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Abstract

Objective—Discovering subphenotypes of complex diseases can help characterize disease 

cohorts for investigative studies aimed at developing better diagnoses and treatments. Recent 

advances in unsupervised machine learning on electronic health record (EHR) data have enabled 

researchers to discover phenotypes without input from domain experts. However, most existing 

studies have ignored time and modeled diseases as discrete events. Uncovering the evolution of 

phenotypes – how they emerge, evolve and contribute to health outcomes – is essential to define 

more precise phenotypes and refine the understanding of disease progression. Our objective was to 

assess the benefits of an unsupervised approach that incorporates time to model diseases as 

dynamic processes in phenotype discovery.

Methods—In this study, we applied a constrained non-negative tensor-factorization approach to 

characterize the complexity of cardiovascular disease (CVD) patient cohort based on longitudinal 

EHR data. Through tensor-factorization, we identified a set of phenotypic topics (i.e., 

subphenotypes) that these patients established over the 10 years prior to the diagnosis of CVD, and 

showed the progress pattern. For each identified subphenotype, we examined its association with 
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the risk for adverse cardiovascular outcomes estimated by the American College of Cardiology/

American Heart Association Pooled Cohort Risk Equations, a conventional CVD-risk assessment 

tool frequently used in clinical practice. Furthermore, we compared the subsequent myocardial 

infarction (MI) rates among the six most prevalent subphenotypes using survival analysis.

Results—From a cohort of 12,380 adult CVD individuals with 1,068 unique PheCodes, we 

successfully identified 14 subphenotypes. Through the association analysis with estimated CVD 

risk for each subtype, we found some phenotypic topics such as Vitamin D deficiency and 

depression, Urinary infections cannot be explained by the conventional risk factors. Through a 

survival analysis, we found markedly different risks of subsequent MI following the diagnosis of 

CVD among the six most prevalent topics (p < 0.0001), indicating these topics may capture 

clinically meaningful subphenotypes of CVD.

Conclusion—This study demonstrates the potential benefits of using tensor-decomposition to 

model diseases as dynamic processes from longitudinal EHR data. Our results suggest that this 

data-driven approach may potentially help researchers identify complex and chronic disease 

subphenotypes in precision medicine research.
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Introduction

Chronic diseases such as diabetes, Alzheimer’s disease, and cardiovascular disease (CVD) 

affect more than 50% of the population, drive up to 90% of healthcare spending in the 

United States, and are the leading causes of mortality and disability globally.1–5 Chronic 

diseases commonly have complex causal mechanisms involving the interplay between 

genetic, environmental, and lifestyle factors.6 Chronic diseases may present with numerous 

signs and symptoms involving multiple physiologic systems and typically co-occur with 

other conditions.4 For example, CVD patients often present with multiple comorbidities 

including hyperlipidemia, diabetes, and hypertension.7 However, known risk factors (e.g. 

Framingham study7) for CVD may only explain ~75% of major CVD events.8 A more 

precise characterization of complex chronic disease based on different patterns of 
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comorbidities may help identify subpopulations to facilitate prevention, early detection and 

precise treatment.

Deep phenotyping is a method for identifying disease cohorts that incorporates multiple 

categories of EHR data. 9 Traditional phenotyping algorithms typically require feature 

engineering and multiple cycles of review from experts to specify inclusion and exclusion 

criteria on a data set. This does not scale well to large patient cohorts. 10–12 To address this 

problem, researchers have developed data-driven approaches to facilitate automated 

phenotyping. Using a training set including labeled cases and controls (i.e. gold standard), 

some methods use feature selection techniques 11 or machine learning classifiers 11,13 to 

build a phenotyping model.14 Other methods start with a set of core concepts and use natural 

language processing to automatically find the occurrence of matched terms in clinical notes, 

which can be used as input features to build a classifier to predict the target phenotype.15,16 

Most approaches achieve success on a broad range of algorithms through a collaboration 

among informaticians and clinical experts 17 However, such supervised methods still need to 

specify an outcome variable (e.g. a target phenotype) and labeled dataset (e.g. cases or 

controls). Due to the complexity of the contributing factors of a complex disease and their 

intricate interactions, such supervised approaches are unsuited to the scenario in which we 

have limited knowledge to label the phenotypes, and we wish to discover them from the 

data.18

Recent advances in unsupervised computational phenotyping have allowed researchers to 

discover phenotypes from EHR with minimal human guidance.1,16,18,19 Rather than relying 

on the pre-defined outcomes, these unsupervised approaches can identify patterns in the 

entire data source.18 One such method is topic modeling approach including non-negative 

matrix factorization (NMF) and Latent Dirichlet Allocation (LDA).19–21 Researchers have 

applied these approaches to EHR to identify phenotype candidates –clusters of patients that 

met with clinical conditions– with no pre-defined phenotype definitions. 11,20–24 For 

example, we have previously used NMF to find disease topics (described by clusters of co-

occurring symptoms) and study their associations with genetic variants.25 Aside from 

replicating known signals, we also reported a new correlation between a lipoprotein(a) 

