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Abstract

The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional 

connectome of early life. Understanding this connectome in detail may provide insights into 

normal as well as abnormal patterns of brain development. Following established best practices 

adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the 

project utilises cortical surface-based processing pipelines. In this paper, we propose a fully 

automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the 

developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and 

sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which 

has been specifically designed to address considerable differences between adult and neonatal 

brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images 

collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be 

processed fully automatically; generating cortical surface models that are topologically correct, 

and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results 

improve on state-of-the-art neonatal tissue segmentation models and significant errors were found 

in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these 
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surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the 

modelling of emerging patterns of brain connectivity.

Keywords

Developing Human Connectome Project; dHCP; neonatal MRI; pipeline; segmentation; cortical 
surface reconstruction

1 Introduction

The period of rapid cortical expansion during fetal and early neonatal life is a crucial time 

over which the cortex transforms from a smooth sheet to a highly convoluted surface. During 

this time, the cellular foundations of our advanced cognitive abilities are mapped out, as 

connections start to form between distant regions (Ball et al., 2013b; Van Essen, 1997), 

myelinating, and later pruning, at different rates. Alongside the development of this neural 

infrastructure, functional brain activations start to be resolved (Doria et al., 2010), reflecting 

the development of cognition.

Much of what is currently known about the early human connectome has been learnt from 

models of preterm growth (Ball et al., 2013b; Counsell et al., 2013; Doria et al., 2010; 

Keunen et al., 2017). Whilst invaluable, it is known that early exposure to the extra-uterine 

environment has long-term implications (Ball et al., 2012, 2013a, 2017; Counsell et al., 

2014; Hintz et al., 2015; Ullman et al., 2015). For this reason, the Developing Human 

Connectome Project (dHCP) seeks to image emerging brain connectivity for the first time in 

a large cohort of fetal and term-born neonates.

More broadly, the goals of the dHCP are to pioneer advances in structural, diffusion, and 

functional Magnetic Resonance Imaging (MRI), in order to collect high-quality imaging 

data for fetuses and (term/preterm-born) neonates, from both control and at-risk groups. 

Imaging sets will be supported by a database of clinical, behavioural, and genetic 

information, all made publicly available via an expandable and user-friendly informatics 

structure. The dataset will allow the community to explore the neurobiological mechanisms, 

and genetic and environmental influences, which underpin healthy cognitive development. 

Models of healthy development will provide a vital basis of comparison from which the 

effects of preterm birth, and neurological conditions such as cerebral palsy or autism, may 

become better understood.

The dHCP takes inspiration from the WU-MINN Human Connectome Project (HCP) (Van 

Essen et al., 2013). Now in its final stages, the HCP has pushed the boundaries of MRI 

based brain connectomics, collecting 1200 sets of healthy adult functional and structural 

connectomes, at high spatial and temporal resolution. Data from this project has been used 

to generate refined maps of adult cortical organisation (Glasser and Van Essen, 2011), and 

improve understanding of how the functional connectome correlates with behaviour (Smith 

et al., 2015)
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A core tenet, underlying the success of the HCP approach, has been the advocation of 

surface-based processing and analysis of brain MR images. This is grounded in the 

understanding that distances between functionally specialised areas on the convoluted 

cortical sheet are more neurobiologically meaningful, when represented on the 2D surface 

rather than in the 3D volume (Glasser et al., 2013). Surface-based processing therefore 

minimises the mixing of data from opposing sulcal banks or between tissue types. Further, 

surface-based registration approaches (Durrleman et al., 2009; Fischl et al., 1999c; Lombaert 

et al., 2013; Robinson et al., 2014; Wright et al., 2015; Yeo et al., 2010) improve the 

alignment of cortical folds and areal features.

Unfortunately, modelling cortical connectome structure in neonates and fetuses is 

particularly challenging. MRI, especially functional and diffusion protocols, is highly 

sensitive to head motion during scanning. This is a particular issue for the dHCP, where the 

goal is to image un-sedated neonatal, and free-moving fetal subjects. Therefore, correcting 

for this has required the development of advanced scanning protocols and motion correction 

schemes (Cordero-Grande et al., 2017; Hughes et al., 2016; Kuklisova-Murgasova et al., 

2012).

Outside of the challenges facing acquisition and reconstruction, the properties of neonatal 

and fetal MRI differ significantly from that of adult data. Specifically, baby and adult brains 

differ vastly in terms of size, with the fetal and neonatal brain covering a volume in the 

range of 100-600 millilitres in contrast to an average adult brain volume of more than 1 litre 

(Allen et al., 2002; Orasanu et al., 2014; Makropoulos et al., 2016). Furthermore, the 

perinatal brain develops rapidly, which results in vast changes in scale and appearance of the 

brain scanned at different weeks. This, together with the fact that scanning times must be 

limited for the well-being and comfort of mother and baby, means that spatial and temporal 

resolution of the resulting images are reduced relative to adults. Furthermore, immature 

myelination of the white matter in neonatal and fetal brains results in inversion of MRI 

contrast when compared to adult brain scans (Prastawa et al., 2005). This requires image 

processing to be performed on T2-weighted rather than T1-weighted structural MRI.

Combined, these vast differences in image properties considerably limit the translation of 

conventional adult methods for image processing to fetal and neonatal cohorts. In particular, 

the popular FreeSurfer framework (Fischl, 2012), utilised within the HCP pipelines (Glasser 

et al., 2013), fails on neonatal data as it relies solely on fitting surfaces to intensity-based 

tissue segmentation masks (Dale et al., 1999). These pipelines have been optimised to work 

with adult MRI data, and are not compatible with neonatal image intensity distributions, 

which are significantly different and vary drastically within different weeks of development. 

For this reason, simple adoption of the adult HCP processing pipelines has not been 

possible.

Instead, this paper presents a refined surface extraction and inflation pipeline, that will 

accompany the first data and software release of the dHCP. This proposed framework builds 

upon a legacy of advances in neonatal image processing. This includes the development of 

specialised tools for tissue segmentation that address the difficulties in resolving tissue 

boundaries blurred through the presence of low resolution and partial volume. A variety of 
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techniques have been proposed for tissue segmentation of the neonatal brain in recent years: 

unsupervised techniques (Gui et al., 2012), atlas fusion techniques (Weisenfeld and 

Warfield, 2009; Gousias et al., 2013; Kim et al., 2016), parametric techniques (Prastawa et 

al., 2005; Song et al., 2007; Xue et al., 2007; Shi et al., 2010; Cardoso et al., 2013; 

Makropoulos et al., 2012; Wang et al., 2012; Wu and Avants, 2012; Beare et al., 2016; Liu et 

al., 2016), classification techniques (Anbeek et al., 2008; Srhoj-Egekher et al., 2012; Chiţă et 

al., 2013; Wang et al., 2015; Sanroma et al., 2016; Moeskops et al., 2016) and deformable 

models (Wang et al., 2011; Dai et al., 2013; Wang et al., 2013, 2014). A review of neonatal 

segmentation methods can be found in Devi et al. (2015); Makropoulos et al. (2017). The 

majority of these techniques have been applied to images with a lower resolution than those 

acquired within the dHCP, and typically to images of preterm-born subjects.

Once segmentations are extracted, surface mesh modelling approaches are, to an extent, 

agnostic of the origin of the data; allowing, in principle, the application of a wide variety of 

cortical mesh modelling approaches to neonatal data, including those provided within the 

FreeSurfer (Dale et al., 1999; Fischl, 2012), BrainSuite (Shattuck and Leahy, 2002), 

BrainVISA (Rivière et al., 2009), and CIVET (MacDonald et al., 2000; Kim et al., 2005, 

2016) packages. In general, these methods fit surfaces to boundaries of tissue segmentation 

masks, which, allowing for some need for topological correction, relies on the accuracy of 

the segmentation. In neonatal imaging data, the use of T2 images however leads to 

segmentation errors not seen in adult data. This is the misclassification of CSF as white 

matter, caused by the fact that CSF and white matter appear bright in neonatal T2 images, 

whereas in adult T1 data white matter is bright and CSF is dark. If not fully accounted for 

during segmentation, these errors will be propagated through to surface reconstruction (Xue 

et al., 2007).

