
Whole-Cell Models and Simulations in Molecular Detail

Michael Feig1,2,*, Yuji Sugita2,3

1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 
48824, United States;

2Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics 
Research, Kobe, Japan,

3Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2–1 
Hirosawa, Wako, Japan

Abstract

Comprehensive data about the composition and structure of cellular components has enabled the 

construction of quantitative whole-cell models. While kinetic network type models have already 

been established, it is now also becoming possible to build physical, molecular-level models of 

cellular environments. This review outlines challenges in constructing and simulating such models 

and discusses near- and long-term opportunities for developing physical whole-cell models that 

can connect molecular structure with biological function.

INTRODUCTION

At the most fundamental level, biology arises from molecular behavior. Proteins and nucleic 

acids are the main actors and their dynamics and interactions via molecular recognition and 

binding are key aspects of virtually any biological function. Atomistic resolution is typically 

necessary to fully understand these processes. Therefore, a major effort in modern biology 

has been focused on improving the resolution of macromolecular structures at sub-

nanometer scales. As the Protein Data Bank (PDB) (Westbrook et al 2003) continues to 

grow rapidly, much is known today about the structures of proteins and nucleic acids. In 

fact, high-resolution experimental structures are available for essentially all major protein 

types (Vitkup et al 2001, Zhang et al 2006) and an increasing number of macromolecular 

complexes have been resolved (Marsh & Teichmann 2015). Challenges remain in 

determining the structures of very large and dynamic complexes, membrane proteins, and 

ribonucleic acid (RNA) molecules, which may be addressed soon via cryo-electron 

microscopy (cryo-EM) (Fernandez-Leiro & Scheres 2016). The high-resolution structure of 

chromosomal deoxyribonucleic acid (DNA) has also remained elusive. However, 

computational structure prediction is becoming increasingly powerful so that useful models 

can often be constructed when experimental structures are not available by template-based 

modeling (Rohl et al 2004, Roy et al 2010, Waterhouse et al 2018) and/or by assisting 
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model-building with lower-resolution experimental data for proteins (Alexander et al 2008, 

Bowers et al 2000, Li et al 2004) and nucleic acids (Miao et al 2015), including genomic 

DNA (Bianco et al 2017, Di Stefano et al 2016, Hacker et al 2017, Tiana & Giorgetti 2018, 

Yildirim & Feig 2017). Both, experiment and modeling continue to see rapid progress. It 

may therefore be expected that complete structural coverage for all macromolecules in a cell 

of a specific organism could be within reach.

Structure alone does not fully explain most biological function. Equally important are 

conformational dynamics within a single molecule and dynamic interactions between 

molecules. The conformational dynamics of proteins and nucleic acids has been studied 

extensively via experiment and molecular dynamics (MD) simulations resulting in much 

insight about the mechanisms of biochemical processes (Hospital et al 2015). However, 

almost all of these studies, experiment and modeling alike, invoke simplified conditions 

without considering the high concentrations and physicochemical complexities of cellular 

environments. In fact, many questions remain about how biological macromolecules behave 

inside cells and navigate a spectrum of specific and non-specific interactions in the presence 

of a variety of electrolytes, osmolytes, and other small molecules (Cohen & Pielak 2017, 

Gnutt & Ebbinghaus 2016, Rivas & Minton 2016). Molecular interactions are essential for 

enzyme function, signaling, and many other biological processes but interactions can also 

lead to macromolecular aggregation and the development of diseases (Ross & Poirier 2004). 

Moreover, interactions between cellular components can stabilize or destabilize 

biomolecular structures (Wang et al 2012) or lead to the formation of phase separated states 

(Dumetz et al 2008), thereby further modulating biological function. It is thus becoming 

increasingly clear that a complete link between molecular structure and biological function 

requires the integration of structure and conformational dynamics at the atomistic level with 

dynamics and interactions at the cellular-level under realistic biological conditions.

