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Abstract

Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many 

individuals with major depression is one of the most important findings in clinical 

psychopharmacology in recent decades. The initial report of these effects in human subjects was 

based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent 

investigation has included both further studies in individuals with depression, as well as reverse 

translational experiments in animal models, especially rodents. While there is general agreement 

in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-

like properties, there are also points of contention across studies, including the precise mechanism 

of action of this drug. In this review, we briefly summarize prominent yet variable findings 

regarding the mechanism of action. We also discuss a combination of similarities and variances in 

the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species 

and strain, test, stressor, and presumably sex of the experimenter. We then present previously 

unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have 

robust antidepressant-like properties in unstressed animals, and may actually promote depression-

like behavior, in contrast to widely reported findings. We conclude that the data best support the 

notion of ketamine action principally via NMDA receptor antagonism, transiently boosting 

glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future 

studies should address in greater detail the extent to which antidepressant-like properties of this 

drug are stress-sensitive, in an effort to better model major depression present in humans.

INTRODUCTION

Ketamine is currently gaining in clinical use for major depression. Interestingly, many 

features of ketamine action shown in human patients are also seen in rodents, and many 

neuroscientists are using rodent models of these effects to study the neurobiological 

mechanisms of ketamine action on the brain – to better understand both ketamine and 

depression-related biology itself. In this review we will focus on the rodent literature, with 

an initial brief background in human clinical findings. Of note, this review is composed of 

two parts, each relating to major points of variance in the realm of rodent ketamine research. 
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The first part deals with variable results regarding the mechanism of action of ketamine in its 

antidepressant-like action – this point is of import for developing similar compounds in the 

future as therapeutics. The second part of this review is a meta-analysis of the consistency or 

variability among antidepressive-like behavioral outcomes published about rodents. This is 

done with a particular eye toward the role of psychosocial stress, given the importance of 

that variable in allowing translation. In covering these two major topics we attempt to 

discuss two major axes of difficulty in the field now. Throughout the rest of the text we will 

refer to “ketamine” as its typically administered racemic mixture, (R,S)-ketamine.

HISTORY, CLINICAL FINDINGS AND LINKAGES

Prior to delving into either major realm of rodent research described above, we will first give 

some background. Major depressive disorder (depression) is a neuropsychiatric disease often 

linked to psychological stress and for which pharmacological treatment options are limited 

(Bonde et al., 2016; Hosang, Shiles, Tansey, McGuffin, & Uher, 2014; Ruhe, Huyser, 

Swinkels, & Schene, 2006). Commonly used monoaminergic antidepressants, such as the 

SSRIs, SNRIs, and tricyclics, are not effective in all patients and their timecourse of 

therapeutic onset is usually slow, often requiring a week or longer for initial effects to 

become evident (Derivan, 1995; Henkel et al., 2009; Kudlow, Cha, & Mcintyre, 2012). 

Largely for that reason, there is growing interest in the use of rapidly-acting 

pharmacological agents with alternate underlying mechanisms to counteract depression, to 

both help patients who do not respond to other drugs and because these agents work faster. 

The most prominent of these treatments is the anesthetic (and drug of abuse), (R,S)-

ketamine (Ebada, 2017; Rosenblat et al., 2019). This drug is already being used clinically 

worldwide to treat major depression, often being administered intravenously in hospitals and 

clinics. The recent FDA approval of a nasal spray formulation of its enantiomer (S)-

ketamine (“esketamine”) has added to the feasibility of its widespread use (Targum, Daly, 

Fedgchin, Cooper, & Singh, 2019). The rapid onset of (R,S)-ketamine’s antidepressant 

effects, which occur within 1-4 hours of initial administration, as well as its ability to sustain 

these favorable effects for days or even weeks in some individuals, has captured the interest 

of clinicians and translational researchers alike (Berman et al., 2000; Chan et al., 2018; 

Zarate et al., 2006). Importantly, this rapid temporal profile of treatment effects implies that 

(R,S)-ketamine has a unique mechanism of action compared with conventional 

monoaminergic antidepressants. This then implies that understanding the effects of (R,S)-

ketamine may inform us as to new elements of mood-related neurobiology – again 

provoking great scientific interest. In addition, in a subset of individuals with major 

depression, (R,S)-ketamine may have specific anti-suicidal properties (Machado-Vieira, 

Salvadore, DiazGranados, & Zarate, 2009).

It should also be noted that (R,S)-ketamine remains a popular drug of abuse worldwide, 

which poses a significant barrier to its use in the clinical treatment of major depression 

(Liao, Tang, & Hao, 2017). Because of its abuse potential and psychotomimetic properties, 

there remain some concerns by some in using it as a pharmacological agent for mainstream 

treatment of depression (Andreae et al., 2016). It indeed must be prescribed with caution to 

individuals with a history of substance abuse. Also, since it is administered in clinics in the 

United States, often intravenously over several hours, it is not as convenient to take as most 
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oral antidepressants. For these reasons, there is great interest in understanding its mechanism 

of action in order to facilitate development of (R,S)-ketamine-like antidepressants that lack 

this drug’s dissociative properties and abuse potential (Duman, 2018).

Berman et al. (2000) provided the initial demonstration of the therapeutic efficacy of (R,S)-

ketamine in human subjects with major depression (Berman et al., 2000). In that publication, 

the authors note that a number of rodent depression-related preclinical studies carried out in 

the 1990s, which used a wide range of NMDA receptor (NMDAR) antagonist drugs, 

motivated them to investigate whether this drug is an effective treatment of human 

depression. Zarate et al. (2006) performed another prominent, double-blind placebo-

controlled study of (in this case, treatment-resistant) major depression, which generated 

further interest in (R,S)-ketamine as a rapidly acting antidepressant with sustained effects 

(Zarate et al., 2006). Since then, both preclinical and clinical researchers have focused on 

(R,S)-ketamine, more than other NMDAR antagonists, as a novel treatment for depression, 

perhaps partly because (R,S)-ketamine was and is already being used clinically as a surgical 

anesthetic, making its repurposing at a lower dose for neuropsychiatric disorders 

immediately feasible, at least in an off-label manner (Ebada, 2017).

In the rest of this article, we briefly review preclinical studies of (R,S)-ketamine as a rapidly 

acting antidepressant, with a focus on studies in mice and rats. This growing literature is 

helping us gain a greater understanding of the precise molecular- and circuit-based 

mechanisms of action of this drug, which aids in using it to more effectively counteract 

depression, while also driving further innovation in the discovery of the next generation of 

rapidly acting antidepressants (Gerhard & Duman, 2018). The precise mechanism of action 

of (R,S)-ketamine remains quite controversial, as there is indeed no consensus that it is 

acting exclusively or even principally as an NMDAR antagonist (Zanos & Gould, 2018; 

Zanos et al., 2016). There is, in contrast, a large number of rodent studies reporting that 

(R,S)-ketamine has antidepressant-like effects across many dimensions including: dose, 

specific rodent species and strain, type of depression-related test used, presence of and type 

of stressor, and presumably sex of the experimenter. The remainder of this review focuses on 

understanding this variability of both results and approaches in the literature.

