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5-Fluorouracil treatment induces characteristic
T>G mutations in human cancer
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5-Fluorouracil (5-FU) is a chemotherapeutic drug commonly used for the treatment of solid
cancers. It is proposed that 5-FU interferes with nucleotide synthesis and incorporates into
DNA, which may have a mutational impact on both surviving tumor and healthy cells. Here,
we treat intestinal organoids with 5-FU and find a highly characteristic mutational pattern
that is dominated by T>G substitutions in a CTT context. Tumor whole genome sequencing
data confirms that this signature is also identified in vivo in colorectal and breast cancer
patients who have received 5-FU treatment. Taken together, our results demonstrate that 5-
FU is mutagenic and may drive tumor evolution and increase the risk of secondary malig-
nancies. Furthermore, the identified signature shows a strong resemblance to COSMIC sig-
nature 17, the hallmark signature of treatment-naive esophageal and gastric tumors, which
indicates that distinct endogenous and exogenous triggers can converge onto highly similar
mutational signatures.
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he use of 5-Fluorouracil (5-FU) as an anticancer agent

became routine practice soon after its primary synthesis in

1957, and remains essential in many chemotherapeutic
regimens today!. The fluoropyrimidines, especially 5-FU, cape-
citabine, tegafur, and cytarabine, are currently the third most
commonly used anticancer drug in the treatment of solid cancers,
including colorectal and breast cancers, and over two million
patients are estimated to be treated with fluoropyrimidines each
year?. Response rates of 5-FU as a single drug are 10-15%, but
increase drastically (>50% response) when given in combination
therapies with leucovorin together with oxaliplatin or irinotecan
(i.e., FOLFOX and FOLFIRI, respectively)3->.

The antifolate property of fluoropyrimidines is thought to be
the principal mechanism of action. Fluoropyrimidines are intra-
cellularly converted into the antifolate 5-fluorodeoxyuridine
monophosphate (5-FAUMP) that can form a covalent inter-
mediate with the folate-dependent enzyme thymidylate synthase
(TYMS)® Consequently, the formation of dTMP from dUMP is
inhibited which results in an imbalance of the nucleotide pool
that affects DNA synthesis, possibly through incorporation of
uracil, and impairs genome replication, with negative con-
sequences for rapidly dividing cells such as cancer cells. More-
over, it has been proposed that 5-fluorodeoxyuridine triphosphate
(5-FdUTP) can be directly incorporated into genomic DNA as
well”8. Considering these properties, it is conceivable that
fluoropyrimidines have mutagenic potential, although the muta-
tional consequences of 5-FU treatments are still poorly
understood.

In cancer, systematic analysis of genome-wide mutation cata-
logs has revealed a number of characteristic mutational patterns
or mutational signatures’. Some of these signatures have been
linked to perturbed endogenous processes like deficient DNA
repair, or exogenous challenges, like exposure to UV-light or
mutagenic chemicals. Such information thus provides insight into
the mutational processes that have been active during tumor-
igenesis and which could potentially be used for prevention
strategies or personalized treatment strategies. Previously, it has
been shown that certain anticancer treatments can be associated
with characteristic mutational signatures, such as alkylating
agents>19, cisplatin!112 and ionizing radiation!314. Unlike these
anticancer treatments, and in spite of its mutagenic potential, 5-
FU could thus far not be linked to any mutational signature using
these systematic cancer cohort analyses.

Here, we assess the mutational consequences of fluoropyr-
imidines by exposing organoids of healthy intestinal stem cells to
5-FU followed by genome-wide analysis of single cells. For this,
we use a previously described highly sensitive approach based on
clonal expansion of individual cells followed by whole genome
sequencing (WGS) for mutational spectrum analysis!>10. In vitro
findings are subsequently validated by exploration of mutational
patterns in breast and colorectal cancer patients who have had
previous fluoropyrimidine treatments. Our results demonstrate
that 5-FU induces both in vitro in organoids and in vivo in cancer
cells a similar mutational pattern that is reminiscent of COSMIC
signature 17.

Results

Characterization of 5-FU mutational effect in vitro. We have
set up human small intestinal (SI) isogenic organoid cultures
which were exposed to 5-FU for 3 days followed by 4 days of
recovery (Fig. 1a). This treatment procedure was repeated 5 times,
which allowed the organoids to survive the exposure conditions
and to accumulate a sufficient number of mutations. Then,
individual organoid cells from the 5-FU exposed cultures were
manually picked, expanded and analyzed by WGS with a read

coverage-depth of ~30x. Somatic mutations were called against
the original isogenic organoid line which was also sequenced at
~30x. Lastly, mutations which arose after the single-cell-step were
filtered out based on low variant allele frequencies (Supplemen-
tary Fig. 1). A total of 1324 highly confident induced single base
substitutions (SBSs) were identified in the autosomal genome that
were accumulated during 5-FU treatment (n = 2 organoid lines).
Organoids grown in parallel, but not exposed to 5-FU, served as
control (n=6 organoid lines). Not unexpectedly, untreated
control organoids were found to proliferate faster than treated
organoids, which makes it impossible to accurately determine the
mutation accumulation load per cell division, although qualitative
aspects and relative mutation contributions can still be
interpreted.

To dissect active mutational processes, we analyzed the 96
mutational spectra of the obtained SBSs with trinucleotide
context in more detail. We observed a distinct mutation profile
for 5-FU exposed organoids when compared to the background
in vitro mutation spectrum of untreated control SI organoids
(Pearson correlation = 0.26; cosine sim = 0.57) (Fig. 1b). The
most striking differences are the T>G mutations in a CTT
trinucleotide context (further referred as C[T>G|T mutations)
and, to a lesser extent, C[T>C]T and G[T>G]T mutations, which
together account for more than half of the total mutation profile
of 5-FU-treated organoids. This illustrates that 5-FU induces a
characteristic mutational pattern in vitro that is driven by a
mutational process that generates SBSs with a chance of ~35%
being a CTT>CGT mutation.

5-FU-induced mutational pattern in human cancer. To assess if
the observed 5-FU mutational consequences can also be detected
in vivo in human cancer samples, we explored cancer whole-
genome sequencing data from metastatic cancer patients (Hart-
wig Medical Foundation database) for which treatment data is
also available!”. 65% of colorectal (n = 352) and 36% of the breast
(n=450) cancer patients in this data set underwent 5-FU based
treatment (i.e., 5-fluorouracil, fluoropyrimidine, capecitabine or
tegafur—further referred to as 5-FU) at any time prior to biopsy
and WGS. We performed an unbiased de novo mutational sig-
nature analysis using non-negative matrix factorization (NMF)!8
on both cohorts with inclusion of the 5-FU exposed organoid
data. NMF identified sixteen mutational signatures which
all showed high similarity with well-described signatures in
human cancer (Fig. 2a, Supplementary Table 1) (http://cancer.
sanger.ac.uk/cosmic/signatures)!9-21. Interestingly, a signature
that was highly similar to the 5-FU in vitro mutation spectrum
was found in the set of the de novo extracted signatures (Pearson
correlation = 0.98; cosine sim = 0.98) (Fig. 2a). This signature,
further referred as “5-FU signature” (Fig. 2b), is predominated by
C[T>G]T mutations (36%) which is almost equal to the 5-FU
in vitro mutation spectrum (35% of C[T>G]T mutations).
Ranking by the total mutational load of this 5-FU signature
illustrates that patients who display a prominent contribution of
this pattern were treated with 5-FU (Supplementary Fig. 2). These
results indicate that 5-FU has the same mutagenic effect in vivo as
in vitro.