(LPA) variant (rs10455872) and a topic enriched for lung cancer which was not previously 

identified via phenome-wide scanning. 25

Nevertheless, these studies typically overlook the valuable information conveyed by a 

temporal pattern of phenotypes input. The comorbidities and effects of complex chronic 

diseases like CVD typically evolve and progress over a long time. Thus, incorporating a time 

effect into phenotyping may help yield more precise phenotypes. Current unsupervised 

techniques such as LDA and NMF have difficulty capturing the temporal changes of 

topics26. Others have proposed training separate topic models for each time slice, but 

accurately measuring the connections of topics from different time slices remains a 

challenge.27–29

In this paper, we applied a constrained non-negative tensor-factorization approach to extract 

phenotypic topics across time scales. This approach models an individual’s medical data as a 

third-order tensor (i.e., a three-way data array, a cube instead of the matrix) with each order 

Zhao et al. Page 3

J Biomed Inform. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



representing phenotypes, time and individuals respectively. By fitting a tensor-factorization 

model, we can identify a set of topics (i.e., subphenotypes), describe their progress, and 

obtain patients’ representations in such topics at the same time. Identifying subphenotypes 

enables us to generate testable hypotheses of how complex diseases differ across patients, 

such as in temporal disease progression. Furthermore, it may provide insight into differences 

in the temporal progression of the disease. To demonstrate the feasibility and utility of the 

approach, we apply this method to EHR data of a large cohort of CVD patients. We identify 

CVD topics that represent clinically meaningful subphenotypes, some of which are not 

captured by traditional clinical assessment tools for CVD risk. This approach may improve 

understanding of disease progression over time, and identify novel subphenotypes that may 

be used for enhancing precision treatment.

Background and related work

Tensor decomposition (or factorization) can be treated as an extended NMF on high-

dimensional data.

Non-negative Matrix Factorization (NMF) for Topic Modeling

NMF assumes that given an n· m sparse data matrix X with n samples (e.g. documents) and 

m dimensions can be approximated by a small set of k basis vectors – an inner-product of 

two non-negative matrices W and H such that

X − WH F
2

(1)

is achieved subject to W ≥ 0, H ≥ 0 where || · ||2F is the Frobenius norm to measure the error 

between the original data and the approximation. In the context of topic modeling, H is a k × 

m (k ≤ m) topic – word matrix, indicating m words’ weights corresponding to k topics, and 

W is an n × k document-topic factor matrix, indicating n documents’ relevance score to k 
topics. From H, we can order each word’s weights in a particular topic and use the top words 

to describe topics. Furthermore, W can be used to represent documents for regression and 

clustering tasks. However, NMF fails to capture the temporal changes of topics.

Tensor decomposition

Tensor decomposition (or factorization), analogous to NMF, can learn latent factors from 

high dimensional data. After being introduced in 1927 30, tensor factorization regained 

popularity in the computer science community in the late 20th century 31,32, and until 

recently, proliferated into many other fields 33–35. Sun et al. have used PARAFAC2 36 on 

automated phenotyping for medically complex children who need intensive medical care due 

to multisystem dysfunction, technology dependence, or complex medication needs 37. Their 

extract disease topics, however, may not be independent because they did not impose any 

orthogonality restraints. Bahargam et al. have utilized tensor factorization in text mining to 

find dynamic topics from forums. 38 They introduced a method that can add orthogonality or 

sparsity constraints on each mode. In this study, we used this method to discover the 

phenotypic topic in longitudinal EHR.
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Materials and Method

Data preparation

Study cohort—We used the data from Synthetic Derivative, a database that contains a de-

identified copy of the EHR for every patient in the Vanderbilt University Medical Center 

(VUMC) system (>3 million patients). Our cohort included individuals: 1) phenotype codes 

(PheCodes) 39 of 411.* or 433.*, i.e., International Classification of Diseases, Ninth 

Revision, Clinical Modification (ICD-9-CM) 346.6*(Persistent migraine aura with cerebral 

infarction), 410–414 (Ischemic Heart Disease), 433–438 (Cerebrovascular Disease, excluded 

hemorrhage), 996.03 (Mechanical complication due to coronary bypass graft ), V12.54 

(Personal history of transient ischemic attack [TIA], V45.81(Aortocoronary bypass status), 

V45.82 (Percutaneous transluminal coronary angioplasty status), and 2) had ≥ 10 years of 

EHR data prior to the first diagnosis. For each individual, we defined the baseline date (time 

0) as 3 months before their first CVD event date. We extracted the diagnosis codes within 

the 10-year observation window before their baseline date.

Preprocessing data—From each individual’s records, all distinct ICD-9-CM billing 

codes within the observation window are captured and grouped into 1821 distinct PheCodes 
39. This mapping scheme was developed and validated manually by our group to facilitate 

high-throughtput phenotypic analysis. 40 The phenotype codes have been used in several 

systematic analyses to successfully replicate previously known gene-disease associations 

and discover potentially novel pleiotropic associations. 39

We filtered out rare PheCodes (i.e. prevalence <=0.5%) to avoid overfitting and achieved 

1068 unique PheCodes. We divided the 10-year observation period into one-year slice 

windows. For each PheCode, we used a binary value (i.e. 1 or 0) to indicate whether or not a 

patient had a particular diagnosis each year.