Experimental techniques can probe many aspects of biomolecular structure and dynamics, 

but they typically only focus on narrow points in the space-time universe. For example, 

crystallography and cryoEM can resolve structures in atomistic detail but without any or 

only very limited time resolution and under artificial conditions that may have little in 

common with living cells (Drenth 2007, Fernandez-Leiro & Scheres 2016). On the other 

hand, the best single-molecule fluorescence methods can track the dynamics of molecules in 
vivo on millisecond time scales but only at spatial resolutions of tens of nanometers (Huang 

et al 2009). NMR spectroscopy can capture dynamics at atomistic scales under in vitro and 

in vivo conditions (Inomata et al 2009, Sakakibara et al 2009), but the interpretation of such 

data especially when collected in heterogeneous environments can be difficult (Pastore & 

Temussi 2017). Therefore, experiment alone has not been able to provide a unified picture of 

biomolecular structure, dynamics, and function across the entire range of scales from the 

molecular to the cellular level. Modeling can fulfill this role via whole-cell models (Trovato 

& Fumagalli 2017) that incorporate the experimental data and aim to predict how changes at 

the molecular level propagate to altered function at the systems level.
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WHOLE-CELL MODELS

The most successful whole-cell models so far rely on empirical mathematical models that 

are parameterized based on experimental data and focus on a kinetic view of cellular 

processes (Guerrier & Holcman 2017, Karr et al 2015, Macklin et al 2014, Szigeti et al 

2017, Tomita 2001). These models can access macroscopic time scales and connect directly 

with biological function. However, spatial resolution is often limited or absent altogether and 

molecular-level details are rarely if ever considered. As a result, there is no connection to 

molecular structure and interactions and the physical laws that operate at such level so that 

predictions of how changes at the molecular level affect the cellular outcome often cannot be 

made. For example, it would be difficult to predict how the introduction of a new drug 

candidate perturbs cellular function without making specific assumptions about altered 

kinetic pathways.

The alternative are physical models that build up by assembling individual molecules based 

on structures at the atomistic level (Figure 1) (Im et al 2016) and then subjecting such 

models to computer simulations (Feig et al 2018, Feig et al 2017). Such models connect 

behavior at the molecular level to cellular function. The wider range of scales – as well as 

the greater involvement of physical laws - provides, at least in principle, for greater 

predictive abilities. The main limitation of physical modeling is the computational cost for 

reaching cellular time and spatial scales with models that retain molecular detail at high 

resolution. However, as computational methods advance and computer hardware becomes 

ever more powerful, the physical modeling of cellular environments is becoming possible 

(Yu et al 2016). This review focuses on the challenges and opportunities of physical models 

of cellular environments, especially those that connect with molecular structure at atomistic 

resolution. The main emphasis will be on models of bacterial cells as such systems are 

beginning to be tractable today, but the general ideas discussed here readily transfer to more 

complex eukaryotic cells that will become accessible as resources increase and new 

experimental data will be available.

CHALLENGES IN BUILDING PHYSICAL MODELS OF CELLS

Physical models of cellular environments that involve molecular level of detail hold much 

promise but face a number of challenges which are reviewed in this section. The choice of 

model resolution is a critical aspect whereas the success of the modeling depends on realistic 

interaction potentials and the availability of experimental data to construct initial systems. 

Other challenges revolve around the practical issues of assembling, running, analyzing, and 

visualizing very large scale molecular systems. These aspects are discussed in more detail in 

the following.

Model resolution

Physical models of biomolecular systems are typically based on particle-based models at 

resolutions ranging from atomistic detail to coarse levels where an entire macromolecule 

may be represented as a single particle. Continuum models are also sometimes employed to 

represent certain cellular components such as bulk solvent, membranes, DNA, or 

cytoskeleton components when it is sufficient to capture their macroscopic or overall 
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mechanoelastic properties. The level of resolution determines the accuracy of the models 

and their ability to project molecular-level effects to the cellular scale, but higher resolution 

demands increased computational cost and thereby limits what time scales and what size of 

systems can be investigated with available computer resources.

Atomistic models of biomolecules, where atoms are represented as spherical particles, have 

been used for decades since they match the resolution of biomolecular structures from 

experiment. Often, atomistic models are explored via molecular dynamics (MD) simulations 

to provide insights into the dynamics and energetics of biomolecules that are otherwise 

difficult to extract from experiments (Huggins et al 2018). Typically, atomistic modeling 

starts from experimental structures and involves explicit solvent molecules such as water or 

lipid bilayers for membrane-interacting systems. Because of the high level of detail, a 

moderate-size single protein surrounded by explicit solvent can easily require 100,000 

particles whereas atomistic models of a bacterial cytoplasm reaches 100 M particles for a 

(100 nm)3 cubic volume that is still only 1/10th to 1/20th of the smallest bacterial cell (Feig 

et al 2015, Yu et al 2016). Such large numbers of particles require substantial computer 

resources and, therefore, the time scales that can be reached directly are generally limited to 

sub-millisecond scales, even on the largest computer clusters available today. The accessible 

time scales can be extended, though, by as much as several orders of magnitude via 

enhanced sampling methods (Mori et al 2016) and/or by inferring kinetics from Markov 

State models constructed from shorter simulations (Harrigan et al 2017, Lane et al 2013).