In what follows, we present a summary of our proposed pipeline. This brings together 

existing tools for neonatal segmentation (refined to minimise the propagation of 

misclassification errors through to surface extraction) with new tools for cortical extraction 

that combine information from segmentation masks and T2-weighted image intensities, in 

order to compensate for the effects of partial volume and improve correspondence with true 

tissue boundaries. Re-implementations of existing tools for surface inflation and projection 

to the sphere are provided to minimise software overhead for users.

The processing steps are as follows: 1) acquisition and reconstruction of T1 and T2 images 

(Cordero-Grande et al., 2017; Hughes et al., 2016; Kuklisova-Murgasova et al., 2012); 2) 

tissue segmentation and regional labelling (Makropoulos et al., 2012, 2014, 2016); 3) 

cortical white and pial surface extraction (Schuh et al., 2017); 4) inflation and projection to a 

sphere (for use with spherical alignment approaches) (Fischl et al., 1999a; Elad et al., 2005); 

and 5) definition of cortical feature descriptors, including descriptors of cortical geometry 

and myelination (Glasser et al., 2013). Manual quality control is performed by two 

independent expert raters to assess the quality of the acquired images, segmentations, and 

reconstructed cortical surfaces. Assessment of these data sets shows, that with very few 

exceptions (3%) the protocol is able to extract cortical surfaces which fit closely the 

expectations for observed anatomy.
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2 Project Overview

The goal of the dHCP is to create a dynamic map of human brain connectivity from 20 to 45 

weeks post-conceptional age (PMA) from healthy, term-born neonates, infants born 

prematurely (prior to 36 weeks PMA), and fetuses. The infants are being scanned using 

optimised protocols for structural (T1 and T2-weighted) images, resting state functional 

MRI (fMRI), and multi-shell High Angular Resolution Diffusion Imaging (HARDI). 

Imaging data will be combined with genetic, cognitive, and environmental information in 

order to aid understanding of the developing human brain, and to give crucial insight into 

brain vulnerability and disease development. Novel image analysis and modelling tools will 

be developed and integrated into HCP inspired surface-processing pipelines in order to 

extract structural and functional connectivity maps. All data and supporting software will be 

made publicly available within an expandable, future-proof informatics structure, which will 

provide the research community with a user-friendly environment for hypothesis-based 

studies, and allow continual ongoing addition of new data.

3 The Neonatal Structural Pipeline

The first stage of the project has been to optimise acquisition protocols and collect data for 

the neonatal cohort (Cordero-Grande et al., 2017; Hughes et al., 2016; Kuklisova-Murgasova 

et al., 2012). The methods in this paper therefore reflect neonatal structural processing 

protocols, and are designed to accompany the first data release of neonatal subjects.

The workflow of the neonatal processing pipeline is summarised in Fig. 1. The motion-

corrected, reconstructed T2-weighted image is first bias-corrected and brain-extracted. 

Following this, the brain image is segmented into different tissue types (CSF: cerebrospinal 

fluid, WM: white matter, cGM: cortical grey matter, and GM: subcortical grey matter) using 

the Draw-EM algorithm (based on Makropoulos et al. (2014) section 3.2) (B). Next, white 

matter masks are split along the mid-line between the hemispheres and filled to represent 

binary masks for each hemisphere, and topologically correct white matter surfaces are fit 

first to the grey-white tissue boundary and then the grey-white interface of the MR 

intensities (section 3.3) (C). Pial surfaces are generated by expanding each white matter 

mesh towards the grey-CSF interface (D), and midthickness surfaces are generated halfway 

between the pial and the white, by taking the Euclidean mean of corresponding inner- and 

outer-cortical vertex coordinates (E). The cortical thickness is estimated based on the 

Euclidean distance between the white and pial surface. In a separate process, inflated 

surfaces are generated through expansion-based smoothing of the white surface (F). This 

acts as initialisation to a Multi-Dimensional Scaling (MDS, section 3.4) scheme that projects 

all points onto a sphere, whilst preserving relative distances between neighbouring points. 

Finally, surface geometry and myelo-structure are summarised through a series of surface 

feature maps. These include: G) maps of mean surface curvature, estimated from the white 

surface; H) maps of mean convexity/concavity (sulcal depth); estimated during inflation; and 

I) maps of cortical myelination; estimated from the ratio of T1- and T2-weighted intensities 

projected onto the surface. Prior to myelin estimation, the motion-corrected reconstructed T1 

image is rigidly registered to the T2 image.
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Following adult frameworks, proposed for FreeSurfer (Fischl et al., 1999b), and refined by 

the Human Connectome Project (Glasser et al., 2013), all computed surfaces of each subject 

(white, pial, midthickness, inflated, spherical) have one-to-one point correspondence 

between vertices. This ensures that for each individual brain the same vertex index 

represents the same relative point on the anatomy for all these surfaces. In other words, two 

corresponding points on the white and pial surface would approximate the endpoints of 

where a column of neurons through the cortex would travel. This simplifies downstream 

processing, and facilitates straightforward visualisation of features across multiple surface 

views.

3.1 Acquisition

The data used in the paper were collected at St. Thomas Hospital, London, on a Philips 3T 

scanner using a 32 channel dedicated neonatal head coil (Hughes et al., 2016). To reduce the 

effects of motion, T2 images were obtained using a Turbo Spin Echo (TSE) sequence, 

acquired in two stacks of 2D slices (in sagittal and axial planes), using parameters: TR=12s, 

TE=156ms, SENSE factor 2.11 (axial) and 2.58 (sagittal) with overlapping slices (resolution 

(mm) 0.8 × 0.8 × 1.6). T1 images were acquired using an IR (Inversion Recovery) TSE 

sequence with the same resolution with TR=4.8s, TE=8.7ms, SENSE factor 2.26 (axial) and 

2.66 (sagittal). Motion correction and super-resolution reconstruction techniques were 

employed combining Cordero-Grande et al. (2017); Kuklisova-Murgasova et al. (2012) 

resulting in isotropic volumes of resolution 0.5 × 0.5 × 0.5mm3. Subjects were not sedated, 

but imaged during natural sleep. All images were reviewed by an expert paediatric 

neuroradiologist and checked for possible abnormalities. In this paper we report results from 

453 subjects that have been processed through the proposed pipeline. 38 subjects had repeat 

longitudinal scans resulting in a total 492 scans. T1 images were available for 411 out of the 

492 scans. The distribution of ages at birth and ages at scan is shown in Fig. 2.

3.2 Segmentation

3.2.1 Atlases—The segmentation in the dHCP utilises the atlases manually annotated by 

Gousias et al. (2012) that divide the brain into 50 regions. Gousias et al. (2012) have 

manually labelled 20 subjects and provide T1 and T2 images accompanied by the label map 

for each subject2. 15 of the 20 subjects were born prematurely at a median age at birth of 29 

weeks (range 26 – 35 weeks). These were scanned at term at a median age of 40 weeks 

(range 37 – 43 weeks), and had a median weight of 3.0 kg (range 2.0 – 4.0 kg) at the time of 

scan. The remaining 5 subjects were born at term at a median age of 41 weeks (range 39 – 

45 weeks), and had a median weight of 4.0 kg (range 3.0 – 5.0 kg). We refer the reader to 

Gousias et al. (2012) for information on the protocol used for the labelling. In Makropoulos 

et al. (2014) we further subdivided the 50 regions to create a set of 87 regions as follows: the 

cortical regions, which contain both WM and cGM in the atlases, were split into their WM 

and cGM part; thalamus was split into the high intensity part and the low intensity part 

(mainly ventrolateral nuclei); CSF, background and unlabelled brain region (mainly internal 

capsule) were further added. Table 1 presents the 87 resulting regions.

2http://brain-development.org/brain-atlases/neonatal-brain-atlas-albert
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3.2.2 Segmentation method—The T2 image data is segmented into 9 tissue classes 

(Table 1), using the Draw-EM 3 (Developing brain Region Annotation With Expectation-

Maximization) algorithm. This is an open-source software for neonatal brain MRI 

segmentation based on the method proposed in Makropoulos et al. (2014).

In summary, segmentation proceeds following brain-extraction, implemented using the Brain 

Extraction Tool (BET) (Smith, 2002), in order to remove non-brain tissue. BET has been 

configured to provide a liberal mask that always retains the brain tissue and CSF, and 

removes most of the skull (fractional intensity threshold=0.1). An accurate initial brain mask 

is not crucial for the Draw-EM segmentation, as it is based on an adaptive Expectation-

Maximization algorithm. The brain mask is consequently refined from the Draw-EM tissue 

segmentation. Then images are corrected for intensity inhomogeneity with the N4 algorithm 

(Tustison et al., 2010).