Constructing a tensor from the dataset—We introduce the following notation for the 

construction of the data tensors. First, for each patient i ∈ {1,...,n} we constructed a matrix, 

Xi, of dimensions m × t where m denotes the size of PheCodes, and t is the number of time 

windows; this matrix X can be treated as a vertical slice of the full tensor T. Then we 

concatenated each matrix Xi to construct a tensor T of three modes (i.e. axes) corresponding 

to phenotypes, time windows, and patients. Figure 1. illustrates this construction graphically. 

Each tensor cell contains a binary value (1 or 0) indicating whether each patient i-th has the 

PheCode m in t-th window. By slicing the T among different axis, we achieved three modes 

indicating different views of the data:

• Phenotype mode (x-z axis): a matrix of a phenotype assigned to all patients 

across time windows

• Time mode (y-z axis): a matrix of phenotypes from all patients in the specific 

time window

• Patient mode (x-y axis): a matrix of a patient’s phenotypes across all time 

windows
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Detecting evolving-topics via tensor factorization

Problem formulation—Now that we have described the process of structuring our data in 

terms of three-dimensional tensors, we describe how to detect time-evolving topics. Given a 

tensor T, we factorize T into:

T = ∑ f = 1
k a f ⊗ b f ⊗ c f + e (2)

where af, bf, and cf correspond to the f-th columns of three-factor matrices: A, B, and C. 

Specifically, the interpretation for A, B, and C is:

• The factor matrix A corresponds a phenotype – topic matrix of size m × k, where 

each row denotes phenotypes, and each column represents a topic. Each element 

aif represent a weight of i-th phenotype on the f-th topic.

• The factor matrix B corresponds to a time – topic matrix of size t × k, where 

each row represents a time window and each column represents a topic. The 

element bjf represents the f-th topic’s weights or strength in j-th time window.

• The factor matrix C is a patient- topic matrix of size n × k, where each row 

indicates a patient, and each column represents a topic. The element czf 

represents the z-th patient’s weight on f-th topic.

We normalize each column in the factor matrix (making the length of the column to 1).

The e indicates the error between the original input data T and approximation of the outer 

product of three factors. We can find A, B, and C that best approximate the input tensor by 

minimizing the e. Thus, equation (2) can be written as an optimization problem:

min
A, B, C

‖T − ∑ f = 1
k a f ⊗ b f ⊗ c f ‖F

2 (3)

Each factor column af, bf, and cf corresponds to a disease topic (component) represented in 

an object in each mode.

To yield clinically interpretable results, we imposed the following constraints:

• Non-negativity: For better interpretability, we restrict the factor matrices A, B, 
and C to be non-negative: A ≥ 0, B ≥ 0, C ≥ 0.

• Orthogonality: To generate distinct (less overlapped) and independent topics, 

we imposed orthogonality constraints on the factor matrix (i.e., columns in a 

factor matrix should be close to orthogonal):

∀i, j ∈ k, i ≠ j, Ai
T A j ≤ ϵA, Bi

TB j ≤ ϵB, Ci
TC j ≤ ϵcϵA, ϵB, ϵc ∈ [0, 1]
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We assumed disease topics to be distinct (less overlapped) and independent. Thus, we 

imposed strict orthogonality on factor matrix a (i.e., word-topic model) with ∈A 0.05 

(columns in a factor matrix should be close to orthogonal). We relaxed the constraints on B 
(time-topic) and C (patient-topic) factor matrices by setting ∈B = 1 and ∈c= 0.8, because 

certain topics may have similar time trend, and patients may be inherently similar to others.

• Sparsity: Comparing to the large size of phenotypes, comorbidity or disease 

may present only a few of them. Similarly, a patient may only have a few 

comorbidities. Thus, we imposed L1-norm41 on each column in the factor 

matrix to fortify the sparsity:

∀i ∈ k, Ai 1 ≤ γA, Bi 1 ≤ γB, Bi 1 ≤ γc; γA, γB, γc ∈ [0, 1]

To yield interpretable topics, we used sparsity constraints in this study γ = [0.8,1,1]. Small γ 
would yield more sparse weights (i.e. a lot of zero weights). We expected PheCode weights 

in the topic to be sparse for better interpretation. We did not limit sparsity on time and 

patient factor.

As the equation (2) is not a convex function, we utilized a PARAFAC decomposition with 

alternating least squares (ALS) to solve it 42,43. PARAFAC is one of several decomposition 

methods for multi-way data. Compared with other competitors, such as Tucker3 and 

unfolding of the multi-way array to a matrix and then performing standard two-way PCA, 

PARAFAC had fewer parameters and resulted in the most simple and restricted model. 43 

Solving PARAFAC required a significant amount of time to run, but fortunately, ALS 

increased computational efficiency resulting in decreased required clock-time. Also, by 

iteratively fixing two factors, the equation (2) becomes convex for each intermediate step. 