The limitations of atomistic models can be overcome at least in part with coarse-grained 

(CG) models (Buchete et al 2004, Kar & Feig 2014, Takada et al 2015). Such models 

combine molecular fragments into single interaction sites to reduce the number of particles 

and hence the computational cost. The level of resolution may vary from combining just C-

H groups into unified particles to models where entire molecule are represented as a single 

sphere. The reduced degrees of freedom typically come at a price of reduced accuracy and 

ability to apply physical laws. CG models are typically parameterized based on a 

combination of data from experiment and higher-resolution modeling such as atomistic 

simulations. As a result, universal use and transferability is more limited and it is more 

difficult to derive truly new insights that do not simply recapitulate what is already known 

from the data or simulations that were used to parameterize the model. However, the 

simplicity of CG models can be a good choice when questions at larger scales are addressed 

that do not require atomistic resolution (Ando & Skolnick 2010).

Another strategy for reducing the computational cost is the use of continuum representations 

for parts of a system where macroscopic properties dominate or where experimental data 

does not provide sufficient resolution to build high-resolution particle-based models. 

Continuum models reduce computational costs not just by reducing the degrees of freedom 

but also by allowing instantaneous relaxation of certain components that are otherwise 

subject to kinetic barriers due to molecular reorganization. One example is the replacement 

of explicit aqueous solvent with dielectric-based implicit models (Roux & Simonson 1999). 

Such models can be extended to lipid bilayers and, in principle, to any heterogeneously 

varying dielectric environment (Tanizaki & Feig 2005). While implicit solvent models are 

attractive to capture solvation effects without the need for explicit solvent molecules, it is 
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difficult to capture hydrodynamic interactions accurately within such a framework (Ando et 

al 2012, Dlugosz et al 2012, Mereghetti & Wade 2012). Continuum models can also be 

applied to the biomolecules, e.g. in the form of elastic rod models of nucleic acids (Balaeff 

et al 1999) and cytoskeletal components (Walcott & Sun 2010) to capture bending and 

twisting flexibility, as elastic models of lipid bilayers to allow deformations in response to 

interactions with other molecular components (Brown 2008), or as models of flexible 

globular proteins via fluctuating finite elements that focus on overall shape fluctuations 

(Solernou et al 2018).

Different resolutions can be applied simultaneously via multi-scale models to limit the use 

of expensive high-resolution treatments. One strategy is to apply higher resolution models 

only for selected parts of a system when and where necessary instead of the entire system 

(Kar & Feig 2017, Renevey & Riniker 2017, Ward et al 2017, Wassenaar et al 2011). In 

another approach, low-resolution modeling may be used to broadly span conformational 

sampling before switching to higher resolution to obtain quantitative information of the 

dynamic landscape of a given system (Harada & Kitao 2012, Tempkin et al 2014, Zhang & 

Chen 2014). While most multi-scale frameworks focus on bridging spatial scales, it is also 

possible to bridge time scales. The use of continuum models to avoid kinetic barriers has 

already been mentioned. Another possibility is to switch kinetically-separated states with a 

certain probability (Prytkova et al 2016) instead of waiting for simulations to overcome 

kinetic barriers, similar to what is already in wide use in kinetic network whole-cell models 

(Bernstein 2005). Multi-scale methods are in principle highly suitable for studying cellular 

environments where different processes occur on different scales of time and space. 

However, practical applications have been hindered by technical challenges with coupling 

models at different levels of resolution and a lack of practical implementations that perform 

well on high-performance computing platforms.

Interaction potentials

Interaction potentials between the sites of a given model allow the calculation of energies 

and forces so that simulation can be carried out. The type of interaction potential depends on 

the level of resolution. At the atomistic level, the potential terms are based on physical laws 

or designed to approximate physical laws. Chemical bonds and bond angles are typically 

approximated via harmonic functions while rotations around dihedral torsions are often 

described via Fourier series terms. Longer-range non-bonded interactions commonly consist 

of electrostatic Coulomb terms and a Lennard-Jones potential that prevents atom overlap and 

accounts for van der Waals dispersion attraction forces. The combination of these terms is a 

classical approximation of what would otherwise be largely quantum mechanical 

interactions but without allowing bond formation or breakage. Essentially all biomolecular 

force fields are based on these terms. After many years of development, the latest generation 

of force fields have arguably reached a high level of accuracy and transferability (Best et al 

2012, Galindo-Murillo et al 2016, Harder et al 2016, Huang et al 2017, Klauda et al 2010, 

Wang et al 2017), including the ability to accurately simulate RNA (Tan et al 2018), 

intrinsically disordered peptides (Best et al 2014, Huang et al 2017, Robustelli et al 2018), 

and interacting proteins (Best et al 2014, Nawrocki et al 2017). However, high-quality 

parameters are still not available for all types of molecules. Especially, available parameters 
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for small molecules have variable accuracy. This impacts the ability to model metabolites or 

potential drug candidates within cellular environments.