MOLECULAR AND RECEPTOR-BASED MECHANISMS OF KETAMINE 

ACTION – AN AREA OF ACTIVE RESEARCH

While it has long been presumed that the well-documented NMDAR-antagonism is the 

primary mechanism of action of antidepressant dose (R,S)-ketamine given this drug’s 

receptor binding profile, that assumption is now coming into some question. Initial work 

presented strong evidence that (R,S)-ketamine is an antidepressant due to blockade of the 

NMDAR, ultimately leading to increased brain derived neurotrophic factor (BDNF) 

production in circuits such as the hippocampus (Autry et al., 2011). Surprisingly, subsequent 

work suggested that (R,S)-ketamine, which is typically administered as a balanced racemic 

mixture of its (R)- and (S)-ketamine enantiomers, actually achieves its antidepressant-like 

effects independently of NMDAR blockade through two of its pharmacologically active 

metabolites: (2S,6S)-hydroxynorketamine and (.2R,6R)-hydroxynorketamine (HNK). The 
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latter of these has been suggested to therapeutically potentiate signaling at glutamatergic 

AMPA receptors (Zanos et al., 2016). On the other hand, later experiments then 

demonstrated that (2R,6R)-HNK, which had been described as the more behaviorally 

effective HNK metabolite, also blocks the NMDAR, and may thus produce any 

antidepressant-like effects through the same NMDAR-dependent pathway as (R,S)-ketamine 

(Suzuki, Nosyreva, Hunt, Kavalali, & Monteggia, 2017). The (2R,6R)-HNK hypothesis was 

further questioned based on the finding that (S)-ketamine, which is not metabolized into 

(2R,6R)-HNK in vivo, nonetheless has robust antidepressant effects in humans 

(Collingridge, Lee, Bortolotto, Kang, & Lodge, 2017; Singh et al., 2016). Additionally, 

numerous preclinical studies carried out (including in the 1990s) in rodents used a wide 

range of NMDAR antagonist compounds, which are thought to not be metabolized into (2R,
6R)-HNK (or (2S,6S)-HNK), and nonetheless have robust antidepressant-like properties 

(Collingridge et al., 2017). Later published discussions (Zanos et al., 2017) countered these 

assertions by pointing out that the reported superiority of (R)-ketamine versus (S)-ketamine 

(C. Yang et al., 2015; J. C. Zhang, Li, & Hashimoto, 2014) is consistent with the (2R,6R)-

HNK hypothesis, while also pointing out that the various preclinical non-ketamine NMDAR 

antagonist compounds noted above have only shown inconsistent antidepressant effects, 

including in humans (Kishimoto et al., 2016; Sanacora et al., 2014; Zarate et al, 2006). This 

debate over the mechanism of action of (R,S)-ketamine continues in more recent 

publications (Kavalali & Monteggia, 2018; Lumsden et al., 2019; Zanos, Highland, Liu, et 

al., 2019; Zanos, Highland, Stewart, et al., 2019), including the possibility that (2R,6R)-

HNK is an open channel blocker of the NMDAR (Thu Ha Pham et al., 2018), or that (R,S)-

ketamine acts through a non-NMDAR mechanism that is instead dependent on intracellular 

cAMP signaling (Wray, Schappi, Singh, Senese, & Rasenick, 2018).

Other studies have also weighed in on the (2R,6R)-HNK versus NMDAR antagonism 

question in various rodent publications. It has recently been suggested, for example, that 

(2R,6R)-HNK boosts downstream BDNF signaling, which is then necessary for the 

antidepressant-like effects of (R,S)-ketamine (Fukumoto et al., 2019). Furthermore, a single 

systemic administration of (2R,6R)-HNK itself can rapidly rescue chronic stress-induced 

depression-like behavior and persist for up to 21 days (Chou et al., 2018). In contrast, recent 

mouse (Yamaguchi et al., 2018) and rat (Shirayama & Hashimoto, 2018) studies by another 

group have suggested that whereas (R)-ketamine exhibits rapid antidepressant-like 

properties, its metabolite (2R,6R)-HNK does not. These researchers have additionally found 

that intracerebroventricular infusion of (2R,6R)-HNK lacks antidepressant-like effects in a 

chronic social defeat stress model (CSDS) (Zhang, Fujita, & Hashimoto, 2018). This group 

has also recently found that (S)-norketamine, a principal metabolite of (S)-ketamine that can 

be converted to (2S,6S)-HNK, has more favorable effects on prefrontal and hippocampal 

synaptic plasticity than (R)-norketamine, and AMPA receptor antagonists do not block its 

antidepressant-like effects (Yang et al., 2018). This group has also pointed out that in spite of 

the recent introduction of the esketamine nasal spray formulation to the market, preclinical 

data suggest that compared to (S)-ketamine, (R-ketamine has greater potency and longer 

duration antidepressant-like effects. In addition, its side effects are more mild than both S)-

ketamine and (R,S)-ketamine (Hashimoto, 2019). That publication also provides a review on 

the topic of (R,S)-ketamine and its enantiomers as antidepressants.
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Aside from the above experiments, glutamatergic signaling has long been suggested to play 

a role in (R,S)-ketamine’s mechanism of action in depression. A recent review on this topic 

compared evidence for inhibition of glutamatergic signaling versus its activation, and 

proposed a synaptic connectivity model of chronic stress pathology and suggested that 

“transient (prefrontal) glutamate postsynaptic activation” is a primary mechanism of (R,S)-

ketamine (Abdallah, Sanacora, Duman, & Krystal, 2018). Subanesthetic doses of 

systemically administered (R,S)-ketamine are indeed known to increase medial prefrontal 

cortex (mPFC) glutamate release, whereas anesthetic doses do the opposite (Moghaddam, 

Adams, Verma, & Daly, 1997). A human magnetic resonance spectroscopy study found 

evidence for increased prefrontal glutamatergic signaling after (R,S)-ketamine intravenous 

infusion, which positively correlated with perceptual dissociation (Abdallah, De Feyter, et 

al., 2018). Regarding the case for glutamatergic inhibition by (R,S)-ketamine: it has been 

shown in rodents that inhibiting NMDARs or glutamate release can block chronic stress-

induced dendritic atrophy (McEwen, 1999). It has also been demonstrated that transient 

exposure to (R,S)-ketamine upregulates GluR1 and GluR2 AMPA receptor subunits on 

human dopamine neurons, which may be involved in a downstream mechanism of action of 

this drug (Collo, Cavalleri, Chiamulera, & Pich, 2019).

Even if the principal, initial mechanism of action of (R,S)-ketamine is glutamatergic, a wide 

range of neurotransmitter systems and molecular pathways may be modulated by (R,S)-

ketamine (Zanos & Gould, 2018; Zanos et al., 2018). We will briefly touch upon some of 

these, beginning with the brain’s principal inhibitory neurotransmitter, GABA. Dysfunction 

in GABAergic interneurons has been implicated in the pathophysiological effects of chronic 

stress and major depression itself (Fee, Banasr, & Sibille, 2017; Fogaça & Duman, 2019). 