5-FU signature contribution in human cancer. To quantify the
mutational contribution of the 5-FU signature we compared 5-FU
pretreated and non-5-FU pretreated patients (including a
treatment-naive primary colorectal?? and breast cancer cohort??
as additional controls). The relative contribution of the 5-FU
signature was calculated and compared for each patient to adjust
for differences in tumor mutational burden (TMB—number of
SBSs per Mbp) between primary and metastatic cohort?4. In line
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Fig. 1 5-FU induces context dependent T>G mutations in vitro. a Schematic overview of the experimental setup used to determine the 5-FU mutation
spectrum in two independent human small intestinal organoid experiments. 6.25 uM 5-FU was added to isogenic organoids for 3 days, followed by a 4-day
rest period. This cycle was repeated 5 times. Subsequently, organoids were made single cell and expanded further into clonal organoids to obtain sufficient
DNA for WGS. Controls were cultured in 5-FU-free medium. The WGS data of the original isogenic organoid line served as reference sample. b The
experimentally derived mutation spectra from 5-FU treated organoid lines (upper) and untreated organoid lines (middle). Each spectrum shows the
mutation probability of each indicated context-dependent base substitution type. The spectrum below shows the difference between the 5-FU (positive

values) and the in vitro (negative values) mutation spectrum

with our previous results, 5-FU pretreated patients showed a
significantly higher 5-FU signature contribution compared to 5-
FU untreated patients in both the colon and breast cancer cohort
(both P < 0.05, Wilcoxon rank-sum test) (Fig. 2c). No significant
differences were found between the 5-FU untreated patients and
the treatment-naive cohorts. Examining the absolute mutational
contribution for all extracted signatures shows that only the 5-FU
signature is increased in contribution illustrating that 5-FU does
not have a measurable impact on other signatures (P <0.05,
Wilcoxon rank-sum test, Supplementary Fig. 3). While 5-FU is
most commonly used to treat breast and colon cancer patients, it
is often also administered to patients with more rare cancer
indications including pancreas (n = 11), biliary tract (n =6) and
head and neck (n=5). In these cancer types, we identified the
same 5-FU mutagenic effect as in breast and colon cancer,
although not significant due to the low number of patients, which
demonstrates that the 5-FU mutational process is tissue inde-
pendent (Supplementary Fig. 4).

We observed an extensive variation in the number of 5-FU
mutations per 5-FU treated patient ranging from 0 to roughly

15,000 mutations in both colon and breast cancer patients
(Supplementary Fig. 2). This may be explained by variation in
pharmacodynamics between patients, differences in the dosing
and the duration of 5-FU treatment schedules?>, as well as by the
evolution dynamics, but potentially also by other characteristics
of the tumor. Indeed, analysis of tumor driver and suppressor
genes (n = 378) uncovered that TP53 mutated cancers accumu-
lated more 5-FU mutations than TP53 wild type cancers, both in
colon and breast (P <0.05, Wilcoxon rank-sum test, Fig. 2d).
Also, fluorouracil and capecitabine were both found to be
mutagenic in colon cancer, while in breast cancer only
capecitabine showed an increased mutagenic effect (Supplemen-
tary Fig. 5), which might reflect differences between both tissues
in drug uptake and treatment schemes. Notwithstanding the high
variation in 5-FU signature contributions between patients, we
observed that colon cancers overall have a higher 5-FU signature
contribution than breast cancers, with a median mutation count
of 1180 and 139 mutations, respectively.

The underlying clonal architecture of mutational events can be
inferred from the variant allele frequency (VAF) and provides
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Fig. 2 5-FU mutational pattern and its contribution in human cancer. a Heatmap showing the cosine similarity scores for each de novo extracted signature
with the in vitro experimental obtained 5-FU mutation spectrum. NMF H resembles the 5-FU experimental mutation spectrum (cos sim =0.98) and is
further assigned as the “5-FU signature” in the main text. b 5-FU mutation signature showing the mutation type probability for each context-dependent
base substitution type. € Box-and whisker plots indicating the relative contribution of the 5-FU signature between 5-FU pretreated and not 5-FU pretreated
colon (left) and breast (right) cancer patients with inclusion of the treatment naive cancer cohort. d Box-and whisker plots showing the tumor mutational
burden (number of SBSs per Mbp) between 5-FU pretreated and not 5-FU pretreated cancer patients for the colon (left) and breast (right) cancer patients.
e Box-and whisker plots showing the 5-FU mutational load between TP53-wild type and TP53-mutant cancers in 5-FU pretreated colon (left) and breast
(right) patients. For all plots, a Wilcoxon rank-sum test between every cohort was performed and the P-value is illustrated at the top of the plots. All box-
and whiskers plots display the first and the third quartiles (top and bottom of the box), the median (vertical line inside the box), the extremes (whiskers)
and, if present, the outliers (single dots)
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more insight into the timing of the activity of specific mutational
processes. In comparison to clonal mutations, we found
approximately a three-fold increase in the relative mutational
contribution of the 5-FU signature for the subclonal mutations
(P <0.05, Wilcoxon rank-sum test, Supplementary Fig. 6). This
points out that the 5-FU induced mutagenic activity is more
profound in the metastatic colonies and therefore occurred at a
later stage in tumor development, which is in line with the time of
cancer diagnosis and subsequent 5-FU treatment.

5-FU mutations in paired biopsies. In the studied metastatic
cancer patient cohort, 53 patients underwent two or more serial
biopsies, which can be used to provide a more direct approach to
study the chronological timing of the activity of mutational
processes. This group of patients with multiple biopsies consisted
of different cancer types of which 8 patients (colorectal cancer
(n=4) and breast cancer (n =4)) that received a systemic 5-FU
related treatment after the first biopsy and before one of the
following biopsies. For every patient, we determined the mutation
profiles of both biopsies and examined the difference in mutation
numbers for each of the 96 mutation types, reasoning that 5-FU
characteristic mutation types—particularly C[T>G]T mutations
—would increase in mutational load. A mixed-effect regression
analysis indeed revealed a positive correlation between the nor-
malized absolute count of C[T>G|T mutations from the first
biopsy compared to the second biopsy in patients treated with 5-
FU (ANOVA linear mixed model; P <0.05) (Fig. 3). Moreover,
iterating this statistical analysis on each of the 96 possible
mutation types resulted in significant P-values for all mutation
types that are dominating the previously identified 5-FU sig-
nature (Fig. 3). Of note, no correlations were found between 5-FU
characteristic mutation types and any other administered treat-
ment drug (Carboplatin, Cisplatin, Oxaliplatin, Pazopanib,
Pembrolizumab, and Pemetrexed) demonstrating that the sig-
nature is highly specifically induced by 5-FU (Supplementary
Fig. 7).

5-FU signature resembles COSMIC signature 17. We compared
the obtained 5-FU signature to the known COSMIC signatures
and found a high similarity (Pearson correlation = 0.97; cosine

()

sim = 0.97) with COSMIC signature 17 (Fig. 4a), which is pre-
dominantly found in treatment-naive esophagus and gastric
cancer. Recent work has split COSMIC signature 17 into two
constituent signatures (SBS17a, predominantly characterized by
T>C mutations and SBS17b, characterized by T>G mutations)!?,
suggesting two distinct mutational processes. However, the here
obtained 5-FU in vitro mutation spectrum showed both T>C and
T>G mutations as in COSMIC signature 17, and thus our find-
ings provide no evidence that COSMIC signature 17 exhibit a
pattern of two independent mutational processes.