Segmentation is performed with an Expectation-Maximization (EM) algorithm that includes 

a spatial prior term and an intensity model of the image, similar to the approach described in 

Van Leemput et al. (1999). The spatial prior probability of the different brain structures is 

defined based on multiple labelled atlases. These atlases are registered to the target image, 

and their labels are transformed and averaged according to the local similarity of each atlas 

(based on the local Mean Square Distance as proposed in Artaechevarria et al. (2009). The 

intensity model of the image is approximated with a Gaussian Mixture Model (GMM). 

Spatial dependencies between the brain structures are modelled with Markov Random Field 

(MRF) regularisation. The segmentation algorithm further includes CSF-WM partial volume 

correction to account for the similar intensity of CSF to the WM along the CSF-cGM 

boundary, and model averaging of EM and label fusion to limit the influence of intensity in 

the delineation of structures with very similar intensity profiles. The resulting segmentation 

contains 87 regional structures (see Table 1). These are merged to further produce the 

following files: tissue labels, left/right white surface masks and left/right pial surface masks.

The dHCP data differs significantly from previous neonatal cohorts collected by our group, 

in that the vast majority of the data in previous studies were acquired from prematurely-born 

neonates and typically at lower spatial resolutions. Thus Draw-EM includes several 

modifications with respect to Makropoulos et al. (2014) in order to maximise the benefits for 

downstream processing. These include: modelling of additional tissue classes to account for 

the presence of hyper/hypo intense pockets of white matter, which occur naturally in the 

maturing brain; together with improvements afforded by a multi-channel volumetric 

registration, which simultaneously registers subjects’ T2 images and their grey-matter tissue 

segmentation masks (obtained from a preliminary run of the segmentation algorithm - see 

below).

All major steps of the Draw-EM pipeline are summarised in Fig. 6. An example 

segmentation using Draw-EM is illustrated in Fig. 7. The importance of the modifications to 

the segmentation approach are demonstrated through Figures 3 to 5. Specifically, Fig. 3 

demonstrates improvements to segmentation accuracy through modelling two additional 

3https://github.com/MIRTK/DrawEM
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tissue classes: 1) low and 2) high intensity WM. Here, the low-intensity WM class is 

included to account for myelinated WM that is often mislabelled for cGM in particular 

around the insula and the frontal lobe, and the high-intensity WM class is included to correct 

for WM hyper-intensities around the ventricular area that are often mislabelled as ventricles. 

Low-intensity and high-intensity WM classes are merged to WM after the segmentation has 

completed.

The labelled atlases (Gousias et al., 2012) are registered to the subject using a multi-channel 

registration approach, where the different channels of the registration are the original 

intensity T2-weighted images and GM probability maps. These GM probability maps are 

derived from an initial tissue segmentation, performed using tissue priors propagated 

through registration of a preterm probabilistic tissue atlas Serag et al. (2012) to each term-

born subject. Preterm subjects typically have increased CSF volume over term neonates 

(Makropoulos et al., 2016), and this is reflected in the preterm template Serag et al. (2012). 

Therefore, to account for the effects of mis-registration resulting from the different amounts 

of CSF (see Fig. 4), we use a trimmed version of the preterm template (eroding CSF 

intensities from the template image) to perform the registration and initial tissue 

segmentation. Afterwards, these initial GM maps are then used along with the intensity T2-

weighted images in the multi-channel registration of the labelled atlases (Gousias et al., 

2012). Fig. 5 presents the benefit of using a multi-channel registration approach instead of a 

single-channel registration using only the intensity. It has been found that inclusion of the 

GM probability maps improves the accuracy of the alignment of the cortical ribbon, despite 

the large differences in cortical folding that are observed throughout the developing period. 

For more details on the individual parts of the original segmentation pipeline we refer the 

reader to Makropoulos et al. (2014).

3.3 White, Pial and Midthickness Surface Extraction

Following segmentation, white-matter mesh extraction is performed by fitting of a closed, 

genus-0, triangulated surface mesh (convex hull) onto the inferred white-matter 

segmentation boundary. However, the segmentation may include WM holes (WM 

misclassified as CSF) and undetected sulci (CSF misclassified as WM) due to partial volume 

effects. We therefore refine the shape of the mesh by incorporating intensity information 

from the bias-corrected T2 and (if available) T1 images (Schuh et al., 2017). This takes into 

account local geometry and favours sheet-like boundaries over thin bridges, or small pockets 

caused by CSF mislabelled as WM. Examples of the improvements gained by intensity 

based refinement, over a straightforward fit to the segmentation boundary, are shown in Fig. 

8.

In Schuh et al. (2017), the deformation of the initial genus-0 surface, inwards towards the 

white-grey tissue boundary, is governed through a trade-off between external and internal 

forces. Specifically, the external force seeks to minimise the distance between the placement 

of the surface mesh vertices and the locations of the tissue boundaries, and this is regularised 

by three different internal forces, which seek to: 1) enforce smoothness by reducing 

curvature; 2) flatten creases in the mesh along sulcal banks; and 3) discourage mesh 

intersections by introducing a repulsion force between adjacent nodes. In addition to the 
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repulsion force, self-intersection is further prevented by predefining a minimum distance 

(0.1 mm) that the mesh triangles can reach between each other. If the new movement of a 

triangle moves it to a distance less than the minimum allowed distance to any other triangle 

in the mesh, this movement is prevented by limiting the total force of its vertices.

Surface reconstruction proceeds over two stages, where, in the first stage, external forces are 

derived from distances to the tissue segmentation mask, and in the second stage, boundaries 

are refined using external forces derived from intensity information: specifically, the force 

attracts each vertex node towards the closest WM/cGM edge in the normal direction.

A median filtering and Laplacian smoothing of surface distances is performed to reduce the 

influence of small irregularities in the segmentation boundary. Small holes in the 

segmentation manifest themselves in the surface distance map as small clusters of 

supposedly distant points as seen left of Fig. 10. These are filled in to avoid the surface mesh 

to deform into them.

The closest WM/cGM edge in the second stage is found by analysing the one-dimensional 

intensity profile and directional derivative sampled at equally-spaced ray-points. Examples 

are shown in Fig. 9. Here, a white-matter boundary edge occurs between a maximum with 

WM intensity, followed by a minimum with cGM intensity (left/right of green vertical line). 

Starting at the ray centre (red vertical line, yellow dot), a suitable edge is found by searching 

both inwards and outwards from the node until either a WM/cGM edge is found, a 

maximum search depth is exceeded, or the ray intersects the surface.

Next, the pial surface is obtained by deforming the white-matter mesh towards the 

cGM/CSF boundary using the same model but modifying the external force to search for the 

closest cGM/CSF image edge outside the white-matter mesh. These edges correspond to a 

positive derivative in normal direction of the T2 intensity (yellow arrows in Fig. 9). When no 

such edge is found, e.g. within a narrow sulcus due to partial volume, the opposing sulcal 

banks expand towards each other until stopped by the non-self-intersection constraint. 

Finally, a midthickness surface is generated half-way in-between by averaging the positions 

of corresponding nodes. Please refer to Schuh et al. (2017) for more details on the surface 

reconstruction.

3.4 Surface Inflation and Spherical Projection

In a separate process, the white matter surface is inflated using a re-implementation of the 

inflated surface model of FreeSurfer (Fischl et al., 1999a). This uses an inflation energy 

functional that consists of an inflation term, that forces the surface outwards (for vertex 

points in sulcal fundi) and inwards (for points on gyral crowns), and a metric-preservation 

term that preserves distances between neighbouring points. Surfaces are expanded until they 

fulfil a pre-set smoothness criterion (Fischl et al., 1999a).

As a by-product of the surface inflation, a measure of average concavity/convexity is 

obtained for each vertex. This represents the change of a node’s position in normal direction, 

and is proportional to the depth of major sulci.
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In a final step, inflated meshes are projected onto a sphere using spherical Multi-

Dimensional Scaling (sMDS) as proposed by (Elad et al., 2005). This computes an 

embedding, or projection, of each inflated mesh onto a sphere, whilst minimising distortion 

between mesh edges. More specifically, the projected positions of vertex points on the 

sphere are optimised so as to preserve the relative distances between points, as measured in 

the initial inflated mesh space. In each case, the distances (measured for the sphere and the 

input mesh) are estimated as geodesics, and are computed using a fast marching method for 

triangulated domains (Kimmel and Sethian, 1998). Note, the input mesh must first be scaled 

so that its surface area is equal to that of the unit sphere.