At the CG level, empirical and statistical potentials are used more prominently, sometimes in 

combination with physical potentials. Often, the empirical potentials are parameterized 

based on atomistic potentials or certain experimental observables and different CG models 

tend to focus on specific scientific applications rather than being universally applicable. For 

example, the widely used MARTINI model (Monticelli et al 2008) was initially developed to 

reproduce relative hydrophobicities of different amino acids and therefore is well-suited to 

study water-membrane partitioning, but requires restraints to maintain secondary structures 

(Monticelli et al 2008). The higher-resolution CG model PRIMO uses mostly physics-based 

interaction terms to achieve compatibility with atomistic force fields with the drawback of 

higher computational costs which limit the scale of applications that can be studied (Gopal 

et al 2010, Kar et al 2013). Structure-based models such as Go models require knowledge of 

target conformational states but can be useful to study transition pathways (Clementi et al 

2000). Some of these higher-resolution CG models may also be suitable for describing 

protein-protein interactions (Frembgen-Kesner & Elcock 2010, Kmiecik et al 2016). At the 

very coarse-level, patchy particle models with angle-dependent radial interaction functions 

have been used for a long time to model the interactions of colloids (Bianchi et al 2011). 

These types of models can also be applied to biological macromolecules if internal structural 

and dynamics can be neglected (Bucciarelli et al 2016).

A very recent trend is the use of machine-learning (ML) methods to derive interaction 

potentials (Chmiela et al 2017, Li et al 2015, von Lilienfeld et al 2015). This can be done at 

all levels of resolution given suitable training data and, therefore, this approach has the 

potential to blur the differences between atomistic and CG models. Using ML methods it is 

possible to generate interaction potentials that match the resolution of the underlying 

models, especially when ML methods are trained on reproducing energetics rather than 

fitting parameters for the commonly used standard interaction potential forms.

Input data

Models of cellular environments, or any biological system for that matter, could not be 

constructed without experimental data. To build models of cellular environments, it is a 

major effort to assemble the necessary data (Guell et al 2009, Kuhner et al 2009, Singla et al 

2018, Yus et al 2009). At the minimum, information about the system composition, the 

concentration of each species, and structural information is needed. In addition, knowledge 

about the spatial dimensions and arrangements of cellular components such as membranes, 

organelles, the cytoskeleton, genomic DNA, and other compartments is also necessary. The 

structural organization of cells including the distribution of large complexes can be 

visualized via microscopy or electron tomography (Beck et al 2011). The composition and 

concentration of cellular components, at least those present in high abundance, can be 

determined via mass spectrometry (Bantscheff et al 2007) and complemented by insights 

from metabolic network modeling (Feig et al 2015, Karr et al 2012, Tomita et al 2000). 

However, complete structural coverage at the molecular level is probably the most 

significant challenge. Although many high-resolution structures have been resolved, 
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significant structural coverage of the genes in any single organism actually exists only for 

very few organisms. In fact, for almost all organisms there are none or at best very few 

structures available in the PDB. Computational structure prediction can fill the gap, and in 

many cases does so quite well (Modi et al 2016, Waterhouse et al 2018). However, the 

accuracy of the predicted structures varies and prediction is not always possible when 

structural templates from related proteins or nucleic acids are not available. Further advances 

in experimental structural biology are expected to improve the situation but the larger gains 

will likely have to come from improvements in computational structure prediction methods 

to provide missing structural information.

System assembly

The assembly of a heterogeneous cellular environments is non-trivial (Figure 1). The initial 

placement of molecules needs to be consistent with the overall dimensions of a given 

cellular system and match lower-resolution imaging and tomography data when available. 