Next, we investigated whether the 5-FU signature also
encompasses more detailed molecular features that are character-
istic for COSMIC signature 17. In agreement with COSMIC sig-
nature 172627, we also found a seven-base mutation context for C
[T > G]T mutations in 5-FU pretreated colon and breast cancer
patients which is predominated by A/T bases at the —4, —3 and
—2 positions from the mutated base position (Fig. 4c). Further-
more, COSMIC signature 17 has been shown to display a higher
mutation rate on the lagging strand$:2%, Consistent with these
reports, we observed a strong replication strand bias towards the
lagging strand for C[T>G]T mutations types in 5-FU pretreated
colon and breast cancer samples (Fig. 4b). In addition, we also
noted a minor transcriptional strand bias in the colon samples for
C[T>G]T mutations (Supplementary Fig. 8). Given this strong
overlap in characteristics between both signatures, we conclude
that the identified 5-FU signature is the same as COSMIC
signature 17 and does not represent a novel signature.

Impact on tumorigenesis. We observed an average increase
(~20%) in the overall TMB for 5-FU treated cancers, at least for
the colon cancer patients (P <0.05, Wilcoxon rank-sum test)
(Fig. 2e). However, the 5-FU contribution on the TMB differs
extensively per patient (Supplementary Fig. 9) where most 5-FU
pretreated cancer patients (65% and 85% for colon and breast,
respectively) show a limited impact of 5-FU on the TMB (<10%)
and only a few patients (6% and 3% for colon and breast,
respectively) demonstrate a substantial 5-FU contribution that
affect the TMB with at least 30%. To investigate the impact of
these 5-FU mutations on tumor evolution and disease progres-
sion, we selected all subclonal synonymous and non-synonymous
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Fig. 3 Mutational enrichment analysis for patients with multiple biopsies in 5-FU treated and 5-FU untreated patients. a Example heat map of one patient
showing the normalized mutation count of every mutation type from the first (above) and second (below) biopsy. This normalization step was performed
on both samples of each patient. b Linear mixed model regression analysis on the normalized mutation counts of one mutation type (here T[T>G]C

mutations) between patients that received a 5-FU treatment between the two biopsies and patients not treated with 5-FU between two biopsies (see also
Supplementary Fig. 7). In the model, we controlled for exposure dose and time as well as other therapies that were administered to the patient between the
first and second biopsy. P-values were obtained by performing an ANOVA test on the regression model. Box-and whiskers plot displays the first and the
third quartiles (top and bottom of the box), the median (vertical line inside the box), the extremes (whiskers) and the single data points (single dots). ¢ Bar
plot showing the mutation type probability for COSMIC signature 17 with below the obtained P-values from the linear mixed model for every mutation type.
Note that most of the mutation types that characterize COSMIC signature 17 show a significant increase in normalized mutation count for patients treated

with 5-FU between both biopsies
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b Replication strand bias of CIN>N]T mutations in 5-FU pretreated colon and breast samples and not 5-FU pretreated esophagus samples. Relative levels
of each base substitution type in the left (leading) and right (lagging) DNA strands are shown for each cohort. Asterisks indicate a significant difference
(P<0.05, two-sided Poisson test). ¢ The eleven-base signature context of CLT>G]T mutations are presented as Logo plots. The mutated T is centered in
each plot with fixed positions left (5" direction) and right (3" direction) from the mutation position

mutations that were most likely induced by 5-FU exposure for
each patient (see Methods) to quantify oncogenic driver muta-
tions induced by 5-FU (Supplementary Fig. 10). We observed no
increase in the number of validated oncogenic drivers3 in the 5-
FU pretreated colon (5 driver mutations) and breast (5 driver
mutations) cancer patients compared to non 5-FU pretreated
colon (2 driver mutations, P = 0.56, Fisher exact test) and breast
(5 driver mutations, P =0.26, Fisher exact test) cancer patients
(Supplementary Table 2).

In an attempt to characterize genes that may have contributed
to 5-FU resistance, we performed a dN/dS analysis in which all
single-nucleotide mutations and small insertions and deletions
(INDELS) were included, but revealed no significantly mutated
genes in contrast to resistance to hormonal therapies (e.g., ESR1
for breast and AR for prostate!”-31) and targeted treatments (e.g.,
secondary BRAF mutations for melanoma treated with vemur-
afenib32 and secondary EGFR mutations treated with EGFR
inhibitors33).

Next, we investigated loss-of-function (LOF) and gain-of-
function (GOF) events of key enzymes of the pyrimidine
metabolic pathways. TYMS is considered as the key therapeutic
target for 5-FU and overexpression of its gene has been linked to
5-FU resistance in in vitro as well as in in vivo experiments343°,

6

TYMS showed no LOF mutations in the breast and colorectal
cohort, supporting the findings that TYMS is an essential gene3°.
On the other hand, GOF events of TYMS by means of copy
number gains were found in 5-FU pretreated colon cancer
patients (n =44 out of 231) vs. untreated patients (n = 8 out of
121) (P<0.05, Fisher exact test) (Supplementary Fig. 11),
although this was not observed for breast cancer patients. This
indicates a selective pressure towards increased levels of TYMS
activity after 5-FU administration. The copy number level of
TYMS seems to be inversely correlated with the absolute
contribution of 5-FU pattern (Supplementary Fig. 11), which
may suggest that TYMS overexpression can block the 5-FU
mutational process by overcoming binding of 5-FdAUMP by sheer
number of TYMS protein.

It is interesting to note that, as we have shown with the
organoid experiments, normal cells also accumulate 5-FU
mutations. Consequently, it can be postulated that not only
cancer cells, but any other cell in the body exposed to 5-FU may
accumulate mutations that lead to the onset of secondary
malignancies. To quantify this risk, we modeled the chance of
introducing a cancer driver mutation resulting from 5-FU
treatment, using the 5-FU specific mutation context and in vivo
observed average mutation rate (Supplementary Fig. 12). This
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model estimates that about 300 oncogenic mutations are
introduced in vivo in 10% colon stem cells per 5-FU treatment,
which is 50-fold higher than under normal conditions as a result
of in vivo mutational processes associated with aging. One full
cycle of 5-FU treatment, therefore, reflects ‘normal’ mutation
accumulation in colon stem cells of about 20 years!®. As such, the
consequences of 5-FU administration may be limited for patients
with age above 60-70 years, but can be significant for cancer
patients at a relatively young age (20-30 years old). Furthermore,
patients carrying germline predisposition variants (e.g., APC
mutation in FAP syndrome resulting in the development of
tumors at a relatively young age) are at increased risk for
acquiring a second hit and may be a contraindication for 5-FU
treatment. We modeled this scenario as well and found a 20-fold
increase in risk as compared to non-treated patients, which is
equivalent to reducing the average age of onset for tumor
development in FAP patients with 10 years.

Discussion

Here, we demonstrate a causal relationship between 5-FU treat-
ment and COSMIC signature 17, characterized by C[T > G|T base
substitutions.

