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Spatiotemporal dynamics of multidrug resistant
bacteria on intensive care unit surfaces
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Bacterial pathogens that infect patients also contaminate hospital surfaces. These con-
taminants impact hospital infection control and epidemiology, prompting quantitative
examination of their transmission dynamics. Here we investigate spatiotemporal and phy-
logenetic relationships of multidrug resistant (MDR) bacteria on intensive care unit surfaces
from two hospitals in the United States (US) and Pakistan collected over one year. MDR
bacteria isolated from 3.3% and 86.7% of US and Pakistani surfaces, respectively, include
common nosocomial pathogens, rare opportunistic pathogens, and novel taxa. Common
nosocomial isolates are dominated by single lineages of different clones, are phenotypically
MDR, and have high resistance gene burdens. Many resistance genes (e.g., blanpm, blaoxa
carbapenamases), are shared by multiple species and flanked by mobilization elements. We
identify Acinetobacter baumannii and Enterococcus faecium co-association on multiple surfaces,
and demonstrate these species establish synergistic biofilms in vitro. Our results highlight
substantial MDR pathogen burdens in hospital built-environments, provide evidence for
spatiotemporal-dependent transmission, and demonstrate potential mechanisms for multi-
species surface persistence.
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lobal treatment of bacterial infections is increasingly

compromised by evolution and transmission of

multidrug-resistant organisms (MDROs) and their anti-
biotic resistance genes (ARGs) between multiple habitats!.
Infections caused by MDROs are associated with increased
mortality risk compared to infections by matched species sus-
ceptible isolates>. Through international travel, clonal expan-
sion, and promiscuous mobile genetic elements, MDROs and the
ARGs they harbor have rapidly swept across the globel>~12.
Resistant infections cause over 23,000 annual deaths in the
United States of America (USA) and cost the economy over 55
billion dollars!3. The annual global death toll from MDROs is at
least 700,000 people!4. Improved surveillance and understanding
of MDRO and ARG transmission are key factors in reducing
these death tolls!>12,

Hospitalized patients are more vulnerable to bacterial infec-
tions than the general population!®, and healthcare-associated
infections (HAIs) acutely threaten patient safety worldwide!®17.
The “ESKAPE” pathogens, named by the Infectious Disease
Society of America, are common causes of HAIs and the most
common MDROs!8. These include the gram-positive micro-
organisms Enterococcus spp. and Staphylococcus aureus, and the
gram-negative microorganisms Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp'®. These ESKAPE pathogens can be acquired while hospita-
lized, but some patients may be colonized or infected prior to
hospital admission!®. Patients harboring these putative pathogens
can transmit these bacteria to healthcare workers, other patients,
medical equipment, and hospital surfaces!®, but the relative
contribution of this contamination route compared to other
routes in unknown. The presence of these microorganisms on
surfaces in healthcare settings is a local and global public health
concern?’. Some putatively pathogenic strains of bacteria persist
for months on hospital surfaces, and they may even survive
surface decontamination efforts, partly aided by biofilm forma-
tion?1-24. Though studies clearly demonstrate that bacterial
pathogens exist on hospital surfaces, key knowledge gaps exist
regarding the levels, types, and dynamics of contamination in
hospitals from different geographies!>!°. Specifically, there is a
lack of information on the spatial, temporal, and phylogenetic
relationships between different bacterial taxa on surfaces from
countries endemic for a high burden of ARGs. This information
gap is especially true for physical colocalization and horizontal
gene transfer between clinically relevant ESKAPE pathogens and
benign environmental bacteria.

Monitoring high contact surfaces for clinically relevant
pathogenic bacteria and understanding the dynamics of their
persistence and spread is one approach to thwart MDRO

transmission and protect vulnerable hospitalized patients2°.
Additionally, such surveillance provides an opportunity to iden-
tify and characterize potential emerging pathogens before they are
recognized in clinical infections!3-2°.