The benefit of sMDS is that the optimisation of the spherical projection is performed directly 

on spherical coordinates, while in FreeSurfer the distances are optimized in 3D. To evaluate 

the performance of sMDS relative to FreeSurfer we compared areal and edge distortion 

distributions for vertex spacing in the original white matter mesh relative to the sphere. Here, 

areal distortions measure change in mesh faces area estimated as log 2
A1
A2

 (for triangle A1 in 

white mesh, and equivalent triangle A2 on the sphere). Edge distortions reflect change in 

relative vertex spacing and are estimated as log 2
E1
E2

 (for edge length E1 in white mesh, and 

equivalent A2 on the sphere). Distortion distributions are averaged across all subjects and 

both hemispheres, and results are shown in Fig 11. Results show that while distortions for 

the sMDS method slightly exceed that of FreeSurfer, they are in a comparable range.

3.5 T1-T2 registration

As the neonatal pipeline is based on T2 image processing rather than T1 (as for the adults), 

each T1 image was rigidly registered to its T2 image pair. Similarly to the HCP, registration 

is performed with Boundary-Based Registration (BBR) Greve and Fischl (2009) to estimate 

the 6 degrees of freedom (DOF) rigid registration parameters. However, directly computing 

the registration with BBR resulted in misalignments in 16.8% of the scans (69 out of the 411 

cases with both T1/T2 scans). Due to these mis-alignment issues, we performed an initial 

rigid registration of the T1 to an eroded T2 excluding the cGM and CSF (including the WM 

and sub-cortical structures). BBR is then initialised with the parameters from this initial 

registration, which provides further minor improvements. The combined rigid registration, 

initial rigid followed by BBR, resulted in only one case with minor residual misalignment to 

its corresponding T2 image (0.2% of the scans).

3.6 Feature Extraction

The processes of surface extraction and inflation generate a number of well known feature 

descriptors for the geometry of the cortical surface. These include: surface curvature 

estimated from the mean curvature (or average of the principal curvatures) of the white 

matter surface; cortical thickness estimated as the average distance between a) the Euclidean 

distance from the white surface to the closest vertex in the pial surface and b) the Euclidean 

distance from the pial surface to the closest vertex in the white surface; and sulcal depth 

which represents average convexity or concavity of cortical surface points estimated during 

the inflation process.
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In addition to geometric features, the pipeline also estimates correlates of cortical 

myelination using the protocol described in Glasser and Van Essen (2011); adopted by the 

HCP. These feature maps are estimated from the ratio of T1-weighted and T2-weighted 

images and represent an architectonic marker that reliably traces areal boundaries of cortical 

areas and correlates with cytoarchitecture and functionally distinct areas in the cortex 

Glasser and Van Essen (2011). As the neonatal pipeline is based on T2 image processing 

rather than T1 (as for the adults), neonatal T1/T2 myelin maps are estimated by first rigidly 

registering each T1 image to its T2 image pair. The ratio is estimated from the original T2 

image and the transformed T1 image (prior to bias correction). Following this, the T1/T2 

ratio is projected onto the midthickness surface, using volume-to-surface mapping (Glasser 

et al., 2013).

Further, regional labels (from the method described in Gousias et al. (2012)) are 

automatically generated during segmentation. These regional labels are further projected 

onto the cortical surface. The closest voxel in the volume with respect to each vertex in the 

midthickness surface is used to propagate the label to that vertex. The projected labels are 

consequently post-processed with filling of small holes and removal of small connected 

components.

Fig 12 depicts exemplar surfaces for three subjects aged 32, 36 and 40 weeks PMA (at time 

of scan) together with cortical labels, sulcal depth, cortical thickness, mean curvature, and 

T1/T2 myelin maps. This demonstrates the considerable differences in surface geometry and 

myelination over the developmental period covered by this cohort.

4 Quality Control (QC)

The quality of the pipeline was assessed by manually scoring a sub-set of randomly selected 

images from the cohort. We performed three independent scorings for the different parts of 

the pipeline: image reconstruction, segmentation and surface reconstruction. 160 images 

were used for the image reconstruction and segmentation QC. A sub-set of 43 images was 

then used for the surface reconstruction QC due to the more manually intensive and time 

consuming scoring of cortical details. All images and surfaces were scored independently by 

two expert raters (one neuro-anatomist, one methods specialist) to assess inter-rater 

agreement. The image and segmentation QC was performed by AM and SJC and surface QC 

by AM and JS. The results are presented in the following sections.

4.1 Image QC

Quality checking of neonatal images was performed by first binning all subjects’ PMA (at 

scan) into weeks (in the range: 37–44 weeks) and selecting 20 images at random from each 

weekly interval. This yielded a total of 160 images. Note, the relatively low limit of 20 per 

week was selected due to the limited amount of images (57 out of the total 492 scans, less 

than 20 per age) acquired at earlier scan ages (29–36 weeks). The protocol for manual 

scoring of the image quality is presented in Fig. 13. Scoring was performed by visual 

inspection of the whole 3D volume slice by slice. Poor quality images were rated with score 

1. Images with significant motion were rated with score 2. Images with negligible motion 
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visible only in a few slices were rated with score 3. Images of good quality with no visible 

artefacts were rated with score 4.

Fig. 14 presents the percentage of images rated with the different scores by the two 

reviewers. On average, 90% of the images were considered to have negligible or no motion 

(score 3 and 4) and only 2% of the images had to certainly be discarded due to poor image 

quality according to the raters. The raters’ scoring was the same in 78% of the images and 

within a difference of one scoring point in 99% of the images.

4.2 Segmentation QC

Following image QC, tissue segmentation masks were evaluated for the same set of subjects. 

Quality was assessed using the protocol presented in Fig. 15. Specifically, images that were 

poorly segmented were rated with score 1; images with regional errors were rated with score 

2; images with localised segmentation errors were rated with score 3; images with 

segmentations of good quality with no visible errors were rated with score 4.

Regional errors often occurred at the interface between the cerebellum and the inferior part 

of the occipital and temporal lobe, where part of the cortical ribbon was mislabelled as 

cerebellum due to poor image contrast between the regions; another source of regional 

problems was when WM was mislabelled as cGM or CSF due to partial volume effects. By 

contrast, localised errors typically occurred when the CSF inside a sulcus was mislabelled as 

WM due to partial voluming effects.We further refer the reader to Makropoulos et al. (2014) 

for additional validation of the segmentation method.

The scores attributed by the two raters are presented in Fig. 16. Poor segmentation occurred 

only in 5 scans (3% of cases) and these were related to poor image quality or significant 

motion (image score 1 and 2). Regional (24% of cases) and localised errors (64% of cases) 

were present in the majority of the cases. The scoring of the raters agreed in 71% of the 

images and was within a difference of one scoring point in 99% of the images.

Furthermore, we assessed the improvements with the proposed segmentation. We manually 

inspected segmentations of all the 492 scans obtained with: a) the proposed segmentation 

method and b) the tissue segmentation method outlined in Makropoulos et al. (2012), that 

uses the original template from Serag et al. (2012) for the atlas priors, as baseline 

(Makropoulos et al. (2012) presented the most accurate results in the NeoBrainS12 

challenge (Išgum et al., 2015)). Fig. 17 presents the occurrence of the different segmentation 

problems presented in Section 3.2 with the baseline and the proposed method: top part of 

cGM missing (see Fig. 4), CSF inside WM (see Fig. 5), hyper-intense WM misclassified as 

ventricles (see Fig. 3), hypo-intense WM misclassified as cGM (see Fig. 3). The 

segmentation method with the proposed modifications has diminished the occurrences of 

this problems (top part of cGM missing in 1.6% compared to the baseline 23.8% of cases, 

CSF inside WM in 1.4% compared to 36.4%, hyper-intense WM misclassified as ventricles 

in 7.7% compared to 90.7% and hypo-intense WM misclassified as cGM in 0% compared to 

84.6%). These problems, where still present in the proposed method, are typically reduced in 

extent.
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The tissue segmentations presented additional errors that were not examined in the 

segmentation QC. These can be seen in Fig. 18. Narrow WM folds present in the medial 

temporal and occipital lobe, and gyri at the most superior part of the brain can be 

misclassified as cGM. This is due to partial volume effects and low local intensity contrast 

that can not be easily resolved by intensity alone without prior knowledge of the cortical 

morphology.