This finding differs from a previous study that did not find a
measurable mutagenic effect of 5-FU exposure in cultured
chicken lymphoblasts3”. This discrepancy might be due to dif-
ferences in experimental conditions (5-FU dosage, mutation
detection) or the in vitro models used. Indeed, non-human cell
lines are known to differ in DNA damage susceptibility38, e.g.
exposing aflatoxin to cell lines, mouse tumors and human tumors
results in great diversity in mutation profiles3®. Likewise, cisplatin
signatures characterized with cell lines of different model
organisms!237 do not recapitulate the cisplatin patterns recently
found in human cancer! 1%,

Since 5-FU is structurally similar to thymidine and uracil
nucleotides and has previously been shown to interfere with
nucleotide biosynthesis and nucleotide pools*0-42, a mutagenic
effect of 5-FU was anticipated. However, the strong resemblance
with a previously described signature that was already linked to a
different potentially underlying mechanism was surprising.
COSMIC signature 17 is the hallmark signature of esophageal and
gastric cancers and the presence of gastric refluxate has been
suggested to be the responsible mutagen in these cancer types.
High COSMIC signature 17 contributions are occasionally found
in non-5-FU treated patients diagnosed with other cancer types as
well>23, For instance, a comprehensive study dissected the
intratumor heterogeneity of three treatment naive colorectal
tumors, of which one displayed extensive signature 17 contribu-
tion*3. Thus, signature 17 reflects the consequences of a muta-
tional process that can be instigated by multiple triggers including
5-FU exposure.

Recent work has proposed that COSMIC signature 17 reflects
the mutagenic consequences of the presence of oxidized dGTP
nucleotides in the nucleotide pool?®. Indeed, a number of studies
have reported that the presence of oxidized guanine nucleotides
(8-0x0-dGTP) increases the T>G mutation rate***>. Accordingly,
inhibition of enzymes responsible for the removal of oxidized
nucleotides, such as MTH1, MTH2, and NUDT5, have been
shown to promote T>G mutations as well0. Also, the flanking
sequence context of the dominant mutation type of Signature 17
mirrors the context of the dominant mutation type of Signature
18. This mutational process has been linked to direct oxidation of
guanine located inside the DNA#7:48_ Tt is, therefore, tempting to
speculate that the oxidation of dGTPs in the nucleotide pool
underlies COSMIC Signature 17. As such, the presence of bile
refluxate would be a plausible explanation for the elevated levels

of 8-0x0-dGTP in esophagus cancer?®. However, a recent study
showed that bile refluxate alone does not generate 8-oxo-dGTPs,
but that bile acid also requires an acidic environment to promote
the production of 8-oxo-dGTP. This was only found in the epi-
thelial cells of premalignant Barrett’s esophageal cells, which
gained transporters for bile acids, potentially clarifying why
healthy esophageal cells do not show Signature 17 mutations*->1.
Based on this, one could hypothesize that 5-FU exposure induces
a similar oxidative stress environment in the cell that generates 8-
0x0-dGTP thereby stimulating T>G mutations in a C[T>G]T
context. In line with this, 5-FU treatment is less cytotoxic when
combined with antioxidants®> and ROS production is directly
correlated with 5-FU treatment®3>4,

An alternative explanation of the underlying mutational pro-
cess of COSMIC Signature 17 observed in 5-FU treated patients
can be attributed to an imbalance of the nucleotide pool by TYMS
inhibition, which is considered to be the major drug target of 5-
FU. The 5-FU metabolite 5-FAUMP hampers the synthesis of
dTMP which results in a depletion of dTTPs in the nucleotide
pool®>°° and impaired dTMP biosynthesis results in accelerated
rates of genomic deoxyuridine triphosphate (dUTP)
incorporation®7->8. Next to dUTPs, also the 5-FU related bypro-
duct 5-FdUTP can be incorporated during replication, which
results in the accumulation of U:A and 5-FU:A base pairs®.
These mutation types largely recapitulate Signature 17 and for
this reason nucleotide imbalance by TYMS inhibition is a plau-
sible cause for the here observed 5-FU mutations as well,
although the strong similarity with the process active in eso-
phageal cancer is not easily explained. In any case, further
experimental follow-up will be required to dissect the underlying
molecular mechanisms and to conclude whether one mutational
mechanism is responsible for 5-FU specific mutation accumula-
tion or that the 5-FU signature is the result of multiple mutational
processes operating simultaneously on the genome (e.g., 8-oxo-
dGTP, dUTPs, and 5-FdUTPs) that are accompanied by DNA
repair mechanisms (e.g., uracil removal by uracil-DNA glycosy-
lase [UDG]). Indeed, recent work revealed that the base excision
DNA repair machinery selectively corrects Signature 17 muta-
tions depending on its position around the nucleosome®®. The
involvement of DNA repair might also explain why tumors
deficient in the p53 DNA damage checkpoint regulatory pathway
accumulate more 5-FU mutations. Interestingly, breast tumors
with high contribution of Signature 17 mutations were recently
shown to have poor prognosis®.

Nevertheless, we found that the mutation contribution of 5-
FU administration does not have a great impact on the total
tumor mutational burden and the driver landscape of the
cancer in the majority of the patients. However, as the
mechanisms driving 5-FU resistance remains largely to be
elucidated, it cannot be excluded that induced mutations con-
tribute to this process.

Furthermore, we calculated that young cancer survivors exhibit
an increased risk for developing chemotherapy-related second
malignancies as 5-FU can accelerate the rate of introducing novel
oncogenic mutations in normal cells. Therefore treatment deci-
sion makers must be aware of the increased risk factors of 5-FU
administration to cancer patients at a relatively young age®1:62.

Here, we have shown that the administration of fluoropyr-
imidines activates a mutational process that results in a highly
characteristic mutational signature and as such, contributes to the
mutational landscape of human (cancer) cells. Moreover, our
results indicate that distinct triggers or processes can be at the
origin of highly similar mutational signatures. Insights from this
study could serve as a basis for future research to elucidate when
and how these mutagenic agents converge on similar molecular
mechanisms.
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Methods

Patient cohort. We selected patients of the CPCT-02 (NCT01855477) and DRUP
(NCT02925234) clinical studies, which were approved by the medical ethical
committees (METC) of the University Medical Center Utrecht and the Netherlands
Cancer Institute, respectively. This national initiative consists of nearly 50 oncology
centers from The Netherlands and aims to improve personalized cancer. To this
end, Hartwig Medical Foundation sequences and characterizes the genomic land-
scape for a large number of patients. Furthermore, genomics data is integrated with
clinical data which consists of primary tumor type, biopsy location, gender, pre-
treatment type before biopsy, and treatment type after biopsy. A detailed description
of the consortium and the whole patient cohort has been described in detail in
Priestley et al.1”. For this study, we selected cancers with primary tumor location in
the breast, colon, and esophagus. Next, we also included all sample IDs, irrespective of
the primary tumor location, which underwent at least 2 biopsies. Samples for which
pretreatment was not documented (hasSystemicPreTreatment = NA) were excluded
from this study. All used sample IDs in this study can be found in our GitHub
repository (https://github.com/UMCUGenetics/5FU/blob/master/data/invivo/
Used_Sample_IDs.txt).