Moreover, the naïve placement of biomolecules at high concentrations leads to significant 

overlap between different molecules which is difficult to resolve via subsequent 

minimization or simulation. There are different ways how such complex systems can be 

built, but two specific approaches appear to be most promising. 1) Instead of assembling a 

crowded system directly at full resolution, a hierarchical multi-scale scheme may be applied 

where biomolecules are placed initially at lower resolution to facilitate optimization and 

relaxation before gradually increasing resolution until the target resolution is reached 

(Figure 1) (Feig et al 2015). 2) A crowded system can also be built up by packing molecules 

into pre-defined volumes or shapes. This method is implemented in the CellPACK software, 

which uses sophisticated packing algorithms to assemble complex systems within short time 

(Klein et al 2018). Additional challenges arise when systems need to incorporate densely 

packed genomic DNA (Goodsell et al 2018) or cytoskeletal structures because these 

elements present obstacles that limit available space for placing other molecules and cannot 

be approximated well by simple spherical models. Finally, the initial construction of strain-

free lipid membranes surrounding cells, organelles, or vesicles is also difficult, especially 

when lipid compositions are heterogeneous and membrane proteins are embedded (Koldsø 

& Sansom 2015). More efficient and flexible modeling tools are expected to emerge in the 

future so that any kind of crowded cellular system can be assembled from molecular 

components at high levels of resolution.

Simulation methods and software

Subjecting molecular models to simulation or other related computational methods provides 

insight into dynamics and interactions with other molecules. MD and related techniques 

such as Brownian and Stokesian dynamics are the most common approach, especially for 

systems represented at the atomistic level (Brady & Bossis 1988, Ciccotti et al 2014, Ermak 

& McCammon 1978). Coarse-grained models can also be simulated efficiently via Monte 

Carlo (MC) techniques (Kmiecik et al 2016). Other computational techniques that focus on 

dynamics include normal-mode or elastic network methods (Atilgan et al 2001, Case 1994), 

but these methods are generally limited to studies of conformational dynamics of single 

molecules and are not well-suited to study interactions in a crowded environment.
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Many highly efficient software packages exist for carrying out MD simulations. Most 

packages are optimized for the simulation of smaller systems up to 1 M particles, but they 

are generally not prepared to address the unique challenges when simulating much larger 

systems. One important practical issue is the handling of input/output and parallel operations 

which has to be fully distributed for the efficient simulation of systems with 100 M or 1 B 

atoms because it takes too much time and memory for any single node to read and store the 

entire system (Figure 2). To our knowledge, this is only supported by some MD software 

packages so far, most notably GENESIS (Jung et al 2015, Jung et al 2016, Kobayashi et al 

2017) and NAMD (Kale et al 1999). Moreover, the high computational cost of large system 

sizes requires efficient parallelism up to a very large number of cores on conventional 

clusters or many GPUs on GPU-based clusters, which is also only possible with a few 

packages (Jung et al 2016, Kale et al 1999) (Hess et al 2008).

Simulations of CG models or of atomistic models with continuum solvent are possible with 

many packages. It is especially straightforward if the CG model uses interaction potential 

terms similar to the terms used in standard atomistic force fields, such as with the MARTINI 

CG model. However, efficient parallel scaling is a significant problem in many CG 

simulations especially when the number of particles is relatively small. Many CG models do 

not explicitly consider solvent, which results in uneven particle distributions that create load-

balancing issues. Moreover, the complex algorithms underlying continuum solvent and 

hydrodynamic models, if they are used, are difficult to parallelize. One solution is the use of 

GPU hardware where many types of CG models can be run very efficiently, especially via 

openMM (Eastman et al 2017), which allows flexible interaction functions defined at 

runtime. However, scaling to multiple GPUs is generally difficult with CG models and 

further software developments are clearly necessary to improve the performance of large-

scale CG simulations on conventional and GPU-based clusters.

Analysis and visualization

When cellular models are subjected to simulations, the main outcome are trajectories of 

particle coordinates as a function of time. Even if coordinate frames are not saved often, the 

data generated for a cellular system with > 100 M particles can easily reach peta-byte scales 

(Figure 2). This creates significant challenges for analysis and visualization (Yu et al 2018) 

and, the analysis itself becomes a high-performance computing challenge that requires 

significant computing resources and parallel scaling in itself (Yu et al 2018). An even more 

significant problem is that the very large data sets of complex cellular systems have changed 

the mode of scientific discovery. While it may be straightforward to visually inspect a 

single-molecule trajectory via molecular graphics software such as VMD (Humphrey et al 

1996) and pyMOL (DeLano 2002), this is not possible anymore for systems of 100 M atoms 

or more. Apart from the technical challenge of interactively animating such a large number 

of particles, there is simply too much information for visual analysis of detailed features by 

humans. Instead, data science methods are desperately needed to automatically inspect large 

trajectory data sets and identify potentially interesting new scientific aspects. Only with such 

tools will it be possible to realize the full scientific potential of molecular-level simulations 

of cellular environments.
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OPPORTUNITIES OF PHYSICAL WHOLE-CELL MODELING