Figures A.1, A.2 present example segmentations from the subjects included in this study.

4.3 Surface QC

Cortical surface quality was assessed by visual scoring of the reconstructed white surface, as 

this is the primary surface used in downstream functional and diffusion MRI processing. 

Visual surface QC by an expert was performed for a number of regions of interest (ROIs), 

automatically selected per subject. In order to specifically focus the surface QC on the 

improvements of the reconstructed surface over the tissue segmentation boundary produced 

from Draw-EM, we aimed to identify regions that deviate from this boundary. We 

additionally reconstructed each surface with an alternative surface extraction technique that 

faithfully follows the tissue mask segmentation boundaries (Wright et al., 2015). Surface QC 

then proceeded for ROIs where the surfaces extracted from the two techniques (Schuh et al. 

(2017) and Wright et al. (2015)) deviated most from each other. ROIs were viewed in image 

volume space as 3D patches (of size 50 × 50 × 50 mm) located at the centre of each cluster, 

with the white surface shown as a contour map (see Fig. 19 for examples of the ROI 

visualization). Due to the large number of patches, a subset of 43 images was used from the 

160 images included for the image and segmentation QC. 20 ROIs were selected for each 

subject and were rated independently. Scoring of the surfaces was done by assigning a score 

from 1 to 4 for each ROI according to the protocol in Fig. 19: score 1 was rated as poor 

quality (this happened typically in cases where the contour substantially deviated from the 

cortical boundary or there were extensive missing gyri); score 2 was assigned in cases where 

the contour was close to the cortical boundary but there were obvious mistakes; score 3 was 

used for contours that were accurate but contained some minor mistakes; score 4 indicated 

an accurate contour tracing of the cortical boundary.

Fig. 20 presents the results of the surface QC. The proposed method produced surfaces that 

were rated as accurate (score 3 or 4) in 85% of the ROIs with 49% presenting no visual 

mistakes, averaged between the two raters. The remaining percentage of ROIs (15%) were 

rated as having obvious mistakes but being close to the cortical boundary (score 1 or 2), with 

only less than 2% having poor quality (score=1). The scoring of the raters was the same in 

52% of the ROIs and was within a difference of one scoring point in 93% of the ROIs. Fig. 

21 presents the scoring for the different regions of the brain. With the exception of the 

temporal lobe, it can be observed that the raters score similar number of ROIs with score 1 

and 2, but differ on the assignment of scores 3 and 4. On average, the occipital lobe presents 

the largest proportion of scores 1 and 2 (22%), followed by the temporal lobe (15%), the 

parietal lobe (11%), the frontal lobe (7%), corpus callosum (5%), insula (3%) and the 

cingulate gyrus (0%). Parts of the occipital and temporal lobe that contain narrow folds are 

hard to segment due to partial volume effects and low contrast, and errors in these regions 
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are also propagated to the surfaces. Note, that in extreme cases of partial volume, tissue 

boundaries will also not be apparent to manual observers. In such cases, evaluators must 

make subjective choices that may explain the disagreement between raters.

Fig. 22 demonstrates examples of improvements with the proposed method over a surface 

extracted to faithfully follow the segmentation boundary. Figures A.1, A.4 and A.5 present 

example surfaces reconstructed from the data. Figures 23, 24 further present the regional and 

total cortical thickness of all the subjects, and average thickness maps across different ages 

at scan. Average thickness maps were calculated by registering the sulcal depth maps of the 

subjects with MSM (Robinson et al., 2014) to an average template constructed using the 

method described in Bozek et al. (2016b). Cortical thickness across the whole brain has a 

mean value of 1.1 mm, which increases across the age at scan. Cortical thickness 

measurements in the neonatal population have been previously reported in the literature in 

(Xue et al., 2007; Moeskops et al., 2013; Li et al., 2015a; Moeskops et al., 2015; 

Makropoulos et al., 2016; Geng et al., 2017) with different ranges between 1-2 mm. 

Differences between reported values can be due to different image acquisition, image 

segmentation and surface reconstruction methods. Moeskops et al. (2013), in contrast to 

other studies, present thickness values estimated based on manually segmented cortices. The 

estimated thickness in their study varies between 0.95-1.2 mm which is very similar to the 

obtained measurements here. Different parts of the neonatal brain, such as the major lobes 

(frontal, parietal, temporal, occipital), present differences in the thickness values Moeskops 

et al. (2013, 2015); Geng et al. (2017). Li et al. (2015a) present thickness values at 0,1 and 2 

years of age and report higher values in the frontal and temporal lobe, and lower values in 

the parietal and occipital lobe. A similar trend can be observe here (temporal lobe: 1.15 mm, 

frontal lobe: 1.13 mm, parietal: 1.1 mm, occipital: 1.05 mm).

It should be noted that the adopted surface reconstruction model entails a number of 

parameters (e.g. weight of external force, strength of smoothness constraints imposed by 

internal forces and minimum vertex distance). Due to lack of ground truth these parameters 

were set based on visual inspection of the surface renders in 3D, and super-imposing them 

on the image. These parameters are likely specific to the dHCP cohort, and reflect subjective 

choices with respect to the balance of smoothness, relative to goodness of fit of the 

boundaries. We recommend users of the pipeline re-optimise parameters for new cohorts.

5 Comparison to HCP Pipelines

The dHCP pipeline has been inspired by the HCP (Glasser et al., 2013). However, there are 

several key differences between the pipelines, as highlighted in Table 3. Neonatal subjects 

are imaged during natural sleep. Therefore, total scanning time for all structural, diffusion 

and rfMRI scans is markedly reduced relative to the HCP. Furthermore, due to concerns 

about the effects of motion, scans are acquired in stacks that must be reconstructed and 

motion corrected prior to analysis. Finally, T1 and T2 image resolution of the neonates is 

slightly reduced relative to the adults, but brains are much smaller resulting in reduced 

resolution and increased partial volume.
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The HCP performs gradient and read-out distortion correction prior to estimation of 

surfaces. Gradient distortion, in particular, is motivated on account of the HCP’s use of a 

specially designed 3T Skyra scanning system, where the head is ~ 5 cm above the iso-centre 

of the scanner. This makes gradient non-linearities more pronounced for this system relative 

to those from standard 3T scanners. Read-out distortion correction is performed through 

collection of a field map. The dHCP has less noticeable distortions due to the use of spin-

echo readouts in the dHCP acquisition. Additionally, distortions are less extreme in neonates 

due to differences in the air tissue interfaces from adults. As such the dHCP does not 

perform these corrections.

Surface extraction, within the HCP pipeline, is performed using a refined version of the 

FreeSurfer recon-all method Fischl et al. (1999b,c), which adjusts for the high spatial 

resolution of HCP data, and uses T2 surfaces to refine and improve the placement of white 

and pial surfaces. This accounts for limited contrast between grey and CSF tissue within 

adult T1 images. Modified pre-processing is performed prior to recon-all with brain tissue 

masks propagated (following non-linear registration) from the MNI Template, and T1-T2 

registration is performed using a 6-DOF BBR Greve and Fischl (2009).

Image processing for the dHCP is performed on T2 images which provide better tissue 

intensity contrast in the neonatal age groups. Brain extraction is performed liberally on each 

subject’s T2 image using FSL BET Smith (2002), and this brain mask is then refined from 

the Draw-EM segmentation. T1-T2 registration is performed with an initial 6-DOF rigid 

registration of the T1 image to the T2 image based on WM and sub-cortical structures (i.e. 

excluding cGM and CSF), followed by BBR. Masks are then propagated from T2 to T1 

image data through the computed transformation. The reduced resolution, and increased 

partial volume of neonatal data motivates use of specially designed tissue segmentation 

(Makropoulos et al., 2012, 2014, 2016) and surface extraction protocols Schuh et al. (2017) 

(Sections 3.2,3.3). Further differences between the dHCP and HCP pipelines, are motivated 

by a desire to reduce software overhead: therefore, surface inflation is performed using an 

in-house re-implementation of the FreeSurfer method, and spherical projection is performed 

using a specially designed spherical MDS tool (Section 3.4). Outside of the stated 

differences to the pre-processing and surface extraction pipelines, cortical features (cortical 

thickness, cortical surface curvature, sulcal depth, T1/T2 myelin maps) are estimated 

similarly to the HCP.