Organoid culturing. A signed approval was obtained by the medical ethical
committee UMC Utrecht (METC UMCU) for using the human small intestinal
organoid line strain STE072 under STEM protocol (METC 10/402). These isogenic
healthy human small intestinal organoids were cultured as described previously!>.
In short, organoids were grown on Complete Human Intestinal Organoid (CHIO)
medium, supplemented with 30% Adv+++ (Advanced DMEM F12 [Thermo-
fisher], supplemented with glutamax [1%, Thermofisher], hepes [10 mM, Ther-
mofisher], penicillin/streptomycin [1%, Thermofisher]), in house produced Wnt
(50%)%3 and R-spondin (20%)%3, B27 supplement (1x, Thermofisher), nicotina-
mide (10 mM Sigma), N-acetylcysteine (1.25 mM, Sigma), Primocin (0.1 mg/ml,
Invivogen), A83-01 (0.5 uM, Tocris Bioscience), recombinant noggin (0.1 ug/ml,
Peprotech), SB202190 (10 uM, Sigma) and hEGF (50 ng/ml, Peprotech). Organoids
were embedded in matrigel and medium was refreshed every 2-3 days. A titration
series was performed ranging from 0 to 100 uM 5-FU (0, 3.13, 6.25, 12.5, 25, 50,
and 100 uM). The selected concentration of 6.25 uM was where roughly 50% of
organoids grew out further after the 5 cycles of treatment. The selected con-
centration (i.e., 6.25 uM) is lower than often used in acute dosing experiments as
these conditions were found to kill or senescence all cells. CHIO medium con-
taining 6.25 uM 5-FU was added to the organoids 5 days post seeding, for a period
of 3 days, after which the 5-FU-containing medium was refreshed with 5-FU-free
CHIO medium for two consecutive days. The organoids were then left to rest for
2 days. This 7-day treatment cycle was repeated for 5 weeks after which the
medium was changed to standard medium again and the organoids were left to rest
for an additional day. The organoids were then dissociated into single cells by
trypsinization and plated in a limited-dilution series. This was supplemented with
CHIO medium containing ROCK inhibitor (10 uM, Abmole) and hES Cell Cloning
& Recovery Supplement (1%, Tebu-Bio). Subsequently, individual clonal organoids
were manually picked and expanded to gain enough material for WGS.

DNA isolation and WGS of organoid lines. Organoids were dissociated and DNA
was isolated using the QiaSymphony DSP DNA mini kit (Qiagen, cat. No. 937236).
Libraries were prepared using the Truseq DNA nano library prep kit (Illumina, cat.
No. 20015964). Paired-end sequencing was performed (2 x 150 bp) on the gener-
ated libraries with 30x coverage using the Illumina HiSeq Xten at the Hartwig
Medical Foundation.

Somatic mutation calling. Somatic mutation data of the CPCT and DRUP project
were kindly shared by HMF on September 1, 2018. To exclude differences in
accuracy and sensitivity from somatic calling workflows between in vivo and

in vitro data, we pulled the HMF somatic mutation workflow from https://github.
com/hartwigmedical/pipeline and installed the pipeline locally using GNU Guix
with the recipe from https://github.com/UMCUGenetics/guix-additions. Full
pipeline description is explained by Priestley et al.1’, and details and settings of all
the tools can be found at their Github page. Briefly, sequence reads were mapped
against human reference genome GRCh37 using Burrows-Wheeler Alignment
(BWA-MEM) v0.7.5a%4. Subsequently, somatic single base substitutions (SBSs) and
small insertions and deletions (INDELS) were determined by providing the gen-
otype and tumor (or organoid for in vitro analysis) sequencing data to Strelka
v1.0.14%> with adjustments as described elsewhere!”. To obtain high-quality
somatic mutations that can be attributed to 5-FU exposure in the organoid lines,
we characterized the mutations that have accumulated between the sequential
clonal expansion step. As such, we only considered somatic mutations with a
variant allele frequency between 0.3 and 0.7, as mutations that fall outside this
range were potentially induced in vitro after the clonal step.

Mutational signature analysis. De novo mutational signature extraction was
performed using the NMF package (v0.21.0) with 100 iterations'$. Non-negative
matrix factorization (NMF) is an unsupervised approach that decompose high-
dimensional datasets in a reduced number of meaningful patterns. For in vivo
samples, we ran NMF on the colon and breast cancer cohort including the two

organoid lines exposed to 5-FU and six organoid lines that were cultured in
identical medium for 140-146 days. In order to characterize the optimal number of
patterns, we compared the cophenetic correlation coefficient over the range of
possible signatures and assigned sixteen de novo signatures. This set of de novo
extracted signatures were compared to the COSMIC cancer mutational signatures
(http://cancer.sanger.ac.uk/cosmic/signatures), to the expanded list of mutational
signatures!?, and signatures from other studies?®2! using the cosine similarity from
the Mutational Patterns R package as a measure of closeness®. We also used
Mutational Patterns to determine the absolute contributions of each de novo
obtained signature for the metastatic and primary cohorts. Briefly, a vector of 96
trinucleotide context counts for each sample was fitted using non-negative least
squares regression to a 96 x n (where n is the number of signatures) matrix con-
sisting of the trinucleotide context probabilities for each signature. The relative
contribution of each signature was calculated by dividing the absolute counts by the
total mutation count (i.e. tumor mutational burden) of the sample.

Paired biopsies. To test whether the number of 5-FU specific mutations was
higher in the sample biopsied after 5-FU treatment than in the sample before the
treatment, we first determined the 96-mutation count table for each sample. Next,
we normalized the absolute mutation count for each set of paired samples per
patient using the median ratio algorithm from the Deseq2 package®’. Subsequently,
we performed a linear mixed effect analysis using nlme R package®® on each
mutation type to assess the relationship between the normalized mutation count
for each mutation type and treatment. We entered all the different treatment drugs
into the model that were administered to at least 3 patients after biopsy one (5-FU,
Carboplatin, Cisplatin, Oxaliplatin, Pazopanib, Pembrolizumab and Pemetrexed),
and added random effects to correct for exposure time and dose for each treatment
drug as well as the pharmacogenetics on patient level. We repeated this analysis
using the relative mutation count of each mutation type.

Ploidy and copy number analysis. We used PURPLE!” to obtain high quality
somatic ploidy and copy number (CN) regions (https://github.com/
hartwigmedical/hmftools/tree/master/purity-ploidy-estimator). Briefly, this tool
combines B-allele frequency (BAF), read depth and structural variants to estimate
the purity and CN profile of a tumor sample.

Clonality. The determination of the clonality of each mutation was adopted from
Priestley et al.l”. Briefly, the local ploidy level of each variant was calculated by
multiplying the tumor adjusted variant allele score, obtained from PURPLE, with
the local copy number level. All variants with a score above 1 are considered as
clonal. Variants exhibiting a score lower than 1 were searched for a subclonal peak
using a kernel density estimation using a kernel bandwidth of 0.05 after plotting the
variant ploidy scores of all variants of a sample. All variants present in the peaks
below the peak of ploidy =1 were considered as subclonal mutations. Samples
having at least 500 subclonal mutations and show an overall 5-FU signature
contribution (at least 5%) were included for the subclonal analysis.

Estimation of tumor mutational burden. The mutation rate per megabase (Mb)
of genomic DNA was calculated as the total genome-wide amount of SBSs divided
over the total amount of mappable nucleotides (ACTG) in the human reference
genome (hgl9) FASTA sequence file:

(SBS )
g
TMB = rsseraees (1)
()

In this study, we excluded hypermutant samples (>10 mutations/Mbp), as
determined by Campbell et al.®%, as hypermutant samples have an impact on both
absolute and relative mutation contribution analysis.