To address the question of MDRO spatiotemporal dynamics
and persistence on healthcare surfaces we conducted a year-long
longitudinal study at a tertiary care hospital in Pakistan (PAK-H)
where endemic ARG burden is high?’-2°. Differing resistance
mechanisms to last-resort carbapenem antibiotics have been
found in genetically similar Enterobacteriaceae strains and plas-
mids isolated from hospitals in Pakistan and the USA3.
Accordingly, we included a matched tertiary care hospital in the
USA (USA-H) as a comparison group. For our collections and
subsequent analysis, we took an Eulerian approach by selecting
and measuring fixed hospital surfaces over time to understand
bacterial contamination dynamics. This approach allows us to
leverage collection time information and surface spatial infor-
mation to draw epidemiological insights. In both hospitals, we
sampled four intensive care unit (ICU) rooms with five surfaces
in each room (Fig. 1). We collected surface swabs every other
week for 3 months, and again at 6 months, and at 1 year, for a
total of 180 samples per hospital. We identified high burdens of
known MDROs on PAK-H ICU surfaces including ESKAPE
pathogens and novel taxa3!:32, This investigation is the first to
show such widespread contamination with multidrug-resistant,
extensively drug-resistant, and pan-drug-resistant bacteria in
Pakistan. We found evidence that bacteria are non-randomly
distributed on hospital surfaces with respect to both space and
time, and we used this information to narrow possible con-
tamination routes. We found cross-contamination of MDRO
clones both across different surfaces within rooms, as well as
between rooms at the same sampling time-points. From our
results, it is likely that bacteria are seeded to hospital surfaces
from diverse human and/or environmental reservoirs in a time-
dependent manner. These seedings result in waves of con-
tamination that are often, but not always, restricted to a single
collection time. We show high numbers of ARGs are shared
between common nosocomial pathogens and rarer bacterial
species, including several novel taxa, which are close phylogenetic
relatives to nosocomial pathogens. Co-association analysis of A.
baumannii and Enterococcus faecium led us to identify synergistic
biofilm formation between these two ESKAPE pathogens. This
discovery points to a possible explanation for multi-species bac-
terial persistence on hospital surfaces. Longitudinal persistence of
these high-impact pathogenic species alongside highly resistant
bacteria classically identified as “environmental” paints a con-
cerning picture of hospital surface contamination. These results
lay the groundwork for future surveillance efforts and infection
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Fig. 1 Overview of sample collection and processing. Samples were collected from surfaces longitudinally over the course of 1 year from PAK-H ICU and
USA-H ICU. Four rooms from each ICU were chosen for sampling and five surfaces within each room were surveyed for every collection time. Bacteria
were cultured from the collection swabs, identified by MALDI-TOF MS, and then whole-genome sequenced
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control interventions to reduce healthcare associated bacterial
surface contamination.

Results

PAK-H ICU surfaces had high bacterial burden. We recovered
1163 bacterial isolates from hospital surfaces in PAK-H and
predicted their species identities by matrix-assisted laser deso-
rption/ionization time-of-flight mass spectrometry (MALDI-TOF
MS). We chose a subset of 289 unique isolates for phenotypic and
genomic analysis, using the criterion of a single isolate per unique
MALDI-TOF MS identified species, per culture condition, per
surface, per time-point (Supplementary Data 1). These 289 bac-
teria represent 31 species and 10 families (Fig. 2a). A total of
25.9% (75/289) of isolates recovered from PAK-H were identified
as A. baumannii. A total of 16.2% (47/289) were the gram-
positive pathogen E. faecium, and 11.8% (34/289) were K.
pneumoniae. Interestingly, similar numbers of the soil-associated
opportunistic pathogen Pseudomonas stutzeri were recovered (28/
289, 9.7%) as the common nosocomial pathogen P. aeruginosa
(27/289, 9.3%). In addition to these expected nosocomial organ-
isms, we identified a variety of other clinically relevant species
such as Stenotrophomonas maltophila, Shewanella putrefaciens,
and Providencia rettgeri. These results starkly contrast with USA-
H, where we only recovered six unique isolates, which MALDI-
TOF MS identified as A. baumannii (4/6) and E. coli (2/6)
(Fig. 2a). The majority of PAK-H (156/180, 86.7%) surface col-
lections yielded bacteria (Fig. 2b), but only a few (6/180, 3.3%)
USA-H surface collections yielded isolates using the same culture
conditions.