6 Discussion

This paper presents a fully automatic pipeline for brain tissue segmentation and cortical 

surface modelling of neonatal MRI. All methods have been tuned on images collected using 

the dHCP protocol, and take advantage of improvements in image quality (gained from 

advances in acquisition, reconstruction and motion correction (Cordero-Grande et al., 2017; 

Hughes et al., 2016; Kuklisova-Murgasova et al., 2012)) to offer topologically correct 

(genus-0) surface representations images acquired between 28 and 45 weeks PMA. Manual 

QC of the images and surfaces suggest that, in the vast majority of cases, surfaces 

correspond closely with tissue boundaries, improving upon results obtained with state-of-

the-art tissue segmentation tools.
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The goal of the dHCP project is to develop the first four-dimensional model of emerging 

functional and structural brain-connectivity. Accordingly, the dHCP is pushing the 

boundaries of structural, functional and diffusion image acquisition, to improve the spatial 

resolution of T1 and T2-weighted images, the angular resolution of diffusion MRI (dMRI) 

and the temporal resolution of functional MRI (fMRI), relative to previous neonatal and fetal 

studies.

The results in this paper represent the foundations of a surface-constrained set of functional 

and diffusion analysis pipelines, inspired by frameworks proposed by the HCP (Glasser et 

al., 2013; Van Essen et al., 2013), and based on FreeSurfer methods for surface extraction 

(Fischl et al., 1999b; Fischl, 2012). Studies have shown that surface-constrained analyses: 

improve the localisation of functional units along the cortical surface (Fischl et al., 2008; 

Glasser et al., 2013, 2016b; Van Essen et al., 2012); reduce the mixing of white and grey 

matter fMRI signals during smoothing (Glasser et al., 2013); and increase the alignment of 

functional areas during registration (Durrleman et al., 2009; Fischl et al., 1999c; Lombaert et 

al., 2013; Robinson et al., 2014; Wright et al., 2015; Yeo et al., 2010).

However, surface-constrained analyses rely on highly (geometrically) accurate 

reconstructions of the cortical surface. FreeSurfer-derived HCP pipelines do not work for 

neonates, whose brains are smaller and still developing. Neonatal images present inverted 

tissue intensity profiles, hypo/hyper intense white-matter patches and, due to the smaller size 

of the imaged structures, even for same image resolution, they are more prone to partial 

volume effects than for adult MRI. Further, dHCP neonates are imaged during natural sleep. 

As a result, motion artefacts are a concern, with a small subset of acquisitions heavily 

affected.

FreeSurfer methods for surface extraction depend on tissue segmentation models that are 

largely intensity-based (Dale et al., 1999). These are not robust to noise and are ill-suited to 

the inverted tissue intensity distributions, and increased partial volume of neonatal data. 

Further, FreeSurfer white cortical surface mesh modelling approaches rely on tessellating 

topologically correct white matter tissue segmentations, and FreeSurfer pial surface 

extraction tools require tissue intensity information; making implicit assumption that the 

image provided is a T1 (with light GM and dark CSF) (Dale et al., 1999).

These restrictions have required the development of bespoke methods for tissue 

segmentation and cortical surface mesh extraction for neonates and this paper summarises a 

refined pipeline for cortical surface mesh modelling and inflation that has been tuned on 

dHCP-acquired neonatal data. Within this pipeline, some tools, such as the Draw-EM tool 

Makropoulos et al. (2014), existed before the project. However, refinements have needed to 

be made to optimise this tool to work well with term-born neonates, and the increased 

resolution and contrast in the new cohort. This is because previous developmental brain 

studies performed by this project consortium, have been conducted predominantly on 

preterm data. The contrast and appearance of these images is, due to the increased CSF and 

fewer cortical folds, very different from healthy neonates at an equivalent developmental 

stage. Therefore, this has required significant improvements to the Draw-EM tool in order 

to: allow segmentation of hypo and hyper intense patches of white matter (within the 

Makropoulos et al. Page 16

Neuroimage. Author manuscript; available in PMC 2019 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



broader class of all WM tissue); and improve alignment of tissue class priors in order to 

improve the accuracy of the segmentation, particularly for gyral crowns. Prior to these 

improvements it was common to observe segmentations missing broad sections of cortical 

folds.

Other tools have been newly implemented and improve on existing tools in the literature. 

These include the methods for white and pial surface mesh modelling (Schuh et al., 2017), 

which improves on the segmentation boundary produced using Draw-EM by introducing 

intensity-based terms to reduce the impact of partial volume. This approach is inspired by 

FreeSurfer (Dale et al., 1999), which also refines surfaces based on image intensity values. 

However, our neonatal approach is tuned to work with neonatal T2 intensity information, 

allowing extraction of white and pial surfaces, using novel deformable surface forces 

specifically designed for the reconstruction of the neonatal cortex. Surface QC suggests this 

method generates surfaces that agree well with tissue boundaries in 85% of cases, as 

assessed by expert raters.

Finally, methods for surface inflation and spherical projection, represent direct re-

implementation of the inflation approach used in FreeSurfer (Fischl et al., 1999b) and the 

spherical MDS embedding approach proposed by (Elad et al., 2005). Their inclusion within 

the pipeline is therefore designed to reduce software overhead. Note, all tools described in 

this paper are open source and are available as part of MIRTK4. The full pipeline is available 

as open-source 5 and this paper accompanies the first open data release 6 (version 1.1). The 

pipeline has been tested with different Linux distributions and macOS, and can be executed 

on a standard PC with 8 GB RAM. A typical dataset can be processed in around 18 hours 

using 8 CPU cores (segmentation: 7 hours, surface processing: 10 hours, additional 

processing: 1 hour).

It is important to stress that surface extraction techniques described in this paper are not 

infallible. Manual QC suggests that in a minority (2%) of cases (typically overlapping with 

highly motion data sets) entire folds may be excluded from the automatic segmentation. 

These errors are propagated to the surface extraction, which despite accounting for tissue 

intensity may not be able to recover from major segmentation errors, due to the significant 

impact of partial volume. Surface QC suggests there exists regional biases, highlighting the 

temporal and occipital lobe as regions most effected. For these regions, in particular, 

comparisons of morphological features such as cortical thickness, must be interpreted with 

caution.

The methods described in this paper are by no means designed to represent the breadth of 

tools available for neonatal image processing. Indeed, several alternative methods for 

neonatal segmentation have been proposed including (Xue et al., 2007; Hill et al., 2010; Li 

et al., 2012, 2014a, 2016; Hazlett et al., 2017). Different techniques have also been proposed 

to ensure consistent segmentation/reconstructed surfaces between different time points in 

longitudinally acquired data (Nie et al., 2012; Dai et al., 2013; Wang et al., 2013; Li et al., 

4https://biomedia.doc.ic.ac.uk/software/mirtk/
5https://github.com/DevelopingHCP/structural-pipeline
6https://data.developingconnectome.org
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2014a,c) is not something that has been explicitly dealt with in our pipeline as relatively few 

data sets (8%) are longitudinal. Further, longitudinal deformation studies that have been 

performed using this data indicate that the patterns of deformation observed are biologically 

plausible Robinson et al. (2017). Nevertheless, this type of approach may prove more 

valuable when the project expands to fetal data.

In this paper, we extend upon our previous segmentation algorithms Makropoulos et al. 

(2012, 2014). These methods are state-of-the-art generating the most accurate results on a 

recent neonatal segmentation challenge (Išgum et al., 2015), and demonstrating robustness 

with respect to segmentation of the neonatal brain at different scan ages, despite large 

differences in appearance (Makropoulos et al., 2014, 2016). Part of the reason for the 

success of these methods is the inclusion of terms that reflect prior knowledge derived from 

manually annotated tissue atlases (Serag et al., 2012), and knowledge of how partial volume 

reflects tissue contrast. Nevertheless, in very low contrast areas, even our revised automated 

segmentation may still fail. In these cases, the deformable surface model may also not 

recover the correct boundaries, as information provided by tissue intensities is obscured 

through partial volume. Complete correction of these issues will likely require development 

of completely new tools for segmentation and surface extraction that incorporate enhanced 

prior information. This might be inferred from higher resolution images, or improved 

manual segmentations.