Some studies have reported decreased brain GABA levels in depression (Hasler et al., 2007; 

Luscher & Fuchs, 2015), as well as reduced molecular markers of GABA in the default 

mode network during this disease (Gabbay et al., 2012). These studies and others, coupled 

with findings of enhanced glutamatergic transmission noted above, have implicated a high 

excitatory:inhibitory (E:I) ratio in many cases of human major depression (Fee et al., 2017), 

which (R,S)-ketamine may normalize in prefrontal circuits (Fogaça & Duman, 2019). Acute 

administration of (R,S)-ketamine to humans or rodents has been widely reported to enhance 

the power of electroencephalography (EEG) or local field potential (LFP) gamma 

oscillations in a number of circuits (Fitzgerald & Watson, 2019; Hakami et al., 2009; Hunt, 

Garcia, Large, & Kasicki, 2008; Lee, Hudson, O’Brien, Nithianantharajah, & Jones, 2017), 

and this property may underlie its antidepressant action (Amat-Foraster et al., 2018). There 

appears to be a relationship between the LFP (including gamma) and the E:I ratio (Watson, 

Ding, & Buzsaki, 2018), further suggesting a role for (R,S)-ketamine in modulating this 

ratio in depression (Fitzgerald & Watson, 2018).

A recent study found that the opioid receptor antagonist drug, naltrexone, blocked the 

therapeutic effect of (R,S)-ketamine in treatment-resistant depression (Williams et al., 2018). 

Also, a mu opioid receptor agonist, tramadol, has been found to facilitate the antidepressant-

like effect of a sub-effective dose of (R,S)-ketamine in the mouse FST (Ostadhadi S et al., 

2017). On the other hand, another study reports that blockade, partial agonism and low-

affinity agonism of the opioid receptor long-term does not affect the efficacy of (R,S)-

ketamine for depressive symptoms in human subjects (Marton, Barnes, Wallace, & Woolley, 
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2019). Moreover, a pilot study in humans with major depression and concurrent alcohol use 

disorder found that pretreatment with naltrexone did not interfere with the antidepressant 

effects of (R,S)-ketamine (Yoon, Petrakis, & Krystal, 2019). Recent rodent data also found 

that naltrexone did not block the antidepressant-like effect of (R,S)-ketamine in CSDS or 

lipopolysaccharide models (K. Zhang & Hashimoto, 2019). One reason for differences in 

results in opioid system-related studies could be that short-term alteration can interfere with 

the effects of ketamine whereas chronic alteration does not.

Serotonergic signaling may also play a role in (R,S)-ketamine action. Such modulation has 

been demonstrated in rodent models for 5-HT1A, 5-HT3, and 5-HT6 receptors, for example 

(Fukumoto, Iijima, Funakoshi, & Chaki, 2018; Kordjazy et al., 2016; Suárez-Santiago, 

Briones-Aranda, Espinosa-Raya, & Picazo, 2017). Also, serotonin depletion with the drug 

para-chlorophenylalanine (PCPA) can block the antidepressant-like effect of (R,S)-ketamine 

(du Jardin et al., 2016). A recent mouse study, however, found that serotonin depletion with 

PCPA did not block the antidepressant-like effect of (R)-ketamine in a CSDS model (K. 

Zhang, Dong, Fujita, Fujita, & Hashimoto, 2018).

Noradrenergic signaling is another candidate contributor to the mechanism of action of 

(R,S)-ketamine. In two microdialysis studies in freely moving rats, it was shown that mPFC 

release of norepinephrine is dose-dependently enhanced by systemic (R,S)-ketamine, with 

an anesthetic dose (100 mg/kg) producing greater synaptic levels than subanesthetic doses 

(Kubota, Anzawa, et al., 1999; Kubota, Hirota, et al., 1999). It was also demonstrated that 

this enhanced mPFC level of norepinephrine was counteracted by the drug clonidine, an 

inhibitor of presynaptic norepinephrine release. This pair of studies may suggest a 

previously undescribed role for norepinephrine, at high concentrations, in promoting a state 

of anesthesia rather than alertness or arousal (Fitzgerald & Watson, 2019). A human brain 

imaging study has demonstrated a decrease in resting state functional connectivity from the 

noradrenergic locus coeruleus to the thalamus following (R,S)-ketamine administration 

(Liebe et al., 2018). An additional point that may implicate norepinephrine in (R,S)-

ketamine’s mechanism of action: like (R,S)-ketamine itself, norepinephrine boosting 

antidepressants such as reboxetine acutely enhance the power of gamma oscillations 

(Fitzgerald & Watson, 2018; Hajós, Hoffmann, Robinson, Yu, & Va Hajó S-Korcsok, 2003).

In addition to its effects on neurotransmitter systems, administration of (R,S)-ketamine, not 

surprisingly, modulates a number of downstream intracellular molecular pathways (Duman, 

Li, Liu, Duric, & Aghajanian, 2012; Zanos & Gould, 2018). For example, systemic (R,S)-

ketamine has been shown to activate mechanistic target of rapamycin (mTOR) signaling, and 

prefrontal or intracerebroventricular infusion of rapamycin blocks the antidepressant-like 

effects of (R,S)-ketamine (Abelaira et al., 2017; Li et al., 2011; Thelen et al., 2019). Another 

group, however, has found that rapamycin blocks the antidepressant-like effect of (S)-

ketamine but not (R)-ketamine in a mouse CSDS model, suggesting mTOR signaling is not 

necessary for the therapeutic effects of (R)-ketamine (Yang, Ren, et al., 2018). Recent data 

from human subjects suggest that rapamycin actually prolongs, rather than blocks, the 

antidepressant effect of (R,S)-ketamine (Abdallah, Averill, et al., 2018).
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As mentioned above, the Monteggia group has implicated BDNF signaling in the therapeutic 

effects of (R,S)-ketamine (Autry et al., 2011), and other groups have also suggested a similar 

role for this molecule, through both hippocampal and mPFC circuits (Garcia et al., 2008; 

Lepack, Fuchikami, Dwyer, Banasr, & Duman, 2015). These molecular pathways and 

others, such as Ras/MAPK, may play a critical role in the downstream synaptic plasticity 

mechanisms thought to underlie the antidepressant-like effects of (R,S)-ketamine (Duman et 

al., 2012; W. Liu etal., 2017).

Thus clearly a variety of studies by a range of groups have found a remarkable range of 

correlates with ketamine action. The factors contributing to the variance in these data may 

range from experimental details to differential outcome measures to use of multiple species 

to a drug that engages much of the brain. Is a broad brain engagement key to a mechanism 

of action or a signature of efficacy? As a community we will need to determine which of 

these effects may be causal – and consistently causal - in the action of ketamine.

BRAIN REGION-BASED MECHANISMS OF ACTION

Regardless of molecular mechanism, changes in neural activity in specific brain regions may 

be a final common pathway for the behavioral effects of (R,S)-ketamine. Yet multiple 

regions have been implicated in (R,S)-ketamine action, including the mPFC, ventral 

hippocampus and habenula. How these regions cooperate is not clear and each seems to 

demonstrate at least sufficiency in replicating behavioral depression-related effects in 

rodents.

The mPFC is a region frequently implicated in mood and emotional regulation, where 

microinfusion of (R,S)-ketamine or optogenetic stimulation of the infralimbic subdivision of 

mPFC produces antidepressant-like effects similar to systemic administration of (R,S)-

ketamine in rats (Fuchikami et al., 2015). In rats exposed to chronic unpredictable stress 

there are decreases in the expression of synaptic proteins and spine numbers in mPFC layer 

5 pyramidal cells, and these deficits are rapidly reversed by (R,S)-ketamine (Li et al., 2011). 

A recent study in mice found that chronic exposure to the stress molecule, corticosterone, in 

the drinking water promotes stress-like behavioral changes and elimination of dendritic 

spines on mPFC projection neurons, and (R,S)-ketamine reverses these synaptic and 

behavioral effects (Moda-Sava et al., 2019).