Sequence-based bacterial identification outperformed MALDI-
TOF MS. We performed draft Illumina whole-genome sequen-
cing (WGS) on the 289 isolates to improve taxonomic resolution,
quantify transmission dynamics for abundantly recovered
organisms, and analyze ARG content (Supplementary Table 1).
Initially, we constructed a Hadamard matrix, which represents
the product of the average nucleotide identity (ANI) and percent
of the genome aligned, between every pairwise combination of the
289 genomes sequenced from PAK-H surfaces (Supplementary
Fig. 1). Hierarchical clustering of Hadamard values confirms 74/
75 isolates identified by MALDI-TOF MS as A. baumannii, 47/47
as E. faecium, 33/34 as K. pneumoniae, 27/27 as P. aeruginosa,
and 24/28 as P. stutzeri. These isolates cluster into the first five
blocks of the matrix. Analysis of the clustering pattern in the K.
pneumoniae group found one isolate distant from the rest of the
cohort; separate ANI analysis demonstrated this isolate is Kleb-
siella quasipneumoniae. Similarly, three isolates annotated as P.
stutzeri are Pseudomonas xanthomarina. The isolate identified as
A. baumannii that did not cluster with the rest of the cohort was
Acinetobacter soli. In total, we found 27 cases where initial
MALDI-TOF MS identifications differed from subsequent WGS-
dependent identifications. Additionally, both (2/2) isolates initi-
ally identified as Empedobacter brevis are Empedobacter falsenii.
Two out of three of genomically confirmed Atlantibacter sub-
terranea were unidentified by MALDI-TOF MS but 1/3 was
identified as the closely related Atlantibacter hermanii.

We found 12 instances where genomes did not have >95% ANI
with the identified MALDI-TOF MS hit or the most closely related
genomes as determined by 16S rRNA gene sequence in the
EzBioCloud database, indicating that these are putative novel
genomospecies. A separate investigation found that 2/7 of the
isolates unidentified by MALDI-TOF MS are a new genus of
multidrug-resistant Enterobacteriaceae, termed Superficieibacter
electus®!. The previously unreported genomospecies come from
the Caulobacteriacae, Xanthomonadaceae, and Enterobacteriaceae

families, and five of the proposed new genomospecies are
Pseudomonadaceae. Importantly, these unreported genomospecies
are found on the same healthcare surfaces as common human
pathogens. Our results indicate WGS offers improved resolution
for species delineation compared to conventional clinical
diagnostic tools, for both common human pathogens and rarer
species.

Single lineages dominated A. baumannii and E. faecium
populations. As our taxonomic analysis demonstrated A. bau-
mannii, E. faecium, K. pneumoniae, and P. aeruginosa were the
most abundant putative pathogens collected at PAK-H, we next
endeavored to determine population structure for isolates in these
species. For each species, we annotated protein coding sequences
with Prokka, constructed core genome maximum-likelihood
phylogenetic trees with Roary and RAxML, then identified
lineages with fastGEAR/BAPS33-36. Our results demonstrate that
for A. baumannii and E. faecium, but not K. pneumoniae or P.
aeruginosa, a single lineage represented >70% of all isolates col-
lected over 12 months. For all four species, time of collection, but
not room or surface had the greatest concordance with phylo-
genetic position (Fig. 3).

A total of 88.4% (69/78) of the A. baumannii isolates were from
lineage 7 (Fig. 3a, Supplementary Fig. 1a), which was composed of
several untypable isolates, and 7 sequence types (STs). Interest-
ingly, the four USA-H genomes in ST208 clustered adjacent to one
another and next to the seven ST208 genomes from PAK-H. A
total of 72.3% (34/47) of the E. faecium isolates come from BAPS
lineage 4. All lineage 2 and lineage 1 E. faecium isolates came from
the second and fourth week, respectively. K. pneumoniae
contained five BAPS lineages with ST617, ST337, ST231, and
ST147 relating to lineages 1, 2, 4, and 5, respectively. All the
lineage 2 K. pneumoniae came from week 4 of our collections. P.
aeruginosa had the greatest concordance between lineages and
sequence types, as ST859, ST664, ST235, and ST571 corresponded
to lineages 1, 2, 3, and 4, respectively. Seventy-four percent (20/27)
of the P. aeruginosa isolates came from week 8 of our collection,
including all lineage 4 and lineage 1 isolates. Our analysis of
population structure for recovered A. baumannii, E. faecium, K.
pneumoniae, and P. aeruginosa indicates that specific lineages of
closely related isolates dominated PAK-H surfaces. We next
wanted to investigate if clonal groups of highly related isolates
existed within lineages we identified for these pathogens.