We implemented the approach based on Matlab CMTF42 and tensor toolbox. The 

convergence criteria was 10e-5. 44

Choosing the number of disease topics: To decide the number of topics (k), we plotted the 

decay of eigenvalues of the unfolded-input data. The point of inflection can suggest a range 

of candidate k. To decide the specific k, we considered two metrics: the coherence within a 

topic (i.e., whether a topic can represent a single theme or similar concept) and the similarity 

between topics. We first measured topic coherence by using UMass,45 which calculates the 

co-concurrency of the topic descriptors in the original EHR data. Topics with higher UMass 

are easier to interpret. The similarity between topics can be measured with mean pairwise 

Jaccard similarity (mean_Jaccard),46 or cosine similarity 47, reflecting the overlapping 

degree between topics. We expected the topics should have less similarity. To select the K, 

we standardized the UMass and the 1/mean_Jaccard and summed these two as the topic 

quality score. We calculated the topic score for k from 5 to 15. We ranked the topic quality 

scores in descending order and selected the top 10 highest quality scores. Then we picked 

the largest K (within the suggestion range), because a larger number of topics may explain 

more of the input data variation. We involved three reviewers with clinical backgrounds to 

review the results 48. We designed two surveys at the topic and patient levels (Appendix B).
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To visualize the topic results, we employed word clouds to present top-ranked phenotypes in 

a topic. Patients were represented in combined weights of topics (patient-topic factor 

matrix). We assign a patient to the topic group with the maximum weight. We used t-

Distributed Stochastic Neighbor Embedding (t-SNE) to project the patient-topic on a 2-

dimensional (2D) map to visualize the similarity between topic groups.

Statistical analysis

Correlation between topics and conventional assessments of CVD risk—For 

each topic, we examined its association with the risk estimated by the American College of 

Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Risk Equations 2 

(ACC/AHA Pooled Equations), which is a widely used clinical tool to estimate 10-year risk 

of atherosclerotic cardiovascular disease (ASCVD) events - a composite of MI, stroke, or 

cardiovascular death - based on conventional risk factors, e.g., age, gender, hypertension and 

smoking status. The goal of the association analysis was to examine the correlation between 

each topic and the conventional assessed risk of significant cardiovascular outcomes. We 

hypothesized that our approach would identify subphenotypes where the CVD risk was not 

adequately captured by a conventional risk assessment tool.

To apply ACC/AHA Pooled Equations to the CVD patients (Figure 2), we collected 

demographics, hypertension drug usage, smoking status, the most recent physical 

measurements and lab values (i.e. SBP/DBP and high-density lipoprotein [HDL]- 

cholesterol level) before the baseline date. We replaced the missing physical or laboratory 

measures using the median values from the same age, gender and race group. We calculated 

the ASCVD risk for each individual based on the ACC/AHA Risk Equations.

For each topic, we examined its association with the 10-year CVD risk estimated by 

ACC/AHA equations using the Pearson correlation coefficient (PCC). The study reported 

the coefficient and p-value. The level of significance was set at p < 0.05 / number of topics 

(Bonferroni correction). We further stratified patients into high - (risk probability≥20%) and 

low - risk (risk probability<7.5%) category 50, and plotted the distribution of high/low -risk 

patients in the top six prevalent topics (Figure A.8). We aimed to find if high or low-risk 

patients would present any difference in such phenotypic topics.

Risk of subsequent MI among subphenotypes—To demonstrate the clinical 

importance of the topics, we evaluated the risk of subsequent MI event for topics through 

survival analysis. We hypothesized that topics would vary in the survival time from their 

initial diagnosis of CVD to subsequent MI. We first examined Kaplan-Meier plots stratified 

by topic. The start date of the time outcome (time period 0) was the date of the first CVD 

diagnosis. The observation time was between time period 0 and the subsequent MI. For 

patients who had no subsequent MI, we right-censored such patients at the last date they 

were observed at VUMC. We also applied a Cox proportional hazards regression model 

using patient’s weights of topics, age, and gender as covariates. We calculated hazard ratios 

for each topic along with their corresponding confidence intervals and p-values.
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Results

Time-evolving disease topics

We identified 12,380 adult CVD patients and extracted 1068 unique PheCodes among them. 

We applied an unsupervised tensor-factorization on the dataset. In determining the number 

of topics (k), we tried k from 5 to 20 and set the number of topics as 14 in the study 

according to the measuring process (Figure A.1–A.3). Three reviewers with clinical practice 

or medical training background validated the results to ensure clinical relevance (Appendix 

B). The results showed that at the topic level, the average rating was 1.45 (an ordinal scale of 

0–2 [i.e.0-not clinically meaningful;1- possibly clinically meaningful; 2 - clinically 

meaningful], with a Fleiss’ Kappa 51 score of 0.41 (moderate agreement). At the patient 

level, the mean of the three reviewers rating score was 1.16 (an ordinal scale of 0–2 [i.e.0-

not relevant;1- relevant; 2- highly relevant], with a Fleiss’ Kappa score of 0.45, suggesting 

that the topics assigned to each patient were relevant to the patient’s history.