Detection of significantly mutated genes. Using all SBS and INDEL variants
from protein-coding genes, we ran dNdScv°! to find significantly mutated genes
using all SBSs and INDELs variants from protein-coding genes. This model can test
the normalized ratio of each non-synonymous mutation type individually (mis-
sense, nonsense, and splicing) over background (synonymous) mutations whilst
correcting for sequence composition and mutational signatures. A global g-value
<0.1 was used to identify statistically significant driver genes. A post hoc Fisher’s
exact test was performed to evaluate whether the number of mutations of indivi-
dual genes were enriched between two cohorts.

Transcription and replication strand bias. To compare the replication and
transcription strand bias between cohorts, we selected samples with a high COS-
MIC signature 17 contribution (absolute contribution >2000 mutations and relative
contribution >25% (5-FU pretreated colon n =41, 5-FU pretreated breast n=29,
not 5-FU pretreated esophagus n = 34). Next, we selected all the point mutations
bearing a C[N>N]T context where N can be any nucleotide, reasoning that the
majority of the C[T>G]T mutations can be attributed 5-FU exposure in colon and
breast cancer and 5-FU independent mutational processes in esophagus cancer.
Mutation types other than C[T>G]T can thus be considered as control.
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To assess DNA replication strand, we downloaded replication sequencing
(Replic-Seq) data from Tomkova et al.?? who characterized the replication timing
profiles from Haradhvala’’. As in Tomkova et al, we used replication strand
information of 1 Mbp regions near the left and right of each origin?®. Next, we
generated a mutation count matrix 12 (6 trinucleotides x 2 strands) for each
sample with replication strand information using Mutational Patterns R package®®.
After counting the number of mutations on each strand per cancer type and
mutation type, a Poisson test for strand asymmetry was performed to test for
significance. Similarly, a mutation count matrix of 12 was generated containing
transcription strand information of all point mutations with a C[N>N]T context
that fall within a gene body. The transcribed units of all protein-coding genes are
based on Ensembl v75 (hgl9) including the introns and untranslated regions. After
estimating the mutation rate on the transcribed and non-transcribed strands, also a
Poisson test for strand asymmetry was performed to test for significance. This
package contains also functions to determine the replication timing. In brief, all
point mutations were checked whether these were located in an intermediate, early
or late replicating region. Enrichment or depletion analysis of point mutations in
these genomic regions was performed using genomic distribution functions from
Mutational Patterns R package®®.

Association of point mutations with mutational patterns. We estimated which
mutational process was most likely at the origin of each point mutation as pre-
viously done in Letouzé et al.28. In doing so, we considered the mutation category
(substitution type and trinucleotide context (TNC)) and the relative contribution of
each mutational signature from each tumor sample. The likelihood of a point
mutation, with a certain 96 trinucleotide context (TNC), induced by mutation
signature X from a sample Y can be expressed as follows:

I TNCSE* abs SampleS8* x rel TNCS€*
rel =

Sampley — Sig
Es;‘g abs TN Ceampley

@)

Where abs SampleS8* is the absolute mutation contribution of signature X for that
sample; rel TNCS8* is the mutation type probability for a given TNC of signature X
divided by the sum of the mutation type probability for that TNC of all mutation

signatures; and } g, abs TNCSE

ampley 18 the sum of absolute mutation contribution of
ipley

that TNC for every signature in sample Y. Overall, the sum of rel TNCng;Ie y
every signature of one point mutation from one sample is equal to 1. Subsequently,
the relative contribution of a mutational signature to all mutations from multiple
samples was retrieved as the cumulative rel TNC;:fV;P,e y
mutation of the whole cohort. All mutations with a score of higher than 0.5 for a
given signature were considered to be originated from that signature and were fed
into dNASCV for selection analysis.

for

likelihoods of every

5-FU induced cancer driver mutation risk. We used quantitative in vivo data and
qualitative mutational characteristics to model the number of oncogenic mutations
as a function of the number of cells, in the absence of negative selection. We
applied the following formula:

active Nixj—y
MSY(N) = 0.015-dp-N-p-Y " x e 1) (pinﬁy.JT)

Y €{A,C,G, T} (3)
i,je{A,CG T}
X£Y

where M3<tiVe js number of mutations that activate driver genes, dp is depletion in
coding sequence (CDS), u is the mutation rate, N is number of cells, Pix;.y is
chance on iXj>Y mutation based on the mutation spectrum, 7;x;.y is the number
of positions where iXj>Y mutation result in oncogene activation and L is the
length of CDS.

We used the following parameters: 1.5% of the genome is exon coding;
Mutational depletion (likely due to repair) from the coding sequence is 0.3094464
(results obtained from Blokzijl et al.'®). On average 2000 extra mutations with 5-
FU signature per year accumulate in tumors due to 5-FU treatment (data based on
this study) — 40 mutations accumulate per year in absence of 5-FU (normal in vivo
mutation spectrum, 25% ~ signature 1 & 75% signature 5—results obtained from
Blokzijl et al.!®). Colon cancer originates in one of the 108 colon stem cells”!.
Signature 17 mutation chance with inclusion of trinucleotide context (5-FU
pretreated) and signature 1 (25%) + signature 5 (75%) for non 5-FU treated model;
List of validated oncogenic mutations (exists of roughly 10,000 tumor suppressor
and driver variants, obtained from Tamborero et al.>. Coding sequence length of
small intestinal cells: 22563618 bp; The average duration of a 5-FU treatment
regime is 24 weeks (12 cycles consisting of 2 weeks).

Comparison with treated naive cancer cohorts. The SBSs were called using
Varscan 2.0 and post filtered with a QSS score above 30. Full description of this
cohort can be found in Schiitte et al.22. Both cohorts comprise of treatment naive
cancer patients.

Statistics. Unless otherwise stated, we performed a Wilcoxon rank-sum test to
compare continuous variables (for instance the relative or absolute contribution of
mutational signatures vs. treated and not treated) and a Fisher’s exact test was used
to evaluate categorical data (treatment vs. the occurrence of a certain mutation). All
statistical tests were two-sided and considered statistically significant when P <
0.05. R version 3.4.4 was used for the statistical analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

WGS data and corresponding clinical data have been obtained from the Hartwig Medical
Foundation and provided under data request number DR-047. Both WGS and clinical
data is freely available for academic use from the Hartwig Medical Foundation through
standardized procedures and request forms can be found at https://www.
hartwigmedicalfoundation.nl. The human sequencing data of the 5-FU treated and
control organoid lines have been deposited at the European Genome-phenome Archive
(http://www.ebi.ac.uk/ega/) under accession numbers (EGAS00001003592 and
(EGAS00001002955), respectively. For the primary breast cancer cohort, we used the
publicly available somatic mutations from BASIS cohort (BRCA-EU dataset from https://
dcc.icge.org/) which were downloaded from the ICGC data portal on August 2, 2017.
This cohort consists of 560 primary breast cancers and has previously been characterized
in detail?3. Somatic mutations of 41 primary colon cancer samples were kindly shared by
Max-Planck-Institute with a signed agreement for data and sample transfer (http://www.
oncotrack.eu). All the other data supporting the findings of this study are available within
the article and its supplementary information files and from the corresponding author
upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file.

Code availability
All code and filtered vcf files from 5-FU treated organoid lines are freely available at
https://github.com/UMCUGenetics/5FU.

Received: 21 June 2019; Accepted: 16 August 2019;
Published online: 08 October 2019

References

1. Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of
action and clinical strategies. Nat. Rev. Cancer 3, 330-338 (2003).