Genetically related isolates are spatially and temporally linked.
To identify clonality within bacterial species, we removed
recombinant positions from the core genome alignment (Sup-
plementary Data 2) and calculated pairwise single nucleotide
polymorphism (SNP) distances (Supplementary Fig. 2, Supple-
mentary Data 3). All four bacterial species had multimodal
pairwise SNP distance distributions, indicating concordance
between SNP distance and clustering on core genome phyloge-
netic trees (Supplementary Fig. 3). To investigate potential
transmission events in PAK-H surface collections, we used our
pairwise SNP distances to find clonal bacterial isolates. Clonal
groups were defined conservatively as isolates of the same species
with five or fewer core genome SNPs between any two members
of the group. We identified potential clonal groups within A.
baumannii and E. faecium (Supplementary Data 4). A. baumannii
had 11 clonal groups encompassing 45 of the 79 (57.0%) A.
baumannii isolates (Fig. 4a). All these A. baumannii clonal
groups were in BAPS lineage 7. E. faecium had six clonal groups
from four different lineages (Fig. 4b). Foty-one out of 48 (85.4%)
E. faecium isolates belonged to one of the six clonal groups.
Principal coordinates analysis and PERMANOVA for A.
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Fig. 2 Bacterial isolate taxonomic identification and location. a MALDI-TOF MS identifications of bacterial isolates recovered from surfaces at PAK-H
(above) and USA-H (below), colored by family. b Overview of PAK-H bacterial surface collections. Each horizontal gray panel represents a PAK-H room.
Within each room, the horizontal gridded white lines are the five sampled surfaces. Each vertical white line is one of the collection weeks. Places where the
horizontal and vertical white lines intersect represent a sampling. Large, open black boxes are around any surface where one or more bacteria were
collected. The five most abundant species in the collections are indicated as colored shapes within the black boxes of surfaces where they were collected
(blue squares are A. baumannii, red diamonds are E. faecium, green circles are K. pneumoniae, orange triangles are P. stutzeri, and purple triangles are P.
aeruginosa). Source data for both panels are provided in the source data file
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provided in the source data file
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baumannii and E. faecium clonal groups and non-clonal isolates
indicated bacteria from the same clonal group also had sig-
nificantly similar accessory gene content with (P = 0.0093 for A.
baumannii and P <0.0001 for E. faecium (PERMANOVA)) and
without (P<0.0001 for both (PERMANOVA)) non-clonal iso-
lates included (Supplementary Fig. 4). Together, these results
indicate clonal populations of A. baumannii and E. faecium exist
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on PAK-H surfaces and that these clones could have a genetic or
phenotypic basis for extended persistence.

We conducted a 10,000 trial, permutation test of the first
3 months of collection to determine if clonal isolates of A.
baumannii and E. faecium were significantly spatially and
temporally coincident by comparing the observed spatial or
temporal distance with the imputed null distribution

6 NATURE COMMUNICATIONS | (2019)10:4569 | https://doi.org/10.1038/s41467-019-12563-1| www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Fig. 4 Relationship of core genome SNP groups to spatial and temporal distance. a Clonality results for A. baumannii. Squares represent A. baumannii
collected from surfaces. Colors represent clonal subgroup membership. Each colored set is a clonal subgroup with fewer than five SNPs different between
all members of the group. Unfilled squares did not have fewer than five SNPs different with any other isolates. Lineage from BAP (identified in Fig. 3 by
branch color) is indicated in the legend on the left. b Clonality results for E. faecium. Diamonds represent E. faecium collected from surfaces. Colors
represent clonal subgroup membership. Each colored set is a clonal subgroup with fewer than five SNPs different between all members of the group.
Unfilled diamonds did not have fewer than five SNPs different with any other isolates. Lineage from BAP is indicated in the legend on the left. For ¢, d,
temporal distances are calculated as +1 for every 2-week span separating isolate collections. Spatial distances are given as 40 if isolates were collected
from the same surface and room, +1 if they were collected from the same room, but different surfaces, and +2 if they were collected from different rooms.
¢ Temporal linkage for A. baumannii clones. The expected temporal distance distribution is shown in blue and the observed temporal distribution is shown
as a solid black line. d Spatial linkage for A. baumannii clones. The expected spatial distance distribution is shown in blue and the observed spatial
distribution is shown as a solid black line. e Temporal linkage for E. faecium clones. The expected temporal distance distribution is shown in red and the
observed temporal distribution is shown as a solid black line. f Spatial linkage for E. faecium clones. The expected spatial distance distribution is shown in
red and the observed spatial distribution is shown as a solid black line. Source data for all panels are provided in the source data file

(Supplementary Fig. 5, Supplementary Data 5). Individual clone
data were aggregated by species to determine if clones were
grouped spatially and temporally with all other clones (Fig. 4c-f).
These test results indicate clonal bacteria from both A. baumannii
and E. faecium are more likely than predicted by chance to be
isolated from surfaces that are spatially (P <0.00001 for both A.
baumannii and E. faecium (permutation test)) or temporally (P <
0.00001 for A. baumannii and P=0.0021 for E. faecium
(permutation test)) close together than they are to be isolated
from surfaces that are spatially or temporally distant. This could
represent a threat for clonal HAI outbreaks in patients linked by
room or duration in the PAK-H ICU. Additionally, it is likely that
reducing bacterial burden on specific surfaces would also reduce
bacterial burden on linked surfaces.