Figure 3 showed the learned 14 topics and the progression pattern over the 10 years prior to 

the first diagnosis of CVD. Topic #0 and Topic #1 were enriched for serious kidney disease, 

with more relevance with Type 1 Diabetes in Topic #0 than Topic #1. Topic #4 was enriched 

for Vitamin D deficiency, Depression, and Hypothyroidism NOS. Topic #5 clustered around 

complications of Type 2 diabetes, such as Type 2 diabetic neuropathy and Type 2 diabetic 

retinopathy. Topics #11 and #12 both had lipid disorders as their top diagnoses 

(Hypercholesterolemia and Mixed Hyperlipidemia, respectively). Yet, they differed 

substantially in associated diagnoses: Malaise and fatigue, Mixed hyperlipidemia, and 

Essential hypertension were enriched in Topic #11; while Hypothyroidism NOS and Type 2 

diabetes were enriched in Topic #12.

The time trend in Figure 3 shows the trajectory of each topic before the first diagnosis of 

CVD. Specifically, it reflects the changes in the combined intensity of the phenotypes (in the 

topic) in patients assigned to the topic group from the last 10 years to the first CVD 

diagnosis. For example, when close to the first CVD, patients in Topic #13 have a sharp 

increase, which means more Essential hypertension appear in the topic group. Patients in 

Topic #7 (Allergic rhinitis) increased the events slowly but have a small drop when close to 

the first CVD.

We assigned the patients into their best-fitting topic according to their maximum weights 

(Fig 4). Topic #12 (Mixed Hyperlipidemia) was the most prevalent topic in the cohort with 

8078 patients. Topic #11 (Hypercholesterolemia), Topic #4 (Vitamin D deficiency) and 

Topic #13 (Essential hypertension) were other prevalent topics in the cohort with 2386, 627, 

and 541 patients, respectively. Figure 5 showed the visualization of patients-topics in a 2D 

map using t-Distributed Stochastic Neighbor Embedding (t-SNE). Topic #13 (Essential 

hypertension) formed a distinct group separate from other groups on the top of the figure.

To illustrate the differences in mixed hyperlipidemia between topics, we compared the 

prevalence of mixed hyperlipidemia between the patients who were assigned with Topic #12 

and Topic #13 (Figure 6). Overall, the proportion of patients with Mixed Hyperlipidemia in 

Topic #13 was smaller than Topic #12. Although the proportion of patients with Mixed 
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Hyperlipidemia was initially similar, the proportions diverged starting at approximately 5 

years prior to the CVD event. At that point, the proportion of patients with Mixed 

Hyperlipidemia in Topic #12 increased substantially, whereas Mixed Hyperlipidemia 

declined among patients in Topic #13.

Analysis of correlation between topics and conventional assessments of CVD risk

We applied ACC/AHA Pooled Cohort Risk Equations to calculate the 10-year ASCVD risk 

for each patient (Table A.1). Table 1 summarizes the association result between topics and 

the ASCVD risk estimated by ACC/AHA equations. Topics such as #11 

(Hypercholesterolemia), Topic #12 (Mixed hyperlipidemia, Type 2 diabetes), and Topic #13 

(Essential hypertension) significantly correlated with an increased estimated risk of 

ASCVD. Among the most prevalent topics, Topic #4 (Vitamin D deficiency, Depression), 

Topic #7 (Allergic rhinitis), and Topic #9 (Urinary tract infection) have no significant 

associations between the estimated risk of ASCVD. Figure A.8 further presents the 

proportion of stratified risk in the top prevalent topics. Topic#11, Topic #12 and Topic #13 

contained a higher proportion of high-risk patients than low-risk patients. Both high and 

low-risk patients present in Topic #9 and Topic #4, with a similar proportion, suggesting that 

the conventional risk assessment tool did not capture the true risk of CVD for patients in 

these subphenotypes.

Survival analysis

We assessed the risk of subsequent MI following the diagnosis of CVD by using a Kaplan-

Meier plot. We stratified patients by the maximum observed weight for each individual 

among the six most prevalent topics: Topic #4 (Vitamin D deficiency, Depression), Topic #7 

(Allergic rhinitis), Topic #9 (Urinary tract infection), Topic #11 (Hypercholesterolemia), 

Topic #12 (Mixed hyperlipidemia) and Topic #13 (Essential hypertension) We observed a 

significant difference among these groups (p<0.0001, Figure 7), implying these subgroups 

may have the differing risk of subsequent MI.

We then fit the Cox model with the topic weights as covariates using the lifelines Python 

package (0.20.0).52 Table 2 summarizes the topics that have a significant association with 

the subsequent MI. We observed that patients who have higher weights in topics #5 (Type 2 

diabetic neuropathy, Type 2 diabetes), and Topic #13 (Essential hypertension) had increased 

the risk for subsequent MI. Patients with Topic #11 (Hypercholesterolemia) had decreased 

risk for a subsequent MI.