The ventral CA3 region of the hippocampus has also been implicated in the therapeutic 

effects of (R,S)-ketamine, particularly its prophylactic effects against social defeat stress in 

mice, partly mediated by expression of the protein ΔFosB (Mastrodonato et al., 2018). A 

series of pharmacological, optogenetic, and chemogenetic experiments in rats demonstrated 

that a ventral hippocampus-mPFC circuit is both necessary and sufficient for the 

antidepressant-like behavioral effects of (R,S)-ketamine (Carreno et al., 2016). Bilateral 

infusion of the enantiomer (R-ketamine into infralimbic (but not prelimbic) cortex, CA3, or 

dentate gyrus of the hippocampus each produced antidepressant-like effects in a rat learned 

helplessness model (Shirayama & Hashimoto, 2017).
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Other work has suggested that neuronal bursting activity in the lateral habenula (which has 

been termed the “anti-reward center”) promotes depression-like behavior (Cui et al., 2018; 

Y. Yang et al., 2018). These papers suggest that (R,S)-ketamine blocks this bursting and may 

disinhibit downstream monoaminergic reward centers, where bursting is bidirectionally 

modulated by the astroglial potassium channel Kir4.1 (Cui et al., 2018; Y. Yang et al., 2018). 

Yang et al. (2018) also found that systemic administration of the T-type calcium channel 

blocker ethosuximide has (R,S)-ketamine-like rapid antidepressant-like effects, but this was 

not replicated in a recent study using the chronic social defeat stress (CSDS) behavioral 

model of stress (Tian, Dong, Zhang, Chang, & Hashimoto, 2018). Another study by the 

latter group also found that Kir4.1 channel inhibitors did not produce rapid and sustained 

antidepressant-like effects in a CSDS model (Xiong et al., 2019).

Perhaps relatedly, (R,S)-ketamine and its metabolite (2R,6R)-HNK have been shown in mice 

to impair long-term potentiation in the nucleus accumbens. (R,S)-ketamine inhibits 

phosphorylation of the GluA1 AMPA receptor subunit in this circuit, where these synaptic 

effects may modulate reward-related behaviors (Yao, Skiteva, Zhang, Svenningsson, & 

Chergui, 2018).

Moving forward to fully characterize the mechanism of action of ketamine may require a 

focus on the circuit level effects of (R,S)-ketamine – given the clear involvement of many 

brain regions. One region may drive others, or all may be driven by (R,S)-ketamine. 

Furthermore, their interaction may or may not be crucial, independent of the individual 

effects in single regions. Targeted multisite recording and stimulation methods may be 

crucial here to clarify these multiple findings – and again may both help us understand 

(R,S)-ketamine actions and new neurobiology.

In summary, we need still to determine whether (R,S)-ketamine has multiple effects 

simultaneously and at what levels those effects are brought about – action at multiple 

receptors, multiple downstream intracellular effectors or final common networks. The 

complexities raised by these pharmacologic studies demonstrate the need for a great deal of 

further research. In addition, it should be remembered that large-scale effects from any one 

system can induce changes in other neurotransmitters or other signaling systems. Thus, an 

important future focus may be on specifically assessing causal relationships in both 

directions between treatment and effect, as well as at smaller scales – for example examining 

whether changes in one system are actually induced by (R,S)-ketamine versus induction by 

downstream effects of this drug.

HYPOTHESES ON MECHANISM OF ACTION

While there is much variability in the data as summarized above, which requires further 

experimentation, other ideas may have sufficiently emerged at this point to allow us to 

integrate and speculate in ways that may guide future hypothesis testing. A broad range of 

brain regions, neurotransmitter systems (not limited to glutamatergic signaling) and 

downstream molecular pathways are recruited and altered by a single, systemic 

administration of (R,S)-ketamine. Regarding the NMDAR antagonism versus AMPA 

potentiation by (2R,6R)-HNK question: we suggest here that NMDAR blockade is more 
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likely to be the primary initial mechanism of action, if only due to the large number of 

studies showing this mechanism in ketamine itself and with a variety of drugs that are 

thought to be NMDAR antagonists (Layer, Popik, Olds, & Skolnick, 1995; Meloni et al., 

1993; Moryl, Danysz, & Quack, 1993; Papp & Moryl, 1994, 1996; Przegaliński, 

Tatarczyńska, Dereń-Wesołek, & Chojnacka-Wójcik, 1997; Trullas & Skolnick, 1990). 

These drugs are unlikely to all have (2R,6R)- or (2S,6R)-HNK as metabolites, suggesting 

the parsimonious hypothesis that (R,S)-ketamine and all of these other drugs are acting at 

least mainly through NMDAR antagonism. If (2R,6R-HNK is potentiating AMPAR 

signaling (i.e., a facilitation of glutamatergic transmission), then this effect could still add to 

the “glutamatergic burst” that (R,S)-ketamine may principally evoke through NMDAR 

antagonism, where this burst may involve inhibition of GABAergic interneurons bearing 

NMDA receptors, leading to disinhibition of glutamatergic neurons and increased release of 

synaptic glutamate (Duman et al., 2012). Additionally, both AMPAR- and NMDAR-based 

mechanisms will necessarily involve each other due to positive feedback in recurrent mostly-

glutamatergic neural networks such as those in the cortex and the hippocampal CA3 region. 

Further, as noted above, even if the principal, initial mechanism of action of (R,S)-ketamine 

is NMDAR antagonism, a wide range of neurotransmitter systems, molecular pathways, and 

brain regions may be modulated by (R,S)-ketamine due to downstream crosstalk.

We suggest here that the “glutamatergic burst” which follows acute administration of (R,S)-

ketamine is accompanied by elevated synaptic norepinephrine (Kubota, Anzawa, et al., 

1999; Kubota, Hirota, et al., 1999), where the initial release of these two neurotransmitters is 

interrelated and can be accompanied by the dissociative effects of this drug. In the minutes 

to hours that follow, both in rodents and humans, compensatory mechanisms are induced to 

suppress this excessive neural activity (including suppression of noradrenergic and 

glutamatergic signaling), which decreases the E:I ratio in a number of mood-related circuits 

and thereby has an antidepressant-like effect that is maintained through many of the 

molecular and synaptic mechanisms noted above. We draw an analogy here between 

subanesthetic (R,S)-ketamine and electroconvulsive therapy (ECT): both may have an 

initially “excitatory” mechanism that is followed by suppression of neural activity in diverse 

circuits (Kheirabadi, Vafaie, Kheirabadi, Mirlouhi, & Hajiannasab, 2019; Kohtala et al., 

2018; Mickey et al., 2018; Tadler & Mickey, 2018). Finally, if glutamatergic and 

noradrenergic signaling are indeed intertwined in the therapeutic effects of (R,S)-ketamine, 

then norepinephrine-lowering drugs may also have rapidly acting antidepressant properties, 

which has already been demonstrated for the drug guanfacine in rodents (Mineur et al., 

2015, 2018).

It is difficult to speculate how the multiple brain regions thus far implicated in the 

mechanism of action of (R,S)-ketamine interact, but mPFC, habenula and hippocampus all 

have been shown to be of import using causal experimental methodologies. Given that multi-

region interactions are frequently observed in many brain phenomena using fMRI and other 

whole-brain imaging techniques, it is likely that these and possibly other regions interact to 

enable the effects of (R,S)-ketamine. It may actually specifically be the re-balancing of the 

relative activities of these regions that is the key to (R,S)-ketamine function. That said, the 

sufficiency of manipulation of each region to control ketamine effects suggests that these 

individual nodes of this potential network are each able to induce relatively full responses 
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across the network. This is a case where in vivo circuit activity measurement - and not just 

causal experimentation - may shed the most light.