Whole-cell modeling largely remains a promise of future scientific impact. This applies to 

physical models as well as models based on kinetic networks. Network-based models 

require extensive kinetic data from experiment and complete functional gene annotations 

which are only available for a few organisms at best. On the other hand, physical models are 

limited by a lack of structural information and high computational cost. As a result, 

successful predictive cellular models have so far only been reported for the minimal 

bacterium Mycoplasma genitalium (Karr et al 2011, Yu et al 2016) and, to a lesser extent, 

for Escherichia coli (Frembgen-Kesner & Elcock 2013, McGuffee & Elcock 2010). It 

appears to be certain that models of other and more complex systems will follow as 

preparations are already underway to develop whole-cell models of systems as large and 

complex as a human pancreatic β-cell (Singla et al 2018).

The long-term vision of physical whole-cell modeling is that it will be possible to assemble 

all of the molecules in a given cell in atomistic resolution in a fully consistent fashion with 

experiment and then subject such an in silico cell to simulations that can reach biological 

time scales. Assuming that the simulations are sufficiently accurate, the result would be a 

comprehensive understanding of how molecular structure and function couple at the cellular 

level in a way that will probably never be measurable via experiments. Moreover, such 

models could provide a comprehensive understanding of disease and allow the design of new 

drugs in the full context of the cellular environment.

Many opportunities exist in the short-term to better understand the behavior of biomolecules 

in cellular environments based on physical models and motivated by recent experiments and 

simulations as reviewed in detail recently (Feig et al 2017). Fundamental questions remain 

about how cellular environments affect molecular stability, determine diffusive properties, 

give rise to non-specific transient interactions and phase transitions, and modulate ligand 

binding (Figure 3). It is also largely unclear how the presence of genomic DNA and 

membrane surfaces affects biomolecular structure and dynamics.

Stability and dynamics of biomolecules

Most biological macromolecules carry out their function in a well-defined native state. If 

that state becomes destabilized, function is compromised. The question whether crowded 

cellular environment affect biomolecular stability has been studied for quite some time 

(Minton & Wilf 1981, Zhou et al 2008, Zimmerman & Minton 1993). Initial studies have 

identified a largely stabilizing role of the volume exclusion effect under crowded conditions 

(McPhie et al 2006), but recent experiments suggest that crowding by proteins can have the 

opposite effect and destabilize native states (Ignatova et al 2007, Miklos et al 2010, Miklos 

et al 2011). The role of modeling and simulation has been to provide insight into 

mechanistic details of the experimental observations (Candotti & Orozco 2016, Feig & 

Sugita 2012, Harada et al 2013, Yu et al 2016) but also to generate new hypotheses for how 

the stability of biomolecules may be modulated under crowded conditions. One interesting 

observation from simulation is that metabolites at cellular concentrations appear to be able 

to induce more compact structures of phosphoglycerate kinase in a manner that otherwise 

resembles volume exclusion crowding effects (Yu et al 2016). Other studies have begun to 
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examine the effects of cellular environments on nucleic acid structure. One finding is a 

possible shift between A- and B-DNA forms as a result of cellular environments (Yildirim et 

al 2014). These examples suggest that cellular environments may impact biomolecular 

stability in a variety of unanticipated ways. Simulations of biomolecules in cellular 

environments can in principle identify all of the factors that may be at play and it is likely 

that much is left to be discovered in that regard.

The conformational dynamics of biomolecules is related to their stability for natively folded 

proteins but becomes a separate topic for highly dynamic and intrinsically disordered 

systems (IDPs). Again, the general prediction from volume exclusion effects of crowding is 

that dynamic ensembles become more compact, but especially IDPs with polymer-like 

characteristics exhibit behavior that is different from globular proteins (Banks et al 2018, 

Kang et al 2015, Schuler et al 2016, Soranno et al 2014). Molecular simulations are ideally 

suited to study the dynamics of biomolecules in cellular environments. Especially IDPs 

under cellular or crowded conditions present rich opportunities as very few high-resolution 

simulation studies have been reported to date (Cino et al 2012).