Table 2 Cox regression models to examine the association between phenotypic topics and 

the subsequent MI event. We report topics significantly associated with subsequent MI event 

(statistically significant at the 0.05 level) and provide their corresponding hazard ratio, p-

value and 95% confidence interval.

Discussion

In this study, we leveraged a constrained non-negative tensor-decomposition method to 

detect time-evolving phenotypes in CVD patients. Compared to previous studies,1 our 
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approach captures both subphenotypes and their dynamics over time. We examined the 

association between the phenotypic topics and the estimated ASCVD risk calculated using 

conventional clinical tools. Results from this analysis showed that some phenotypic topics 

were not correlated with conventional CVD risk factors, suggesting that individuals with 

these subphenotypes may be affected by sub phenotypic diseases with different 

pathophysiologic causes. Furthermore, we observed significant differences in subsequent MI 

rates between the six most prevalent subphenotypes.

Comparison with traditional NMF

We compared our method with traditional NMF on each time slice of patients’ diagnosis 

(Appendix F). We measure the stability score (range [0, 1]) between topics of each time slice 

using Jaccard similarity and Hungarian method.49 From the stability plot (Figure A.10), we 

observed that the similarity between topics in the last first year and last 3 – 10 years were 

less than 50%, which means the topics changed over 10 years. It would be difficult to read, 

interpret and trace how topics change using traditional NMF. Further, it lacked a persuasive 

methodology to combine the weights of topics from each time slice to represent a single 

patient. Compared to the traditional NMF, our approach provides a solution for data 

exploration to 1) better show the dynamic changes of the subphenotypes; 2) generate the 

representations and topic membership for patients to facilitate the analysis.

Choosing the number of factors

Topic modeling and tensor decompositions and related unsupervised learning approaches 

require pre-specification of topic numbers, k. Choosing the optimal number of topics 

remains challenging. General approaches include: looking at residuals (e.g. construction 

errors), plotting the decay of singular values or the percentage of explained variance such as 

scree-plots and core consistency, and evaluating the interpretability of the factors. Selecting 

the approaches should consider the characteristics of input data (e.g. data size, sparsity, 

binary), the goal of the task, and the computing time. In this study, we first plotted the decay 

of singular values to get suggested candidates of k. As we aimed to yield distinct and 

interpretable subphenotypes and such metrics, we maximized the topic quality metric 

(coherence UMass and similarity) to determine the final k. Such approach has been widely 

used in evaluating the topic model.24,25,49 We also involved clinicians to validate whether 

topics were clinically meaningful. Larger k may allow the discovery of deep subphenotypes, 

but also increases the risk of fracturing meaningful phenotype clusters. Sun et. al applied 

Core Consistency Diagnostic CONCORDIA), 37 a method that can be used for the 

PARAFAC model to automatically discover the number of phenotypes. However, through 

the experiment, we found if we constrained the sparsity and normalized all factors, the core 

consistency is not accurate. We plotted the core consistency by removing sparsity constraints 

and only normalizing two factors (Figure A.3). The result showed k=14 achieved the highest 

core consistency, which matches the number of topics calculated using topic quality metric.

Adding orthogonal and sparsity constraints are important in generating an interpretable 

phenotype. We showed the topics using PARAFAC model without adding orthogonal and 

sparsity constraints (Figure A.5–A.6). From Figure A.5–A.6, we observed that it is highly 

possible to yield overlapped phenotypes.
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Clinical relevance

This approach enabled us to obtain meaningful CVD subphenotypes and visualize their 

progression pattern. Topic #0 and Topic #1 are particularly enriched in individuals with 

kidney failure but may represent patients with different causes, e.g. uncontrolled Type 1 

diabetes 53, and Systemic lupus erythematosus 54, respectively. Among the top six most 

prevalent topics, Topic #11(Hypercholesterolemia, Malaise, and fatigue), Topic #12 (Mixed 

hyperlipidemia and Type 2 diabetes), and Topic #13 (Essential hypertension) are well-

described common comorbidities of CVD. Each of these topics had a time-progression 

pattern with a sharply increased intensity in the years leading up to the CVD event. Such 

results confirmed our previous findings in using the longitudinal EHR to predict 10-year 

CVD, that the most recent years’ value contributes more to the prediction.55 In contrast, 

some prevalent topics demonstrated different time-progressions. For example Topic #4 

(Vitamin D Deficiency, Depression)56 had a wave change morphology with increased 

intensity at 3 to 4 years prior to the first diagnosis of CVD, followed by a drop-off, then a 

final increase in intensity at a year before the event.

As expected, we found statistically significant correlations between ASCVD risk and topics 

heavily enriched with traditional CVD comorbidities including Topic #11 

(Hypercholesterolemia), Topic #12 (Mixed hyperlipidemia and Type 2 diabetes), and Topic 

#13 (Essential hypertension). Such results were in line with the Framingham study (Table A.