CONSISTENCY OF REPORTED ANTIDEPRESSANT-LIKE BEHAVIORAL 

EFFECTS

The second half of this paper addresses another intriguing aspect of the (R,S)-ketamine 

literature: the consistent positive reporting of antidepressant-like responses to (R,S)-

ketamine across dose, mouse or rat species and strain, type of test used, presence or type of 

stressor, and even the sex of the experimenter. While the similarity of reporting is striking, 

we specifically analyze the publication record and reporting patterns and ask whether stress 

does or does not play into various reports and whether it should or should not be considered 

a major axis of study in the rodent field.

The relatively remarkable reporting of similar antidepressant-like effects across very 

different tests (tail suspension, sucrose preference, as well as FST) and a wide range of 

mouse and rat strains (Autry et al., 2011; Cunha et al., 2015; Mishra, Kumar, Behar, & Patel, 

2018; Neis et al., 2016) suggests the utility of rodent research for understanding this drug 

that also appears to help many patients with a variety of clinical depression subtypes. But on 

the other hand, this finding on animal strain is somewhat surprising, given that the behavior 

of different strains of mice and rats varies greatly upon exposure to monoaminergic 

antidepressants (Dulawa, Holick, Gundersen, & Hen, 2004) and in fear-related behavior 

(Fitzgerald et al., 2014; Hefner et al., 2008), as well as in other tests commonly used in 

behavioral neuroscience (Fitzpatrick et al., 2013; Gileta et al., 2018; Mozhui et al., 2010). 

Additionally, while in human populations, (R,S)-ketamine is given to individuals with 

depression, many rodent studies report that (R,S)-ketamine has antidepressant-like effects in 

unstressed animals.

To further investigate this topic, on January 16, 2019 we systematically searched PubMed 

with the following terms: ketamine AND ("forced swim" OR "forced swimming" OR 

antidepressant-like OR antidepressant-related OR depression-like OR depression-related). 

This search of 328 papers yielded 52 that met our criteria to be included in Table 1. This 

table summarizes all studies from this search that used a single intraperitoneal injection of 

racemic (R,S)-ketamine and measured immobility in the FST 24 hours or more later. 

Importantly, we chose not to focus on the acute (i.e., minutes to several hours) effects of 

(R,S)-ketamine in this test, which we suggest may be associated with psychotomimetic or 

dissociative effects of this drug rather than its sustained antidepressant-like qualities that 

emerge later. Inspection of Table 1 suggests that across a wide range of variables—species 

and strain, sex, dose, time delay between injection and start of FST, type (or absence) of 

stressor, and possibly even the sex of the experimenter—(R,S)-ketamine displays similar 

effects in the FST, namely an antidepressant-like decrease in immobility. There are some 

exceptions to this such as our own recent study (Fitzgerald, Yen, & Watson, 2019), which 

indicates that stress strongly modulates the effect of (R,S)-ketamine.

While the data in Table 1 follow the general trend of demonstrating (R,S)-ketamine induced 

reduction of FST immobility, closer inspection of the table may reveal some more subtle 
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differences with respect to these variables. For example, C57BL/6 and BALB/cJ mice tend 

to show stronger antidepressant-like responses to (R,S)-ketamine, whereas CD-1 mice show 

more variable responses. Within several studies, the unstressed groups of rodents did not 

respond significantly to a certain dose, whereas the stressed animals responded to that same 

dose, suggesting some degree of stress-sensitivity (Ma et al., 2013; Shepard et al., 2018; Xie 

et al., 2017). However, a fairly similar proportion of studies that used stress (19/22 = 0.86) 

versus no stress (28/40 = 0.70) reported a significant decrease in immobility, suggesting a 

lack of prominent stress sensitivity to (R,S)-ketamine in the FST. Mice and rats showed a 

significant decrease in immobility in a similar proportion of studies (mice: 26/36 = 0.72, 

rats: 22/30 = 0.73), even though brain-body scaling factors (i.e., larger animals require lower 

mg/kg ratio dose to receive same effect) would suggest that rats should receive a lower 

mg/kg dose than mice. For comparison, a dose of 0.5 mg/kg (i.v.) is often used as an 

efficacious antidepressant dose in humans. The mice and rat studies summarized in Table 1 

suggest (R,S)-ketamine has antidepressant-like effects in rodents over a wide range of doses 

(1-30 mg/kg), and the field has apparently settled on 10 mg/kg as the most frequently used 

dose.

Table 1 includes only a limited number of studies in female animals, so studying sex 

differences (of the animals used) is an important future direction. These data may 

nonetheless suggest that female rodents are somewhat more sensitive to (R,S)-ketamine than 

males, considering that all five studies that used groups that were purely female found a 

significant antidepressant-like effect. These studies include one with both stressed and 

unstressed experiments whose authors suggest this may be due to hormonal, serotonergic, or 

glutamatergic sex differences in circuits such as prefrontal cortex and hippocampus 

(Franceschelli, Sens, Herchick, Thelen, & Pitychoutis, 2015). These authors also suggest 

that female rodents are more sensitive to earlier (up to 24 hours) effects of this drug, but then 

these effects wear off sooner than in males (Franceschelli et al., 2015). Although human 

females are more frequently afflicted with major depression than males, it has been 

suggested that (R,S)-ketamine is similarly effective in both sexes (Williams & Trainor, 

2018). Table 1 also illustrates the sustained nature of (R,S)-ketamine’s antidepressant-like 

effects: many studies report a sustained and significant decrease in depression-like behavior 

after 7 days and 14 days, for example. One study even shows a significant decrease in 

immobility after 28 days (Y. Wang et al., 2018).

KETAMINE ACTION IN UNSTRESSED RODENTS

Figure 1 represents an effort to “meta-analyze” the data from the field gathered in the 

literature search described above. It shows a funnel plot, summarizing effect size distribution 

in a subset of the studies listed in Table 1 - specifically the 13 studies for which we were 

able to obtain immobility data in unstressed mice (various strains) at the 24 hour post-

injection timepoint, in a moderate subanesthetic dose range between 5-20 mg/kg (for which 

the highest dose that met our criteria was 17 mg/kg). We chose to plot only unstressed mice 

in Figure 1 for several reasons: 1) “stressed” animals in the various studies from Table 1 

were given a very wide range of stress types across studies, so combining those data in one 

plot may be confusing; 2) unstressed animals are widely reported to exhibit antidepressant-

like responses to (R,S)-ketamine in these studies, which may seem surprising since these 
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animals were presumably not in a depression-like state and this should be investigated 

further; 3) we sought to compare these various unstressed studies with our own unstressed 

mouse strain comparison data (Figure 2).