Diffusion of biomolecules

Most biological function involves the encounter of different biomolecules. Therefore, 

diffusional properties are essential to understand biological function at the cellular level. It is 

clear that the diffusion of biomolecules is significantly retarded due to crowding (Banks & 

Fradin 2005, Dauty & Verkman 2004, Li et al 2009, Szymanski et al 2006, Wang et al 2010) 

but many questions remain about how diffusional properties vary for different molecules, in 

different local cellular environments, and over different time scales. More generally, it is also 

still unclear why exactly diffusion is slowed down in cellular environments and how 

rotational and translational diffusion may be affected differently (Roos et al 2016). 

Simulations of protein in cellular environments suggest that the propensity to transiently 

interact non-specifically is a key determinant of diffusional properties (Feig & Sugita 2012, 

McGuffee & Elcock 2010, Nawrocki et al 2017, Trovato & Tozzini 2014, Yu et al 2016). It 

appears that translational and rotational diffusion, at least in the short-time regime, can be 

essentially predicted from transient cluster formation (Nawrocki et al 2017). However, this 

view is at odds with other studies that ascribe hydrodynamic interactions a significant role 

(Ando & Skolnick 2010) or simply invoke increased solvent viscosity in crowded 

environments as the key factor (Ellis 2001). Again, molecular simulations of cellular 

environments are an ideal tool to dissect the different contributions to diffusion. Especially 

diffusion on longer time scales, in the presence of larger cellular components, and a better 

understanding of anisotropic characteristics in crowded systems are good opportunities for 

future studies.

Phase separation of biomolecules

Biomolecules can be viewed either as globular colloid-like particles or polymers with 

attractive and repulsive properties that exhibit different phase behavior depending on their 

interactions and concentration (Zhou & Pang 2018). All biomolecules aggregate into gel-

like, amorphous, or crystalline solid phases at concentrations above the solubility limit. At 

lower concentrations, finite-size clusters (Kowalczyk et al 2011, Stradner et al 2004, 
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Vorontsova et al 2015) or liquid-liquid phase separated states may form (Elbaum-Garfinkle 

et al 2015, Hyman et al 2014). Biomolecular aggregation is often associated with disease 

(Ross & Poirier 2004), but recent experiments suggest that phase separations can also have 

important functional roles (Shin & Brangwynne 2017), e.g. to facilitate the initiation of 

transcription (Boehning et al 2018). Phase separations in vivo are inherently a cellular-scale 

phenomenon with a physical origin at the molecular level. Therefore, physical models of 

cellular environments are well-suited to study such behavior. A major challenge is that it is 

necessary to describe the formation of macroscopic domains on macroscopic time scales 

based on molecular interactions at the atomistic level. While this is not feasible today with 

fully atomistic simulations, a viable strategy is to apply CG models that have been 

parameterized based on atomistic simulations and tuned based on available experimental 

data. For globular molecules, simple spherical models can be sufficient as such models have 

already provided much useful insight in colloid physics (Mani et al 2014, Woldeyes et al 

2017, Zhuang & Charbonneau 2016). Phase separations involving IDPs are more 

challenging as they require higher resolution to capture the characteristics of flexible 

polymers. As very few studies have straddled the intersection between condensed phase 

physics and the complexities of biological environments to understand the phase behavior of 

biomolecules (Nguemaha & Zhou 2018, Qin & Zhou 2017, Woldeyes et al 2017) there is 

ample room for future modeling studies that can interpret the emerging experimental data.

Interactions with cellular components

Many studies of cellular environments focus on crowding and non-specific interactions 

within the cytoplasm (Gnutt & Ebbinghaus 2016, Yu et al 2016), neglecting the presence of 

genomic DNA, plasmids, membranes, organelles, and cytoskeletal elements. These large 

molecular structures present obstacles to diffusing molecules and present interaction 

surfaces with unique properties. For example, DNA is highly charged, even after 

condensation of counterions (Manning 1978) whereas membrane surfaces are ionic or 

zwitterionic at the water interface and hydrophobic when penetrated. Chromosomal DNA 

also has a porous structure that allows penetration of other molecules in a size-dependent 

fashion (Hacker et al 2017, Mondal et al 2011, Yildirim & Feig 2017). Much remains to be 

discovered about how biomolecules behave in the presence of such structures. For example, 

diffusion along DNA by DNA-binding proteins has been characterized relatively well 

(Marcovitz & Levy 2013, Schonhoft et al 2013, Tan et al 2016, Terakawa et al 2012), but 

much less is known about the diffusion of proteins that do not interact specifically with DNA 

in the presence of chromosomal DNA (Ando & Skolnick 2014). The interaction of 

biomolecules with membranes, on the other hand, is also well-explored for proteins that are 

known to interact with membranes either peripherally or via insertion (Ash et al 2004, 