The dHCP is not the only large-scale project focused on open-release of developing brain 

data. The baby connectome project, run as a collaboration between the University of North 

Carolina and the University of Minnesota, seeks to provide data on how the human brain 

develops from birth through early childhood by collecting 500 data sets of infants between 0 

and 5 years of age. Half of this data will be collected as longitudinal scans. The data set does 

not overlap with the dHCP, where neonatal scans are all collected before and within a few 

days of birth, but instead will collect valuable information on how the brain develops in the 

years after birth. An important future goal of both projects will be the provision of tools to 

link these data sets.

In the absence of ground truth knowledge of the correct tissue class membership and surface 

geometry of all neonatal datasets, assessment of different parts of the proposed pipeline has 

been performed through quality control inspection of the images, resulting tissue 

segmentations and surface reconstruction by two expert raters. Quality was assessed through 

metrics designed to meet our assessment of the needs of the community, including 

evaluation of the amount of motion, and anatomical correctness of the segmentation and 

surfaces. Results suggest that, out of 160 images, 2% had to be discarded on account of the 

effects of motion being too severe to be corrected during reconstruction. Of the remaining 

data sets, only an additional 1% had to be discarded due to poor segmentations. Surface 

reconstruction quality was assessed on 43 subjects for 20 ROIs each (860 ROIs) with only 

2% of the ROIs presenting poor quality.

There are limitations to this QC in as much as evaluation was performed manually, by a 

relatively small number of raters. In future we aim to train a classifier that will automatically 

score an image, segmentation or surface based on the existing manual scores. Nevertheless, 
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quality assessment of neurological data is extremely challenging on account of the lack of 

ground truth. We release the data openly and encourage users to feedback their experience.

Structural image data for the dHCP have been collected at 0.8 mm3 resolution, and 

reconstructed at 0.5 mm3 isotropic resolution, with the goal of ensuring the best possible 

quality surface extraction. We recommend that any study, seeking to replicate results from 

the dHCP pipeline, acquire scans at a similar, or higher, resolution. Nevertheless, the 

methods used in the paper are robust to the increased partial-volume effects of low-

resolution neonatal MRI data. In particular, the Draw-EM method is robust to lower-

resolution data, having been initially developed for data acquired from overlapping stacks at 

0.86 × 0.86 mm in-plane resolution, slice thickness 2 mm, and overlap of 1mm 

(Makropoulos et al., 2012). In principle, as surface extraction is contingent upon the result of 

successful segmentation, surfaces could be extracted from low resolution data. However, the 

parameters of intensity-based surface correction tools used within the proposed pipeline 

would likely need to be re-tuned, and it is possible that the proportion of errors, such as 

missing gyri, would be increased. Note, for any study seeking to apply proposed pipeline to 

new data, we must stress that the parameters used in the paper have not been quantitatively 

assessed. Optimal choice of parameters is not feasible due to the lack of available ground 

truth. Subjective choices have been made that balance prior understanding, that the cortical 

surface is smooth, against a perfect fit with tissue contrast (which is impacted by noise and 

tessellation of the images.

The surface meshes generated through this pipeline will serve as a basis from which 

structural, functional and diffusion datasets will be compared across populations and over 

time. Comparisons between data sets will be facilitated through development of 

standard ”grayordinate” CIFTI template spaces Glasser et al. (2013), which will allow 

compact representations of high-dimensional dMRI and fMRI data. Unlike for adult data 

these will evolve spatio-temporally to account for the rapid development of neonatal brains. 

Methods for generating these atlases are considered out of the scope of this paper, but 

interested readers should refer to the frameworks described in Schuh et al. (2015) and Bozek 

et al. (2016b, 2017) for more details. Alternative techniques have also been proposed for 

construction of perinatal surface atlases (Hill et al., 2010; Li et al., 2015c).

Within this paper we present cortical T1/T2 myelin maps using the method proposed in 

Glasser and Van Essen (2011) and adapted for use in neonates as shown in Bozek et al. 

(2016a). The use of HCP-standard cortical myelin maps is chosen to allow comparison with 

adult HCP data, and also on account the choice of scans available through the dHCP 

protocol. Within this limitation, it is important to note that the neonatal myelin maps were 

generated from a IR-TSE T1 sequence, rather than the MPRAGE as used in Glasser and Van 

Essen (2011). Outside of these restrictions, it is important to acknowledge that myelin has 

been studied long before in the past (Barkovich et al., 1988; Counsell et al., 2002; Prastawa 

et al., 2005). Furthermore, for studies specifically interested in the development of cortical 

myelin, there exist more advanced methods for sensitising MRI acquisition to myelin 

content (Borich et al., 2013; Deoni et al., 2011; Dinse et al., 2015; Laule et al., 2008; 

MacKay and Laule, 2016; Melbourne et al., 2013; Stüber et al., 2014). Some of these in 

particular, have been shown to be sensitive to developmental changes in myelin 
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(predominantly of the white matter) (Deoni et al., 2011, 2015). A more thorough review of 

methods for myelin mapping is provided in MacKay and Laule (2016).

In this work we provide an example cortical parcellation based on the neonatal atlas 

constructed by Gousias et al. (2012), which is incorporated within the Draw-EM 

segmentation tool. The regions in the Gousias et al. (2012) atlas have been specifically 

annotated for the neonatal brain and are different from the Desikan-Killiany atlas (Desikan 

et al., 2006) that has been developed for adults, and is being used in FreeSurfer. Figure 25 

presents an example cortical surface parcellated with the two different atlases. Alternative 

multi-label atlases could be used for the segmentation and cortical parcellation (de Macedo 

Rodrigues et al., 2015; Alexander et al., 2016), however these are not publicly available and 

could not be included in our publicly available pipeline software. The Melbourne Children’s 

Regional Infant Brain (M-CRIB) atlas constructed by Alexander et al. (2016) would be 

particularly interesting as it replicates the Desikan-Killiany protocol and delineates 100 

regions in the T2 scans of 10 term-born neonates. This could help to link regions between 

the perinatal and adult period. In future, it may also prove valuable to delineate the cortex 

based on patterns of structural or functional connectivity, using methods such as Arslan et al. 

(2015); Craddock et al. (2012); Gordon et al. (2014); Parisot et al. (2016a,b), or train a 

classifier that will propagate the Glasser et al. (2016a) method for multi-modal parcellation 

of the adult cortex onto neonatal brains.

Most importantly, application of the developed methods will allow to study the developing 

brain and deviations due to pathology. Numerous works have been published in the literature 

that have improved our understanding of the perinatal brain (Ball et al., 2013b, 2017; 

Counsell et al., 2013; Doria et al., 2010; Kapellou et al., 2006; Keunen et al., 2017; Krishnan 

et al., 2017; Xue et al., 2007; Dubois et al., 2008a,b; Pienaar et al., 2008; Rodriguez-

Carranza et al., 2008; Awate et al., 2010; Hill et al., 2010; Rathbone et al., 2011; Moeskops 

et al., 2013; Li et al., 2014b,a; Meng et al., 2014; Nie et al., 2014; Wang et al., 2014; 

Engelhardt et al., 2015; Lefevre et al., 2015; Li et al., 2015b; Moeskops et al., 2015; Li et al., 

2016; Hazlett et al., 2017). Studying the developing connectome will open up many 

opportunities in future, not least because neonatal brain imaging data is changing rapidly, at 

scales that can be clearly resolved using current MRI technology. Work is already under-way 

for the reconstruction, artefact-removal and surface-projection of neonatal functional, and 

diffusion data sets, and the extension of all pipelines to fetal cohorts. Together, these image 

sets (and the genetic, behavioural and clinical information that support them) will allow 

improved understanding of the spatio-temporal development of the cortex at the millimetre 

scale. They will enable modelling of the mechanisms of cognitive development, and 

potentially allow to further link the perinatal brain development to the childhood and adult 

period. Analysis of these data sets will provide a vital basis of comparison from which 

preterm development, and the causes of neurological conditions such as cerebral palsy or 

autism, may become better understood.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structural pipeline steps: A) Pre-processing; B) Tissue segmentation (shown as contour 

map); C) White-matter mesh extraction; D) Expansion of white surface to fit the pial 

surface; E) Fitting of midthickness surface midway between white and pial and estimation of 

thickness; F) Inflation of white surface to fit the inflated surface and projection onto a 

sphere; G) Estimation of surface curvature from the white surface; H) Estimation of sulcal 

depth maps (mean convexity/concavity); I) Estimation of T1/T2 myelin maps;
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Figure 2. 
Distribution of age at birth and age at scan for the 453 processed subjects (492 scans).
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Figure 3. 
a) Segmentation of a subject T2 image without and with the inclusion of the low-intensity 

WM class (left and right image respectively). b) Segmentation of a subject T2 without and 

with the inclusion of the high-intensity WM class (left and right image respectively). 