In Figure 1 we also included data from two of our own cohorts that used 10 mg/kg (R,S)-

ketamine in male C57BL/6J mice (see Legend), obtained from our previous publication 

(Fitzgerald, Yen, & Watson, 2019). The “meta analysis” data shown in Figure 1 have more 

points on the right side of the graph, which means that more published studies show a 

decrease in immobility in the FST under these conditions. One of our two cohorts falls 

closer to the center of the distribution, with the other farther to the left, where far leftward 

points represent a paradoxical increase in immobility. Quantitatively, the distribution of the 

standard difference in means has a skewness (measured by the adjusted Fisher-Pearson 

standardized moment coefficient) of −0.9085, which indicates that it is moderately 

negatively skewed and that the majority of points fall to the right of the expected value. This 

may be due to the presence of an underlying non-gaussian, and possibly multi-modal, 

distribution or a variety of other factors. Finding more points to the right in Figure 1 is 

consistent with findings from the larger number of studies we summarized in Table 1, which 

also reported a high proportion of decreases in immobility in the FST after a single injection 

of (R,S)-ketamine. It remains unclear where the spread of data comes from and whether the 

increased numbers of points toward the right of the graph compared to the left is worth 

specific consideration. One possibility is that “unstressed” conditions vary in different labs’ 

experimental procedures or housing (lighting, staff handling, enrichment, etc.), and that such 

differences could drive variability with respect to the mean observed in Figure 1. Also, 

opposing effects of (R,S)-ketamine based on the stress state of mice would be represented as 

both leftward and rightward points in the funnel plot. This may be expected given that a 

recent study in human subjects found opposing effects of (R,S)-ketamine based on whether 

the individuals had major depression or not, since depression can be induced by 

psychological stress (Nugent et al., 2018). If there is an under-representation of negative 

(i.e., no change in immobility) or contrary (i.e., paradoxical increase in immobility) results 

in the published literature, it may be because it is more difficult to publish these types of 

results at this stage since the decrease in immobility result is well-established.

To further investigate how (R,S)-ketamine and stress effects may vary across individuals, we 

compared FST effects in different mouse strains. Figure 2 shows strain comparison data 

from our lab, previously unpublished except for the C57BL/6J data that were contained in 

Fitzgerald et al. (2019) and for that mouse strain represent the first of our two experiments 

described in the previous paragraph (Figure 1, our leftmost point), with the addition of 

C57BL/6J mice that received a 30 mg/kg dose (Fitzgerald et al., 2019). The data in Figure 2 

depict FST immobility in five strains of unstressed mice, averaged over the last four minutes 

of the six minute test (Fig. 2A,B), and also binned by minute (Fig. 2C,D) for these two post-

injection tests (see Table S1 for a statistical summary). Since different strains of mice are 

known to exhibit widely differing amounts of immobility in the FST, it is not surprising that 

at both the 24 hour post-injection timepoint (Fig. 2A) and when the same animals were 

tested again 7 days post-injection (Fig. 2B), there is a main effect of strain in the two-way 

(strain x drug) ANOVA (24 hours: F(4,105) = 21.06, p < 0.01; 7 days: F(4,105) = 21.9, p < 

0.01) (see Table S1 for a summary of which strains differed significantly from one another). 
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However, at the 24 hour timepoint there is also a main effect of drug (F(2,105) = 3.3, p < 

0.05), with 30 mg/kg (R,S)-ketamine on average showing a trend toward an increase in 

immobility relative to vehicle (Tukey’s multiple comparisons test; p = 0.089) and the 10 

mg/kg (p = 0.059) groups, where the latter two groups tend to be similar to one another 

across strains. When we parsed the data into one minute bins for the 24 hour post-ketamine 

test (Fig. 2C) and 7 days post-ketamine test (Fig. 2D), repeated measures ANOVA did not 

reveal a significant effect of drug or a drug-by-time interaction (each p > 0.05) for any 

mouse strain, but there was a significant effect of time for all strains (each p < 0.0001). The 

results in Figure 2 are perhaps paradoxical and suggest (R,S)-ketamine is not antidepressant-

like in the FST across a range of mouse strains that have not been subjected to marked 

stress, extending findings that we previously reported for C57BL/6J mice (Fitzgerald et al., 

2019). It is also interesting to note that while there was no strain-by-drug interaction in the 

two-way ANOVA, the C57BL/6J strain seems to differ from the other strains in that both the 

10 and 30 mg/kg doses increase immobility 24 hours post-injection ( Fitzgerald et al., 2019).

Another poorly understood factor at this time may be how sex of the (human) experimenter 

may interact with sex of the animals being tested in the FST. This phenomenon has already 

been repeatedly demonstrated in psychological studies investigating behavior in human 

subjects (Chapman, Benedict, & Schiöth, 2018), a concept that may extend to rodent 

experiments (Georgiou et al., 2018). Since (R,S)-ketamine treatment has different effects on 

male versus female mice and rats (Carrier & Kabbaj, 2013; Franceschelli et al., 2015; 

Thelen, Sens, Mauch, Pandit, & Pitychoutis, 2016), perhaps experimenter sex could interact 

with these pharmacological effects. The potential effects of sex of the experimenter are, 

however, not well characterized at this time and future studies should address whether it has 

significant effects on rodent behavior.

Animal age is an additional factor to consider in rodent antidepressant studies, since these 

drugs can be less effective in elderly human populations (Patel, Abdool, Rajji, & Mulsant, 

2017). Another variable, or set of variables, in rodent drug studies comprises the setting or 

context of the injection itself. For example, is the room in which the injection takes place the 

same as the testing room? After the injection and before the test, are the animals placed in a 

cage with other vehicle only animals, or instead in a cage with only animals that received 

drug? These factors could contribute to the variability that we report here in the ketamine 

literature.

In summary, there is some degree of consistency in the reported antidepressant-like effects 

of (R,S)-ketamine across a range of differing variables, including in the rodent FST (Table 1) 

but we may need to pay specific attention to whether animals are stressed or unstressed. Our 

brief “meta analysis” of a subset of these data (Figure 1) suggests that, in animals not 

subjected to marked psychosocial stress, negative results or paradoxical increases in 

immobility have not been emphasized in the literature. Our own mouse strain comparison 

data (Figure 2) suggest that a number of unstressed strains show mild increases in 

immobility in the 24-hour post-injection FST, after a single injection of 30 mg/kg (R,S)-

ketamine.
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SUMMARY AND CONCLUSIONS

Here we have reviewed two intriguing topics in the (R,S)-ketamine literature: first, the 

putative antidepressant-like mechanism of action of this drug, and second, its widely 

reported similar therapeutic effects across a range of factors and testing parameters. We 

suggest that (R,S)-ketamine’s antidepressant effects (in humans and rodents) require an 

initial glutamatergic (and possibly noradrenergic) “excitatory burst”, whether mediated 

principally by NMDAR antagonism or partly by AMPAR potentiation. This burst is 

followed by compensatory suppression of neural activity that decreases the E:I ratio to 

achieve its antidepressant-related effects. This effect may be spread across multiple brain 

regions simultaneously and each may be crucial. In the second portion of the paper, we 

suggest that there has been an under-emphasis of the potential stress-sensitivity of (R,S)-

ketamine in rodent depression-related tests, including the FST. Gaining a greater 

understanding of the experimental conditions under which this drug exhibits antidepressant-

like properties (or depression-like ones) has translational relevance for modeling major 

depression in human subjects (Fitzgerald et al., 2019), where opposing effects of (R,S)-

ketamine have recently been reported based on whether the individuals were suffering from 

major depression or not (Nugent et al., 2018). Many studies of this drug have been 

conducted only in unstressed animals, so including animals that have been exposed to 

chronic psychosocial stress, such as CSDS, to induce a depression-like state may be critical 

for understanding the therapeutic properties of (R,S)-ketamine (Bale et al., 2019; Hashimoto 

& Shirayama, 2018).