Chavent et al 2016, Im & Brooks 2004, Jeon et al 2016, Kirchhoff et al 2008), but relatively 

little is known about non-specific interactions of biomolecules with membranes that are not 

known to be membrane-bound (Aisenbrey et al 2008) and effects of crowding on 

membranes (Guigas & Weiss 2016, Stachowiak et al 2012). There is a clear need for 

modeling studies to investigate such questions in more detail which will be possible once 

high-resolution structure of genomic DNA are available and realistic models of biological 

membranes that include membrane proteins can be constructed.
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Ligand binding in cellular environments

The applications of whole-cell models discussed so far focus on fundamental scientific 

questions. However, the most significant impact may be the ability to study ligand binding in 
vivo as that would ultimately allow in cellulo rational drug design so that specificity and 

selectivity can be considered from the very beginning when evaluating potential new drug 

candidates. While it will be a while before practical methods for in cellulo drug design can 

be developed, many questions about the binding of ligands in cellular environments can be 

addressed in the meantime. One key question is whether cellular environments alter ligand 

binding affinities or pathways. Another question is to what extent ligands interact non-

specifically with biomolecules. One possible effect on biomolecular structure has already 

been mentioned above, but extensive interactions of ligands with biomolecules may also 

alter solvation properties and solubility. One example is the increase of protein solubility in 

the presence of ATP (Patel et al 2017). From the ligand perspective, the consequence of 

extensive non-specific interactions means sequestration that results in an effectively lower 

concentration and lower average diffusion rates. Experiments as well as simulations have 

provided some evidence that this may indeed be a significant effect (Duff et al 2012, Yu et al 

2016). Substrate channeling between enzymes, although known for a long time (Miles et al 

1999), is a related topic that is not well understood in the context of cellular environments. 

Therefore, it is clear that further studies are needed to gain a better understanding of ligand 

binding in cellular environments.

CONCLUSIONS AND OUTLOOK

We are entering a time where it is possible to model and simulate cellular environments in 

full molecular detail. This allows a full connection between structure and systems-level 

biology and in principle opens up vast predictive abilities for connecting changes at the 

molecular level to biological function. An important implication is the potential to better 

understand disease origins and develop new, more effective therapies where side effects are 

accounted for from the beginning of the design process. On the practical side, although first 

models of minimal cellular environments in full atomistic detail have emerged (Feig et al 

2015, Yu et al 2016), many challenges remain. The simulation of such systems on 

biologically relevant time scales is the biggest hurdle, but a lack of experimental data, 

especially for biomolecular structure, hinders progress as well. A viable strategy may be to 

apply multi-scale modeling strategies where atomistic models are used only to establish 

shorter-term behavior at the molecular scale and train coarse-grained models that can reach 

larger scales. Even just at intermediate scales of individual biomolecules exposed to cellular 

environments, instead of modeling entire cells, there is actually much that remains to be 

learned in terms of fundamental biophysics and this is probably where physical models of 

cellular environments can have the greatest impact in the near future. However, as the 

understanding of biomolecular behavior in cells becomes more comprehensive, physical 

models could be coupled with kinetic network models to add reactivity and access even 

longer time scales. Ultimately, only a fully integrated approach that applies different, but 

connected frameworks across different scales will likely succeed in truly capturing how 

molecular behavior in cellular environments leads to cellular phenotypes. The focus of this 

review is on computational modeling, but the role of experiments is essential, not just to 
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provide input data but to validate results from modeling and simulation. This will require 

advances also on the experimental side which we hope will be stimulated by progress on the 

modeling side.
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Figure 1: 
Construction of cellular systems from atomistic structures of individual molecules based on 

biochemical pathway reconstruction for the cytoplasm of M. genitalium (A) (Feig et al 

2015). Multiscale assembly generation protocol from spherical models to fully solvated 

atomistic system (B) (Feig et al 2015).
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Figure 2: 
Flowchart of a typical simulation of a large cellular system that involves high-performance 

computing, data management, and analysis challenges.
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Figure 3: 
Effects of cellular environments on stability, dynamics, and binding. Protein stability is 

altered in crowded cellular environments due to volume exclusion and interactions with 

crowder molecules (grey) (A) (Harada et al 2013); rotational diffusion in crowded 

environments depends on transient cluster formation in concentrated villin solutions (B) 

(Nawrocki et al 2017); binding of ATP (red with crowding, blue without crowding) to 

acetate kinase (grey) varies in the presence of crowders (C) (Yu et al 2016).
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