1). The main phenotype Chronic airway obstruction in Topic #10, was not included in 

ACC/AHA ASCVD risk score, but evidence has shown that CVD is more common among 

patients with Chronic Obstructive Pulmonary Disease (COPD), a major cause of Chronic 

airway obstruction.57 COPD patients also have a higher risk of mortality from complications 

of CVD.58–60 Topic #10 had a positive correlation with an estimated risk of ASCVD, mainly 

because some risk factors of COPD such as age (mean age 69.5 [8.9]), smoking status, 

weight loss were also known risk factors of CVD. Therefore, ACC/AHA risk equation may 

still capture many of the important risk factors for CVD in this subphenotype.

We also observed topics such as Topic #4 (Vitamin D deficiency, Depression), and Topic #9 

(Urinary tract infection, Nonspecific chest pain, Nausea and vomiting, Malaise and fatigue) 

had a negative correlation with the traditionally estimated risk. Topic #4 and Topic #9 

contained a similar or larger proportion of low-risk patients than high-risk patients. Recent 

evidence has shown a strong correlation between Urinary tract infections (Topic #9) and 

cardiovascular events 61,62 There is also support for moderate to severe Vitamin D 

deficiency (Topic #4) as a risk factor for developing CVD.63 This suggests that conventional 

risk assessment tools could not accurately model risk of CVD for patients with these topics.

Topic #5 was not significantly correlated with the estimated risk of ASCVD by the 

ACC/AHA assessment tool, but it had a high hazard ratio for increased risk of subsequent 

MI (Table 2). Topic #5 appears to capture a subphenotype of patients with advanced Type 2 

diabetes with microvascular complications including diabetic neuropathy and diabetic 

retinopathy. The presence of microvascular complications of diabetes such as Type 2 

diabetic neuropathy portend an increased risk of CVD.64 Diabetic autonomic neuropathy is 

also an independent risk for recurrent CVD events in diabetic patients with a prior history of 

CVD.65 Furthermore, whereas intensive glucose control in patients with newly diagnosed or 
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less advanced Type 2 diabetes may decrease risk of subsequent CVD 66; intensive glucose 

control in patients with long-standing Type 2 diabetes may not reduce the risk of developing 

CVD.67 Therefore, Topic #5 may identify a subphenotype of patients with advanced diabetes 

as their predominant risk for CVD, where conventional treatment aimed at controlling the 

risk comorbidity (diabetes) does not mitigate the risk of ultimately developing CVD and 

subsequent complications like MI.

Essential hypertension (Topic #13) and lipid disorders (Topic #11, Topic #12) are two well-

known risk factors of CVD, however; they formed into separate distinct topics (Figure 5), 

suggesting they may represent distinct subphenotypes. Interestingly, Topic #13 represents a 

unique group enriched for Essential hypertension but with few hyperlipidemia events across 

the years (Figure 6). Notably, Topic #13 (Essential hypertension) had significantly increased 

risk of subsequent MI while high Topic #11 score (Hypercholesterolemia) had decreased 

risk. This may reflect an increased propensity for Topic #11 patients to receive cholesterol-

lowering statin medications, which have a well-understood role in primary prevention of 

CVD events.68,69 Although both Topic #11 and Topic #12 contained mixed hyperlipidemia, 

Topic #12 also had Type 2 diabetes as the key descriptor and had a different evolving trend 

than Topic #11, indicating two different subphenotypes. The combination of Type 2 

diabetes, Mixed Hyperlipidemia, Obesity, and Essential hypertension in the descriptors of 

Topic #12 capture many features of the metabolic syndrome, a constellation of comorbidities 

that result from abdominal obesity and insulin resistance.70 This suggests that although 

studies have traditionally treated Hyperlipidemia, Hypertension, and Type 2 diabetes as 

CVD risk factors, these phenotypes can be treated as different phenotype cohorts, with each 

having different optimal treatment regimens.

Limitations

This study has several limitations. First, we used binary values to indicate whether an 

individual received a diagnosis code in each year. A method accounting for disease severity 

(e.g., using counts of diagnosis codes) could be used in future studies and may improve the 

identification of subphenotypes. Second, we did not incorporate medications and laboratory 

tests in this study, which may also improve the identification of meaningful phenotype 

clusters. Third, although PheCodes are aggregates of ICD codes, there is still overlap among 

PheCodes, i.e., some distinct PheCodes defined closely related disease (e.g.Type 2 diabetic 

neuropathy [250.24], Type 2 diabetes [250.2]). Word-embedding models such as 

Word2Vec71 may precisely quantify the similarity between related terms. Finally, our study 

cohort did not include any controls of CVD. If we want to find predictors for CVD, we need 

to include the negative controls in future work.

Conclusion

This study demonstrated the feasibility of tensor-decomposition for learning time-evolving 

topics from longitudinal EHRs. The methodology may help identify potentially useful 

subphenotypes of complex diseases for precision medicine studies.
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Highlight

• Present a method using Tensor Factorization to find subphenotypes from 

longitudinal EHR.

• We applied this approach to 12380 patients with the diagnosis of CVD.