We suggest that researchers view the variability and current lack of clarity on many points in 

the field as potentially helpful in the long term. If we can understand the source of variance 

in these data we can better study the complex biology we are attempting to understand. The 

variance is there, most likely, due to a combination of “noise” but also possibly some 

systematic differences in factors such as animal housing, drug administration, animal 

handling, recording methodologies, analytical techniques, animal strain, sex, dosing and test 

timing, circadian differences and others. Human psychiatric conditions are also expressed in 

individuals within a context that includes huge variability in background conditions. If, as a 

field, we can understand how the variance in our laboratories influences the effects of (R,S)-

ketamine and other drugs, we stand a better chance of understanding variability among 

individuals in patient populations. Considering variability as not a barrier but as a tool can 

lead to more effective and often personalized interventions on our way to better 

understanding neurobiology.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Funnel plot “meta analysis” of a subset of 13 unstressed forced swim studies from Table 1. 

The abscissa is effect size which quantifies the difference in immobility between the (R,S)-

ketamine and vehicle groups in a given study, whereas the ordinate is the “precision” also 

known as the inverse standard error, a measure of sample size. The curved lines represent the 

95% confidence interval. Cohen’s d was used to determine effect sizes. Positive effect sizes 

represent decreases in immobility induced by (R,S)-ketamine, whereas negative values 

indicate increases in immobility on this drug. As noted in the legend, our own data 

(Fitzgerald et al. 2019) are depicted as open squares in this graph. This figure only includes 

studies of mice (various strains) at the 24 hour post-injection timepoint, in a moderate 

subanesthetic dose range between 5-20 mg/kg (see legend).
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Figure 2. 
Strain comparison data reveal increased forced swim immobility after (R,S)-ketamine in 

unstressed mice. Immobility in this test: A, 24 hours after a single injection of (R,S)-

ketamine, averaged across the last four minutes of the six minute test; B, the same animals 

were tested again seven days after this injection, also averaged across the last four minutes; 

C, 24 hour post-injection data binned in one minute intervals; D, 7 day post-injection data 

binned in one minute intervals. Strain-by-drug two-way ANOVAs reveal a main effect of 

strain at both timepoints in A and B, and a main effect of drug only at the 24 hour point. 

Vehicle solution is 0.9% saline. Bars and points in A-D depict mean ± standard error of 

mean (SEM). Significance indicators for the two-way ANOVAs (centered over each graph) 

are marked by *p < 0.05, **p < 0.01. See Fitzgerald et al. (2019) for detailed methodology.
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Table 1.

Summary of literature on sustained effects of (R,S)-ketamine in the rodent forced swim test (FST). Criteria for 

studies to be included in this table. 1) wild type mouse or rat, 2) single intraperitoneal injection of 1-30 mg/kg 

(R,S)-ketamine, 3) FST carried out 24 hours or more post-injection. “Sex” refers to sex of the animals used. 

“Change in Immobility” column indicates whether (R,S)-ketamine decreased or increased this measure 

relative to vehicle-injected animals subjected to the same stress condition (i.e., stressed or unstressed); “Stat 

Sig” column indicates whether the difference between (R,S)-ketamine and vehicle immobility was statistically 

significant, for p < 0.05. Other abbreviations are defined within the table when they first appear. All 

experiments that used chronic stress are marked in red. Experiments that showed a statistically significant 

decrease in immobility are marked in dark green, whereas those with a decrease that was not significant are 

marked in light green. Experiments that exhibited a statistically significant increase in immobility are colored 

dark blue, whereas those with an increase (or “no change”) that was not significant are light blue.

Publication Species Strain Sex
Dose(s)
(mg/kg)

Time
Delay Stressor/Unstressed Δ Immobility

Stat
Sig

(Autry et al., 2011) Mouse C57BL/6 M 3 24 hr Unstressed Decrease Yes

C57BL/6 M 3 7 days Unstressed Decrease Yes

(Liu et al., 2012) Mouse C57BL/6 M 10 24 hr Unstressed Decrease Yes

(Ma et al., 2013) Mouse C57BL/6J M 10 48 hr
Chronic Mild Stress 
(CMS) Decrease Yes

C57BL/6J M 10 48 hr Unstressed (control) Decrease No

(Pozzi et al., 2014) Mouse C57BL/6N M 3 24 hr Unstressed Decrease Yes

C57BL/6N M 3 7 days Unstressed Decrease No

(Gideons et al., 2014) Mouse C57BL/6 M 3 24 hr Unstressed Decrease Yes

(Nosyreva et al., 
2014) Mouse C57BL/6 M 3 24 hr Unstressed Decrease Yes

(Franceschelli et al., 
2015) Mouse C57BL/6J M 3 24 hr Unstressed Decrease No

C57BL/6J M 5 24 hr Unstressed Decrease No

C57BL/6J M 10 24 hr Unstressed Decrease Yes

C57BL/6J F 3 24 hr Unstressed Decrease No

C57BL/6J F 5 24 hr Unstressed Decrease Yes

C57BL/6J F 10 24 hr Unstressed Decrease Yes

C57BL/6J M 10 24 hr CMS Decrease Yes

C57BL/6J M 10 7 days CMS Decrease Yes

C57BL/6J F 10 24 hr CMS Decrease Yes

C57BL/6J F 10 7 days CMS Decrease No

C57BL/6J F 10 5 days CMS Decrease Yes

(Dong et al., 2017) Mouse C57BL/6 M 10 48 hr Social Defeat Stress Decrease Yes

(Zhang et al., 2018) Mouse C57BL/6 M 10 24 hr
Chronic Unpredictable 
Stress (CUS) Decrease Yes

C57BL/6 M 10 3 days CUS Decrease Yes

C57BL/6 M 10 5 days CUS Decrease Yes

C57BL/6 M 10 7 days CUS Decrease Yes
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Publication Species Strain Sex
Dose(s)
(mg/kg)

Time
Delay Stressor/Unstressed Δ Immobility

Stat
Sig

(Fukumoto et al., 
2018) Mouse C57BL/6J M 30 24 hr Unstressed Decrease Yes

(Wang et al., 2018a) Mouse C57BL/6 M 30 28 days Unstressed Decrease Yes

C57BL/6 M 30 28 days
Unpredictable Chronic 
Mild Stress (UCMS) Decrease No

(Shen et al., 2018) Mouse C57BL/6J M 10 5 days
Chronic Social Defeat 
Stress (CSDS) Decrease Yes

(Huang et al., 2019) Mouse C57BL/6 M 10 25 hr
Lipopolysaccharide 
(Induced Inflammation) Decrease Yes