Variant distances correlate with core genome SNP distances.
Since core genome SNPs may underestimate true differences
between isolates from exclusion of intergenic regions, we aug-
mented our analysis by mapping quality filtered reads from A.
baumannii and E. faecium to their respective type strain complete
genome assemblies (GCF_000746645.1 (https://www.ncbi.nlm.
nih.gov/assembly/GCF_000746645.1/) for A. baumannii and
GCF_000174395.2 (https://www.ncbi.nlm.nih.gov/assembly/GCF_
000174395.2/) for E. faecium). With these mapped reads, we called
multiple different variant types including SNPs, multiple nucleo-
tide polymorphisms (MNPs), and insertions/deletions (indels).
These variant calls gave us high-resolution pairwise genetic dis-
tances between isolates of the same species (Supplementary Fig. 6).

We compared these variant distances to the core genome SNP
distances (Supplementary Fig. 7). Correlation between pairwise
core genome SNP distance and pairwise variant distance was
significant for both A. baumannii (R? = 0.9471, P < 0.0001 (linear
model)) and E. faecium (R* = 0.8696, P < 0.0001 (linear model)).
These results suggest core genome SNP distances and variant
distances are tightly linked in our cohort. Despite this tight
correlation, higher resolution of variant distances compared to
core genome SNP distances was apparent (Supplementary Fig. 7).
Both variant and core genome SNP distances for A. baumannii
are bimodal reflecting between lineage distances, but variant
distances have a more continuous spread than core genome SNP
distances (Supplementary Fig. 7a). While E. faecium was trimodal
rather than bimodal for SNP distances, variant distances were
again more continuous than core genome SNP distances
(Supplementary Fig. 7b). We exploited this higher resolution to
investigate biologically meaningful isolate groupings.

Spatiotemporal distance identifies relevant epidemiologic
groups. To identify epidemiologically meaningful groupings, we
leveraged space and time information from our collections. For A.
baumannii and for E. faecium, we iterated through every unique

variant distance cutoff from the lowest distance between any two
isolates until the lowest distance between any two isolates not in
the same lineage (Figs. 5a-e, 6a—e). We used these cutoffs to filter
the isolate pairwise links edge list. For each cutoff, we found
perfectly reciprocal groups with maximal graph coverage and
recorded the number of cliques and the number of isolates per
clique (Supplementary Fig. 8, Figs. 5a, b, 6a, b, Supplementary
Data 6). Here we define cliques as complete subgraphs within the
network where each node in the clique is connected to each other
node in the clique. Both A. baumannii and E. faecium showed a
similar pattern where number of cliques rises sharply initially and
then peaks. During this peak, there is a gradual increase in the
number of isolates per clique, with cliques staying relatively
balanced. After peaking, the number of cliques rapidly declines as
formerly independent cliques merge. This merging interestingly
results in one major clique with several other minor cliques. We
then determined how much each clique grouping’s spatial and
temporal distances deviated from a null model generated with
10,000 permutations for that clique grouping (Figs. 5c¢, d, 6c, d,
Supplementary Data 6). If isolates spread randomly on surfaces,
we would expect z-scores close to 0 for the spatial and temporal
data. We projected the lowest z-score cutoffs onto the pairwise
variant distances histogram (Figs. 5e, 6e). The greatest deviation
from the null model for significant temporal (Figs. 5f, 6f) and
spatial linkage (Figs. 5g, 6g) coincided with cutoffs that yielded
the highest number of cliques. In this case, we found nine cliques
for A. baumannii with both the time-minimizing distance
(Fig. 5h) and space-minimizing distance (Fig. 5i) cutoff. For E.
faecium, we found ten cliques for the time-minimizing cutoff
(Fig. 6h) and eight cliques for the space-minimizing cutoff
(Fig. 61). The cutoff values in that range best fit the radiation of
isolates on these surfaces. After cutoff values increase beyond the
clique-maximizing value, within-clique spatial and temporal
distance observations rapidly increase to match and even exceed
null estimations, indicating that the epidemiologically relevant
variant cutoff was likely passed.

