Table 2.
Dice (%) and ASSD (mm) evaluation of 3D brain tumor segmentation with different training and testing methods. Tr −Aug: Training without data augmentation. Tr + Aug: Training with data augmentation. W-Net is a 2.5D network and W-Net (ASC) denotes the fusion of axial, sagittal and coronal views according to [43]. * denotes significant improvement from the baseline of single prediction in Tr −Aug and Tr + Aug respectively (p-value < 0.05). † denotes significant improvement from Tr −Aug with TTA + TTD (p-value < 0.05).
Train | Test | Dice (%) |
ASSD (mm) |
||||
---|---|---|---|---|---|---|---|
WNet (ASC) | 3D U-Net | V-Net | WNet (ASC) | 3D U-Net | V-Net | ||
Tr − Aug | Baseline | 87.81 ± 7.27 | 87.26 ± 7.73 | 86.84 ± 8.38 | 2.04 ± 1.27 | 2.62 ± 1.48 | 2.86 ± 1.79 |
TTD | 88.14 ± 7.02 | 87.55 ± 7.33 | 87.13 ± 8.14 | 1.95 ± 1.20 | 2.55 ± 1.41 | 2.82 ± 1.75 | |
TTA | 89.16 ± 6.48* | 88.58 ± 6.50* | 87.86 ± 6.97* | 1.42 ± 0.93* | 1.79 ± 1.16* | 1.97 ± 1.40* | |
TTA + TTD | 89.43 ± 6.14* | 88.75 ± 6.34* | 88.03 ± 6.56* | 1.37 ± 0.89* | 1.72 ± 1.23* | 1.95 ± 1.31* | |
Tr + Aug | Baseline | 88.76 ± 5.76 | 88.43 ± 6.67 | 87.44 ± 7.84 | 1.61 ± 1.12 | 1.82 ± 1.17 | 2.07 ± 1.46 |
TTD | 88.92 ± 5.73 | 88.52 ± 6.66 | 87.56 ± 7.78 | 1.57 ± 1.06 | 1.76 ± 1.14 | 1.99 ± 1.33 | |
TTA | 90.07 ± 5.69* | 89.41 ± 6.05* | 88.38 ± 6.74* | 1.13 ± 0.54* | 1.45 ± 0.81 | 1.67 ± 0.98* | |
TTA + TTD | 90.35 ± 5.64*† | 89.60 ± 5.95*† | 88.57 ± 6.32*† | 1.10 ± 0.49* | 1.39 ± 0.76*† | 1.62 ± 0.95*† |