 ± 2.56* 2.51 ± 3.23* 2.28 ± 2.61*

TTA + TTD 92.05 ± 3.58* 91.88 ± 3.61* 92.17 ± 3.68* 2.19 ± 2.67* 2.40 ± 2.71* 2.13 ± 2.42*

Tr + Aug Baseline 92.03 ± 3.44 91.93 ± 3.21 91.98 ± 3.92 2.21 ± 2.52 2.12 ± 2.23 2.32 ± 2.71

TTD 92.08 ± 3.41 92.00 ± 3.22 92.01 ± 3.89 2.17 ± 2.52 2.03 ± 2.13 2.15 ± 2.58

TTA 92.79 ± 3.34* 92.88 ± 3.15* 93.05 ± 2.96* 1.88 ± 2.08 1.70 ± 1.75 1.62 ± 1.77*

TTA + TTD 92.85 ± 3.15*† 92.90 ± 3.16*† 93.14 ± 2.93*† 1.84 ± 1.92 1.67 ± 1.76*† 1.48 ± 1.63*†
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Table 2

Dice (%) and ASSD (mm) evaluation of 3D brain tumor segmentation with different training and testing 

methods. Tr −Aug: Training without data augmentation. Tr + Aug: Training with data augmentation. W-Net is 

a 2.5D network and W-Net (ASC) denotes the fusion of axial, sagittal and coronal views according to [43]. * 

denotes significant improvement from the baseline of single prediction in Tr −Aug and Tr + Aug respectively 

(p-value < 0.05). † denotes significant improvement from Tr −Aug with TTA + TTD (p-value < 0.05).

Train Test Dice (%) ASSD (mm)

WNet (ASC) 3D U-Net V-Net WNet (ASC) 3D U-Net V-Net

Tr − Aug Baseline 87.81 ± 7.27 87.26 ± 7.73 86.84 ± 8.38 2.04 ± 1.27 2.62 ± 1.48 2.86 ± 1.79

TTD 88.14 ± 7.02 87.55 ± 7.33 87.13 ± 8.14 1.95 ± 1.20 2.55 ± 1.41 2.82 ± 1.75

TTA 89.16 ± 6.48* 88.58 ± 6.50* 87.86 ± 6.97* 1.42 ± 0.93* 1.79 ± 1.16* 1.97 ± 1.40*

TTA + TTD 89.43 ± 6.14* 88.75 ± 6.34* 88.03 ± 6.56* 1.37 ± 0.89* 1.72 ± 1.23* 1.95 ± 1.31*

Tr + Aug Baseline 88.76 ± 5.76 88.43 ± 6.67 87.44 ± 7.84 1.61 ± 1.12 1.82 ± 1.17 2.07 ± 1.46

TTD 88.92 ± 5.73 88.52 ± 6.66 87.56 ± 7.78 1.57 ± 1.06 1.76 ± 1.14 1.99 ± 1.33

TTA 90.07 ± 5.69* 89.41 ± 6.05* 88.38 ± 6.74* 1.13 ± 0.54* 1.45 ± 0.81 1.67 ± 0.98*

TTA + TTD 90.35 ± 5.64*† 89.60 ± 5.95*† 88.57 ± 6.32*† 1.10 ± 0.49* 1.39 ± 0.76*† 1.62 ± 0.95*†
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