2. Ezzeldin, H. & Diasio, R. Dihydropyrimidine dehydrogenase deficiency, a
pharmacogenetic syndrome associated with potentially life-threatening
toxicity following 5-fluorouracil administration. Clin. Colorectal Cancer 4,
181-189 (2004).

3. de Gramont, A. et al. Leucovorin and fluorouracil with or without oxaliplatin
as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18,
2938-2947 (2000).

4. Boige, V. et al. Pharmacogenetic assessment of toxicity and outcome in
patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX, and
FOLFIRIL: FFCD 2000-05. J. Clin. Oncol. 28, 2556-2564 (2010).

5. Cameron, D. A,, Gabra, H. & Leonard, R. C. Continuous 5-fluorouracil in the
treatment of breast cancer. Br. J. Cancer 70, 120-124 (1994).

6. Sommer, H. & Santi, D. V. Purification and amino acid analysis of an active
site peptide from thymidylate synthetase containing covalently bound 5-
fluoro-2’-deoxyuridylate and methylenetetrahydrofolate. Biochem. Biophys.
Res. Commun. 57, 689-695 (1974).

7. Pettersen, H. S. et al. UNG-initiated base excision repair is the major
repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity
depends mainly on RNA incorporation. Nucleic Acids Res. 39, 8430-8444
(2011).

8. Huehls, A. M. et al. Genomically incorporated 5-fluorouracil that escapes
UNGe-initiated base excision repair blocks DNA replication and activates
homologous recombination. Mol. Pharmacol. 89, 53-62 (2016).

9. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature 500, 415-421 (2013).

10. Phillips, D. H. Mutational spectra and mutational signatures: Insights into
cancer aetiology and mechanisms of DNA damage and repair. DNA Repair 71,
6-11 (2018).

11. Boot, A. et al. In-depth characterization of the cisplatin mutational signature
in human cell lines and in esophageal and liver tumors. Genome Res. 28,
654-665 (2018).

12. Meier, B. et al. C. elegans whole-genome sequencing reveals mutational
signatures related to carcinogens and DNA repair deficiency. Genome Res. 24,
1624-1636 (2014).

| (2019)10:4571 | https://doi.org/10.1038/s41467-019-12594-8 | www.nature.com/naturecommunications 9


https://www.hartwigmedicalfoundation.nl
https://www.hartwigmedicalfoundation.nl
http://www.ebi.ac.uk/ega/
https://www.ebi.ac.uk/ega/studies/EGAS00001003592
https://www.ebi.ac.uk/ega/studies/EGAS00001002955
https://dcc.icgc.org/
https://dcc.icgc.org/
http://www.oncotrack.eu
http://www.oncotrack.eu
https://github.com/UMCUGenetics/5FU
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Behjati, S. et al. Mutational signatures of ionizing radiation in second
malignancies. Nat. Commun. 7, 12605 (2016).

Davidson, P. R., Sherborne, A. L., Taylor, B., Nakamura, A. O. & Nakamura, J.
L. A pooled mutational analysis identifies ionizing radiation-associated
mutational signatures conserved between mouse and human malignancies.
Sci. Rep. 7, 7645 (2017).

Jager, M. et al. Measuring mutation accumulation in single human adult stem
cells by whole-genome sequencing of organoid cultures. Nat. Protoc. 13, 59-78
(2018).

Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem
cells during life. Nature 538, 260-264 (2016).

Priestley, P. et al. Pan-cancer whole genome analyses of metastatic solid
tumors. bioRxiv 415133 https://doi.org/10.1101/415133 (2018).

Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix
factorization. BMC Bioinforma. 11, 367 (2010).

Alexandrov, L. B. et al. The repertoire of mutational signatures in human
cancer. bioRxiv 322859 https://doi.org/10.1101/322859 (2018).

Lee-Six, H. et al. The landscape of somatic mutation in normal

colorectal epithelial cells. bioRxiv 416800 https://doi.org/10.1101/416800
(2018).

Boot, A. et al. Mutational signature analysis of Asian OSCCs reveals novel
mutational signature with exceptional sequence context specificity. bioRxiv
368753 https://doi.org/10.1101/368753 (2018).

Schiitte, M. et al. Molecular dissection of colorectal cancer in pre-clinical
models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat.
Commun. 8, 14262 (2017).

Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer
whole-genome sequences. Nature 534, 47-54 (2016).

Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse.
Cancer Cell 32, 169-184.e7 (2017).

Grem, J. L. 5-Fluorouracil: forty-plus and still ticking. A review of its
preclinical and clinical development. Invest. New Drugs 18, 299-313 (2000).
Morganella, S. et al. The topography of mutational processes in breast cancer
genomes. Nat. Commun. 7, 11383 (2016).

Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define
etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48,
1131-1141 (2016).

Letouzé, E. et al. Mutational signatures reveal the dynamic interplay of risk
factors and cellular processes during liver tumorigenesis. Nat. Commun. 8,
1315 (2017).

Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Bockler, B. Mutational
signature distribution varies with DNA replication timing and strand
asymmetry. Genome Biol. 19, 129 (2018).

Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and
clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).

Zehir, A. et al. Erratum: Mutational landscape of metastatic cancer revealed
from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 1004
(2017).

Poulikakos, P. I et al. RAF inhibitor resistance is mediated by dimerization of
aberrantly spliced BRAF(V600E). Nature 480, 387-390 (2011).

Morgillo, F., Della Corte, C. M., Fasano, M. & Ciardiello, F. Mechanisms of
resistance to EGFR-targeted drugs: lung cancer. ESMO Open 1, 000060
(2016).

Watson, R. G. et al. Amplification of thymidylate synthetase in metastatic
colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy.
Eur. J. Cancer 46, 3358-3364 (2010).

Intuyod, K. et al. FOXM1 modulates 5-fluorouracil sensitivity in
cholangiocarcinoma through thymidylate synthase (TYMS): implications of
FOXMI1-TYMS axis uncoupling in 5-FU resistance. Cell Death Dis. 9, 1185
(2018).

Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human
cells. Science 350, 1092-1096 (2015).

Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of
common cancer cytotoxics. Genome Biol. 17, 99 (2016).

MacRae, S. L. et al. DNA repair in species with extreme lifespan differences.
Aging 7, 1171-1184 (2015).

Huang, M. N. et al. Genome-scale mutational signatures of aflatoxin in cells,
mice, and human tumors. Genome Res. 27, 1475-1486 (2017).

Myers, C. E., Young, R. C. & Chabner, B. A. Biochemical determinants of 5-
fluorouracil response in vivo. The role of deoxyuridylate pool expansion. J.
Clin. Invest. 56, 1231-1238 (1975).

Peters, G. ]., Laurensse, E. J., van Groeningen, C. ]., Meijer, S. & Pinedo, H. M.
in Purine and Pyrimidine Metabolism in Man VI: Part A: Clinical and
Molecular Biology (eds. Mikanagi, K., Nishioka, K. & Kelley, W. N.) 439-445
(Springer US, 1989).

Berger, F. G. & Berger, S. H. Thymidylate synthase as a chemotherapeutic
drug target: where are we after fifty years? Cancer Biol. Ther. 5, 1238-1241
(2006).

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the
single-cell level. Nature 556, 457-462 (2018).

Hidaka, K. et al. Specificity of mutations induced by incorporation of oxidized
dNTPs into DNA by human DNA polymerase eta. DNA Repair 7, 497-506
(2008).