• We identified 14 subphenotypes that patients established in 10 years prior to 

CVD, and showed the progress pattern.

• Through an association analysis with estimated CVD risk, we found some 

topics e.g. Vitamin D deficiency, Urinary infections cannot be explained by 

conventional risk factors.

• We identified a distinct subphenotype enriched for “Hypertension” with few 

“hyperlipidemia” that increased the risk of the subsequent MI.
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Figure 1. 
Input data representation for tensor factorization. Each slice along the z-axis is a patient 

record. In such a slice, each row represents a phenotype (PheCode), and each colored 

column represents a one-year time interval.
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Figure 2. 
Study Design
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Figure 3. 
Tensor factorization on 10 year-diagnoses prior to CVD diagnosis. Each topic contains the 

topic factor, represented by a word cloud and a time factor showing the time trend. The word 

size of a PheCode is proportional to its weight (i.e. influence) for the topic (from factor A), 

e.g. Essential hypertension has a larger influence than GERD within Topic #13. The x-axis 

on the line charts represent the years prior to the diagnosis of CVD, increasing from 10 years 

to 1 year prior to CVD. The y-axis represents the mathematical weights (from time factor B) 

for the respective topics for each year prior to the diagnosis of CVD. HIPN in Topic #6: 

Hereditary and idiopathic peripheral neuropathy.
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Figure 4. Topic distribution in the cohort.
To visualize the frequency of each topic in the cohort, we assigned an individual to the topic 

with the maximum score. The vertical axis represents the number of patients. Topics are 

plotted on the horizontal axis.
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Figure 5. t-SNE visualization of topic clusters
Each data point represents an individual and the color of each data point represents the topic 

with the maximum score for that individual. We used principal component analysis (PCA) 

for t-SNE embedding initialization.
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Figure 6. 
Proportion of patients with mixed hyperlipidemia in patients assigned with Topic #12 

(Mixed hyperlipidemia) and Topic #13 (Essential hypertension).

Zhao et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Associate topic groups (top six prevalent) with the next myocardial infarction (MI) event by 

fitting a Kaplan-Meier model. The x-axis represents the months between the first diagnosis 

of CVD and the next MI event. The y-axis represents the probability of an individual 

surviving past time t with respect to second MI.
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Table 1

Pearson correlation coefficient testing between topics and estimated ASCVD risk. Significance level after 

Bonferroni correction is p<0.0036 (0.05/14).

Topic Top phenotypes Co-efficient p-value

#0 Diabetic retinopathy, Kidney replaced by transplant, Type 1 diabetes, Type 1 diabetic retinopathy −0.004 0.683

#1 End stage renal disease, Systemic lupus erythematosus, Renal dialysis, Anemia in chronic kidney disease −0.002 0.817

#2 Dry eyes, Hypothyroidism NOS, Tobacco use disorder, Osteoporosis 0.019 0.032

#3 Migraine, Convulsions, Other headache syndromes, Asthma −0.020 0.025

#4 Vitamin D deficiency, Depression, Hypothyroidism NOS, Other tests −0.001 0.016

#5 Type 2 diabetic neuropathy, Type 2 diabetes, Type 2 diabetic retinopathy, Diabetic retinopathy 0.016 0.071

#6 Hereditary and idiopathic peripheral neuropathy, Dry eyes, Allergic rhinitis, Cataract 0.016 0.06

#7 Allergic rhinitis, Type 2 diabetes, Hypercholesterolemia, Asthma 0.010 0.267

#8 Actinic keratosis, Asthma, Obstructive sleep apnea, Benign neoplasm of skin −0.006 0.528

#9 Urinary tract infection, Nonspecific chest pain, Nausea and vomiting, Malaise and fatigue −0.011 0.197

#10 Chronic airway obstruction, Type 2 diabetes, Other tests, Hyperlipidemia 0.043 1.932e-06

#11 Hypercholesterolemia, Malaise and fatigue, Mixed hyperlipidemia, Essential hypertension 0.035 1.20e-04

#12 Mixed hyperlipidemia, Hypothyroidism NOS, Type 2 diabetes, Actinic keratosis 0.061 1.063e-11

#13 Essential hypertension, Other tests, Type 2 diabetes, Pain in joint 0.054 1.292e-09
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Table 2

Cox regression models to examine the association between phenotypic topics and the subsequent MI event. We 

report topics significantly associated with subsequent MI event (statistically significant at the 0.05 level) and 

provide their corresponding hazard ratio, p-value and 95% confidence interval.

Topic # Top phenotypes Hazard ratio 
(HR)

P CI

5 Type 2 diabetic neuropathy, Type 2 diabetes, Type 2 diabetic retinopathy, 
Diabetic retinopathy

29.66 <0.005 (7.6, 127)

11 Hypercholesterolemia, Malaise and fatigue, Mixed hyperlipidemia, 
Essential hypertension

1.10e-14 0.01 (1.589e-25, 
1.132e-03)

13 Essential hypertension, Other tests, Type 2 diabetes, Pain in joint 2.12 0.02 (1.15, 3.86)
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