Affected areas are noted with a red circle.
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Figure 4. 
Segmentation of a subject T2 image based on the original preterm template Serag et al. 

(2012) and the trimmed template registration (right image). Affected areas are noted with a 

red circle.
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Figure 5. 
Segmentation of a subject T2 image with single-channel registration (left image) and multi-

channel registration (right image). Affected areas are noted with a red circle.
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Figure 6. 
The major steps of the Draw-EM pipeline are: 1) Pre-processing. The original MRI is brain-

extracted and corrected for intensity inhomogeneity; 2) The preterm atlas template is 

registered to the bias-corrected T2 image and an initial (tissue) segmentation is generated; 3) 

The GM probability map obtained from the initial segmentation is used together with the 

MR intensity image as different channels of a multi-channel registration of the labelled 

atlases by (Gousias et al., 2012) to the subject. 4) Regional labels are segmented based on 

the labels propagated from the atlases; 5) Segmented labels are merged in different 

granularities to further produce the following files: tissue labels, left/right white surface 

masks and left/right pial surface masks.
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Figure 7. 
Example segmentation using Draw-EM. The subject T2, label segmentation, tissue 

segmentation, white surface and pial surface mask are presented from left to right.
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Figure 8. 
Segmented T2 image intersected by white and pial surfaces (left). White boxes outline 

corrections in areas where CSF appears dark due to partial volume effects, and yellow boxes 

corrections in areas where the CSF has been mislabelled as WM. Zoom of white surface 

mesh before (middle) and after (right) edge-based refinement. The top row demonstrates 

correction of a sulcus by moving the surface inwards, and the bottom row correction of a 

segmentation hole by moving the surface outwards.
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Figure 9. 
T2 signal intensity after bias correction (blue curve) and derivative (dashed curve) sampled 

at blue crosses. The yellow dot marks the mesh node on the initial surface (red). The green 

contour depicts the white-matter surface. Yellow arrows point at the cGM/CSF edge of the 

pial surface.
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Figure 10. 
WM segmentation boundary distance in normal direction, before clustering based hole 

filling (left), and after the hole filling and smoothing (right). A number of holes in the 

segmentation are indicated by yellow arrows.
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Figure 11. 
Spherical projection distortions for FreeSurfer (FS) and spherical MDS (sMDS)
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Figure 12. 
Exemplar surfaces and feature sets for three individuals scanned at 32, 36 and 40 weeks 

PMA (left hemisphere). From top to bottom: white surface, pial surface, inflated surface, 

cortical labels, sulcal depth maps, mean curvature, cortical thickness and T1/T2 myelin 

maps (all features shown on the very inflated surface)
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Figure 13. 
Manual QC score of image quality. From left to right: poor image quality - score 1, 

significant motion - score 2, negligible motion - score 3, good quality image - score 4.
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Figure 14. 
Image scores from the 2 raters (based on 160 images).
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Figure 15. 
Manual QC score of segmentation quality. From left to right: poor segmentation quality - 

score 1, regional errors - score 2, localised errors - score 3, good quality segmentation - 

score 4.
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Figure 16. 
Segmentation scores from the 2 raters (based on 160 images).

Makropoulos et al. Page 44

Neuroimage. Author manuscript; available in PMC 2019 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 17. 
Occurrence of segmentation problems with the baseline segmentation method (Makropoulos 

et al., 2012) and the proposed segmentation (based on 492 images).
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Figure 18. 
Additional errors remaining at the segmentations due to low intensity contrast and partial 

volume effects. WM at the superior part of the brain (left images) and narrow cortical folds 

at the medial part of the occipital lobe (right images) are occasionally misclassified as cGM.
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Figure 19. 
Manual QC score of surface quality. From left to right: poor surface quality - score 1, 

contour close to the cortical boundary but with obvious mistakes - score 2, minor mistakes - 

score 3, good quality surface - score 4.
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Figure 20. 
Scoring of surface ROIs from the 2 raters (based on 43 images with 20 ROIs per image).
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Figure 21. 
Regional surface scores from the 2 raters (based on 43 images with 20 ROIs per image).

Makropoulos et al. Page 49

Neuroimage. Author manuscript; available in PMC 2019 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 22. 
Comparison of surfaces produced with the proposed method (overlaid with green colour) 

over surface extraction that follows the tissue segmentation boundary produced from Draw-

EM (overlaid with yellow colour).
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Figure 23. 
Average thickness (mm) of the cortex and different lobes across different ages at scan.
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Figure 24. 
Average thickness maps of the left and right hemisphere across different ages at scan.
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Figure 25. 
Comparison of the Draw-EM labels, based on Gousias et al. (2012), (top) and FreeSurfer 

labels, based on Desikan et al. (2006), registered and transformed on an example subject 

(bottom). Note that the colours used for the different atlas regions are independently drawn 

for the atlases, and not correspond between the two atlas labellings.
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Table 1
Tissue labels

Tissues

1 Cerebrospinal fluid (CSF)

2 Cortical grey matter (cGM)

3 White matter (WM)

4 Background

5 Ventricle

6 Cerebellum

7 Deep Grey Matter (GM)

8 Brainstem

9 Hippocampus
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Table 2
87 regional labels segmented with Draw-EM, based on the 20 atlases of (Gousias et al., 
2012).

WM, cGM regions

1 Frontal lobe (left/right)

2 Parietal lobe (left/right)

3 Occipital lobe (left/right)

4 Anterior temporal lobe, medial part (left/right)

5 Anterior temporal lobe, lateral part (left/right)

6 Gyri parahippocampalis et ambiens, anterior part (left/right)

7 Gyri parahippocampalis et ambiens, posterior part (left/right)

8 Superior temporal gyrus, middle part (left/right)

9 Superior temporal gyrus, posterior part (left/right)

10 Medial and inferior temporal gyrus, anterior part (left/right)

11 Medial and inferior temporal gyrus, posterior part (left/right)

12 Fusiform gyrus, anterior part (left/right)

13 Fusiform gyrus, posterior part (left/right)

14 Insula (left/right)

15 Cingulate gyrus, anterior part (left/right)

16 Cingulate gyrus, posterior part (left/right)

Subcortical regions

1 Hippocampus (left/right)

2 Amygdala (left/right)

3 Cerebellum (left/right)

4 Caudate nucleus (left/right)

5 Thalamus, high intensity part (left/right)

6 Thalamus, low intensity part (mainly ventrolateral nuclei) (left/right)

7 Sub-thalamic nucleus (left/right)

8 Lentiform nucleus (left/right)

9 Lateral ventricles (left/right)

10 Brainstem

11 Corpus callosum

Other regions

1 Cerebrospinal fluid (CSF)

2 Background

3 Unlabelled brain region (mainly internal capsule)

Neuroimage. Author manuscript; available in PMC 2019 October 08.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Makropoulos et al. Page 56

Table 3
Comparison between HCP and dHCP pipelines

HCP dHCP

Image Resolution 0.7mm3 0.8 mm3 (0.5 mm3 after reconstruction)

Total scanning time 4 hours 76 minutes

Preprocessing:

Gradient Distortion Correction Yes No

Read-out distortion correction Yes No

Brain Extraction Propagation of atlas mask BET

T1 - T2 registration BBR Rigid Alignment, BBR

Bias Correction T1 ∗ T2 N4

Segmentation / Surface extraction

Performed on T1 T2

Tissue Segmentation FreeSurfer Draw-EM

White and Pial Surface Extraction modified FreeSurfer Schuh et al. (2017)

Surface Inflation FreeSurfer FreeSurfer re-implementation

Spherical Projection FreeSurfer spherical MDS

Myelin Mapping T1/T2 T1/T2
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