Inoue, M. et al. Induction of chromosomal gene mutations in Escherichia coli
by direct incorporation of oxidatively damaged nucleotides. New evaluation
method for mutagenesis by damaged DNA precursors in vivo. J. Biol. Chem.
273, 11069-11074 (1998).

Suzuki, T. & Kamiya, H. Mutations induced by 8-hydroxyguanine (8-ox0-7,8-
dihydroguanine), a representative oxidized base, in mammalian cells. Genes
Environ. 39, 2 (2017).

Poetsch, A. R., Boulton, S. J. & Luscombe, N. M. Genomic landscape of
oxidative DNA damage and repair reveals regioselective protection from
mutagenesis. Genome Biol. 19, 215 (2018).

Pilati, C. et al. Mutational signature analysis identifies MUTYH deficiency in
colorectal cancers and adrenocortical carcinomas. J. Pathol. 242, 10-15
(2017).

Dvorak, K. et al. Bile acids in combination with low pH induce oxidative stress
and oxidative DNA damage: relevance to the pathogenesis of Barrett’s
oesophagus. Gut 56, 763-771 (2007).

Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by
mutated cancer drivers. Nature 565, 312-317 (2019).

Martincorena, L. et al. Universal patterns of selection in cancer and somatic
tissues. Cell 173, 1823 (2018).

Fu, Y. et al. Antioxidants decrease the apoptotic effect of 5-Fu in colon cancer
by regulating Src-dependent caspase-7 phosphorylation. Cell Death Dis. 5,
€983-€983 (2014).

Focaccetti, C. et al. Effects of 5-fluorouracil on morphology, cell cycle,
proliferation, apoptosis, autophagy and ROS production in endothelial cells
and cardiomyocytes. PLoS One 10, 0115686 (2015).

Negrei, C. et al. Colon cancer cells gene expression signature as response to 5-
fluorouracil, oxaliplatin, and folinic acid treatment. Front. Pharmacol. 7, 172
(2016).

An, Q., Robins, P., Lindahl, T. & Barnes, D. E. 5-Fluorouracil incorporated
into DNA is excised by the Smugl DNA glycosylase to reduce drug
cytotoxicity. Cancer Res. 67, 940-945 (2007).

Parker, J. B. & Stivers, ]. T. Dynamics of uracil and 5-fluorouracil in DNA.
Biochemistry 50, 612-617 (2011).

MacFarlane, A. J. et al. Nuclear localization of de novo thymidylate
biosynthesis pathway is required to prevent uracil accumulation in DNA. J.
Biol. Chem. 286, 44015-44022 (2011).

Vértessy, B. G. & Toth, J. Keeping uracil out of DNA: physiological role,
structure and catalytic mechanism of dUTPases. Acc. Chem. Res. 42, 97-106
(2009).

Pich, O. et al. Somatic and germline mutation periodicity follow the
orientation of the DNA minor groove around nucleosomes. Cell 175,
1074-1087.e18 (2018).

Bertucci, F. et al. Genomic characterization of metastatic breast cancers.
Nature 569, 560-564 (2019).

Wright, K. D. et al. Phase I study of 5-fluorouracil in children and

young adults with recurrent ependymoma. Neuro. Oncol. 17, 1620-1627
(2015).

Gladsjo, J. A., Alié Séenz, A. B., Bergman, J., Kricorian, G. & Cunningham, B.
B. 5% 5-Fluorouracil cream for treatment of verruca vulgaris in children.
Pediatr. Dermatol. 26, 279-285 (2009).

Broutier, L. et al. Culture and establishment of self-renewing human and
mouse adult liver and pancreas 3D organoids and their genetic manipulation.
Nat. Protoc. 11, 1724-1743 (2016).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from
sequenced tumor-normal sample pairs. Bioinformatics 28, 1811-1817 (2012).
Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns:
comprehensive genome-wide analysis of mutational processes. Genome Med.
10, 33 (2018).

Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Ezzet, F. & Pinheiro, J. C. Linear, Generalized Linear, and Nonlinear Mixed
Effects Models. in Pharmacometrics. 103-135

Campbell, B. B. et al. Comprehensive analysis of hypermutation in human.
Cancer Cell 171, 1042-1056.e10 (2017).

Haradhvala, N. J. et al. Mutational Strand Asymmetries in Cancer Genomes
Reveal Mechanisms of DNA Damage and Repair. Cell 164, 538-549 (2016).
Frank, S. A. Evolution in health and medicine Sackler colloquium: Somatic
evolutionary genomics: mutations during development cause highly variable
genetic mosaicism with risk of cancer and neurodegeneration. Proc. Natl
Acad. Sci. USA 107(Suppl 1), 1725-1730 (2010).

| (2019)10:4571| https://doi.org/10.1038/s41467-019-12594-8 | www.nature.com/naturecommunications


https://doi.org/10.1101/415133
https://doi.org/10.1101/322859
https://doi.org/10.1101/416800
https://doi.org/10.1101/368753
www.nature.com/naturecommunications

ARTICLE

Acknowledgements

This publication and the underlying study have been made possible partly on the basis of
the data that Hartwig Medical Foundation and the Center of Personalised Cancer
Treatment (CPCT) have made available to the study. We also thank Sabine Middendorp
for sharing the intestinal organoid line. In addition, we would also like to thank USEQ
from UMCU for sequencing the organoid lines. Lastly, we are particularly grateful to all
cancer patients enrolled within CPCT project for making their data available for fun-
damental cancer research. This work was financially supported by Oncode Institute and
NWO zwaartekracht Cancer Genomics.nl program funding to E.C.

Author contributions

S.C, EK, E.C.and AV.H designed the research. S.C., N.B. and E.K. carried out the wet
lab experiments. B.V.d.R. and A.V.H. analyzed the data. R.J. and S.B. provided bioin-
formatic support. JW.M.M., M-L.Y. and P.P. provided patient data. B.V.d.R. and A.V.H.
analyzed the patient data. S.C., B.V.d.R. and A.V.H. developed the theoretical modeling.
S.C., A.V.H. and E.C. wrote the paper. E.C. and A.V.H. supervised the study. All authors
proofread, made comments and approved the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-12594-8.

Correspondence and requests for materials should be addressed to E.C.

Peer review information Nature Communications thanks Moritz Gerstung, Maria
Secrier and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
Y

bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

| (2019)10:4571 | https://doi.org/10.1038/s41467-019-12594-8 | www.nature.com/naturecommunications 11


https://doi.org/10.1038/s41467-019-12594-8
https://doi.org/10.1038/s41467-019-12594-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	5-Fluorouracil treatment induces characteristic T&#x0003E;G mutations in human cancer
	Results
	Characterization of 5-FU mutational effect in�vitro
	5-FU-induced mutational pattern in human cancer
	5-FU signature contribution in human cancer
	5-FU mutations in paired biopsies
	5-FU signature resembles COSMIC signature 17
	Impact on tumorigenesis

	Discussion
	Methods
	Patient cohort
	Organoid culturing
	DNA isolation and WGS of organoid lines
	Somatic mutation calling
	Mutational signature analysis
	Paired biopsies
	Ploidy and copy number analysis
	Clonality
	Estimation of tumor mutational burden
	Detection of significantly mutated genes
	Transcription and replication strand bias
	Association of point mutations with mutational patterns
	5-FU induced cancer driver mutation risk
	Comparison with treated naive cancer cohorts
	Statistics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