(Hare et al., 2019) Mouse C57BL/6J M & F 10 24 hr Unstressed Decrease No

(Fitzgerald et al., 
2019) Mouse C57BL/6J M 10 24 hr Unstressed Increase Yes

C57BL/6J M 30 24 hr Unstressed Increase Yes

C57BL/6J M 10 7 days Unstressed Increase No

C57BL/6J M 30 7 days Unstressed Decrease No

C57BL/6J M 10 24 hr UCMS Increase No

C57BL/6J M 30 24 hr UCMS Decrease No

C57BL/6J M 10 7 days UCMS Increase No

C57BL/6J M 30 7 days UCMS Decrease No

(Wang et al., 2018b) Mouse ICR M 10 24 hr Unstressed Decrease Yes

(Botanas et al., 2017) Mouse ICR M 5 24 hr Unstressed Decrease Yes

ICR 10 24 hr Unstressed Decrease Yes

(Lin et al., 2016) Mouse ICR M 3 7 days Unstressed Decrease No

ICR M 10 7 days Unstressed Decrease Yes

ICR M 15 7 days Unstressed Decrease Yes

(Pham et al., 2017) Mouse BALB/cJ M 10 24 hr Unstressed Decrease Yes

(Wu et al., 2017) Mouse BALB/cJ
M and 
F 30 24 hr

Offspring of Female 
Mice with Post Partum 
Depression (PPD) Decrease Yes

(Pham et al., 2018) Mouse BALB/cJ M 10 24 hr Unstressed Decrease Yes

(Xia et al., 2016) Mouse BALB/cJ F 30 24 hr
Prepregnancy Stress and 
Parturition (SP) Decrease Yes

(Tao et al., 2014) Mouse Kunming M 30 24 hr Unstressed Decrease Yes

(Tang et al., 2015) Mouse Kunming M 30 24 hr CMS Decrease Yes

(Popik et al., 2017) Mouse CD-1 M 5 24 hr Unstressed Increase No

CD-1 M 10 24 hr Unstressed Increase No

CD-1 M 15 24 hr Unstressed Decrease No

CD-1 M 25 24 hr Unstressed Increase No

(Clarke et al., 2017) Mouse CD-1 M 10 2 days Unstressed Decrease No

CD-1 M 10 5 days Unstressed Decrease No

CD-1 M 10 8 days Unstressed Decrease No

(Bechtholt-Gompf et 
al., 2011) Mouse CD-1 M 2.5 7 days Unstressed Decrease No
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Publication Species Strain Sex
Dose(s)
(mg/kg)

Time
Delay Stressor/Unstressed Δ Immobility

Stat
Sig

CD-1 M 12.5 7 days Unstressed Decrease No

(Zanos et al., 2015) Mouse CD-1 M 10 24 hr Unstressed Decrease Yes

(Zanos et al., 2016) Mouse CD-1 M 1 24 hr Unstressed Decrease No

CD-1 M 3 24 hr Unstressed Decrease No

CD-1 M 10 24 hr Unstressed Decrease Yes

CD-1 M 30 24 hr Unstressed Decrease No

CD-1 F 1 24 hr Unstressed Decrease No

CD-1 F 3 24 hr Unstressed Decrease Yes

CD-1 F 10 24 hr Unstressed Decrease Yes

(Yuen et al., 2017) Mouse NIH- Swiss M 17 24 hr Unstressed Increase No

(Popik et al., 2008) Mouse Albino Swiss M 1.25 14 days Unstressed Decrease No

Albino Swiss M 2.5 14 days Unstressed Decrease No

Albino Swiss M 5 14 days Unstressed Decrease No

Albino Swiss M 10 14 days Unstressed Decrease No

(Maeng et al., 2008) Mouse Not Specified M 2.5 14 days Unstressed Decrease Yes

(Wang et al., 2011) Rat Sprague-Dawley M 10 24 hr
Spared Nerve Injury 
(SNI) Decrease Yes

(Gigliucci et al., 
2013) Rat Sprague-Dawley M 25 24 hr Unstressed Decrease Yes

Sprague-Dawley M 25 24 hr Restraint Stress Increase No

(Koike & Chaki, 
2014) Rat Sprague-Dawley M 10 24 hr Unstressed Decrease Yes

(Lepack et al., 2015) Rat Sprague-Dawley M 10 24 hr Unstressed Decrease Yes

(Dwyer et al., 2015) Rat Sprague-Dawley M 10 24 hr Unstressed Decrease Yes

(Jett et al., 2015) Rat Sprague-Dawley M 10 7 days Unstressed Decrease Yes

(Sun et al., 2016) Rat Sprague-Dawley M 10 72 hr UCMS Decrease Yes

(Sarkar & Kabbaj, 
2016) Rat Sprague-Dawley M 2.5 3 days Isolation Stress (IS) Decrease No

Sprague-Dawley M 5 3 days IS Decrease Yes

Sprague-Dawley M 2.5 3 days Unstressed (Pair Housed) Decrease No

Sprague-Dawley M 5 3 days Unstressed Decrease Yes

Sprague-Dawley F 2.5 3 days IS Decrease No

Sprague-Dawley F 5 3 days IS Decrease Yes

Sprague-Dawley F 2.5 3 days Unstressed Decrease Yes

Sprague-Dawley F 5 3 days Unstressed Decrease Yes

(Chowdhury et al., 
2017) Rat Sprague-Dawley M 3 24 hr Unstressed Decrease No

Sprague-Dawley M 30 24 hr Unstressed Decrease Yes

(Podkowa et al., 
2016) Rat Sprague-Dawley M 3 24 hr Unstressed Decrease No

Sprague-Dawley M 10 24 hr Unstressed Decrease Yes

Sprague-Dawley M 30 24 hr Unstressed Decrease No
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Publication Species Strain Sex
Dose(s)
(mg/kg)

Time
Delay Stressor/Unstressed Δ Immobility

Stat
Sig

(Zhang et al., 2016) Rat Sprague-Dawley M 20 24 hr CFA Decrease Yes

(Donegan & Lodge, 
2017) Rat Sprague Dawley M 10 7 days Unstressed Decrease Yes

(Xie et al., 2017) Rat Sprague-Dawley M 20 48 hr Unstressed No change No

Sprague-Dawley M 20 48 hr SNI Decrease Yes

(Jiang et al., 2017) Rat Sprague-Dawley M 10 24 hr CUS Decrease No

Sprague-Dawley M 10 7 days CUS Decrease Yes

(Hou et al., 2018) Rat Sprague-Dawley M 5 23.5 hr

SPS&S (Single 
Prolonged Shock and 
Electric Foot Shock) Decrease No

Sprague-Dawley M 10 23.5 hr SPS&S Decrease Yes

Sprague-Dawley M 15 23.5 hr SPS&S Decrease Yes

Sprague-Dawley M 20 23.5 hr SPS&S Decrease No

(Shepard et al., 2018) Rat Sprague-Dawley M 20 24 hr
Unstressed (Postnatal 
(P)42-P50) Decrease No

Sprague-Dawley M 20 24 hr
Maternal Deprivation 
(MD) Decrease Yes

Sprague-Dawley M 20 24 hr Unstressed (P21-P28) Increase No

Sprague-Dawley M 20 24 hr MD Increase Yes

(Pałucha-Poniewiera 
et al., 2019) Rat Sprague-Dawley M 3 24 hr Unstressed Decrease No

(Maciel et al., 2018) Rat Wistar M 15 8 days CMS Decrease Yes

Wistar M 15 8 days Maternal Deprivation Decrease Yes

(Réus et al., 2014) Rat Wistar M 15 23.5 hr Unstressed Decrease Yes

(Chindo et al., 2012) Rat Wistar M 30 24 hr Unstressed No change No

(Liu et al., 2013) Rat Not Specified M 10 24 hr Unstressed Decrease Yes

Not Specified M 10 7 days Unstressed Decrease Yes

Not Specified M 10 14 days Unstressed Increase No

Not Specified M 1 24 hr Unstressed Increase No
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