For A. baumannii and for E. faecium, cliques are mostly
restricted to single collection times, but some cliques, like clique 8
for A. baumannii, deviate from this trend and are instead broadly
spread over surfaces in both time and space. Though most cliques
are restricted by time, cliques that are spread in time show room
restricted patterning. This distribution of isolates could be
explained by a reservoir of multiple clones with continual seeding
to surfaces. In this scenario, most seeding events would not result
in long-term surface, persistence, but a few clones could pass this
strong filter to successfully survive for multiple weeks within
rooms in a space-dependent fashion.

PAK-H isolates have high genotypic and phenotypic resistance.
We used ResFinder to identify ARGs in draft genomes of our
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Fig. 5 A. baumannii optimal pairwise variant distance cliques identified by spatial and temporal data. A. baumannii isolate clique groupings with the lowest
observed spatial and temporal distances compared to the expected distribution. Panels a-e give information on the clique groupings for each unique variant
distance cutoff (x-axis) starting at the minimum variant distance and extending until the minimum variant distance between two isolates from different
lineages. Panel a shows the number of completely connected cliques identified at the current cutoff value. Panel b shows the number of isolates per clique,
with the black dots showing each individual clique and the blue points showing the average per clique. Panels ¢ and d show the deviation (z-score given as
blue points) of the observed temporal (¢) or spatial (d) distance compared to the expected distribution. The dotted lines show the upper and lower
significance bounds. e Histogram of the number of pairwise comparisons in different variant distance cutoff ranges. Blue dashed lines show the minimum z-
score cutoffs for the temporal and spatial distances given in ¢ and d. Panels f and g show the observed distance value vs the expected distribution for the
minimum z-score values identified in ¢ and d for temporal (f) and spatial (g) distance. The black vertical line is the observed distance and blue filled
histogram is the expected distribution. Panels h and i show the cliques identified at the minimum z-score cutoffs for temporal (h) and spatial (i) distance
measurements. Source data for all panels are provided in the source data file

sequenced A. baumannii, E. faecium, K. pneumoniae, and P.
aeruginosa isolates3”. Additionally, we determined if these isolates
were phenotypically resistant, intermediate, or susceptible using
Kirby-Bauer disk diffusion assays (Supplementary Data 7) in
accordance with Clinical and Laboratory Standards Institute
(CLSI) guidelines®8. For all species, we found hierarchical clus-
tering of isolates based on ARG presence or phenotypic sus-
ceptibility indicated lineage was the major predictor of resistance-
based clustering patterns (Fig. 7). Specific lineages can dominate

clinical infections and tight correlation of lineage with resistance
may relate to this phenomenon3®. This linkage between lineage
and antimicrobial resistance may also allow for rapid sequence-
based, rather than gene-based, susceptibility predictions#0.

A. baumannii isolates harbored 30 unique ARGs against nine
different classes of antimicrobials (Fig. 7a). Forty percent (12/30)
of these ARGs were P-lactamases and 26.7% (8/30) were expected
to confer phenotypic resistance against aminoglycosides (Fig. 7a).
One-hundred percent (65/65) of lineage 7 PAK-H isolates
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harbored blagxa.»3 and 95.4% (62/65) also had blapxa_¢s While
none (0/4) of the USA-H isolates had either of these
carbapenemases (Supplementary Fig. 9a). Interestingly, USA-H
isolates clustered close together with most other lineage 7 PAK-H
samples rather than as a separate group (Fig. 7a). A total of 92.3%
(72/78) of the bacteria were resistant to three or more classes of
antimicrobials including two carbapenems (Supplementary

Fig. 10a). A total of 4.05% (3/74) of the PAK-H A. baumannii
isolates were resistant to all 14 antimicrobials tested. Minocycline
was most efficacious against PAK-H strains, with 92.3% (72/78)
non-resistant.

E. faecium isolates had 20 unique resistance genes against seven
classes of antimicrobials (Fig. 7a). Only erm(A) was unique to a
single isolate. Components of the vanA operon and the macrolide
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ARG msr(C) were common to all isolates. As expected for vanA
containing E. faecium, all isolates were resistant to vancomycin
(Supplementary Fig. 10b). A total of 42.1% (24/57) were
additionally resistant to chloramphenicol and doxycycline. All
isolates were susceptible to daptomycin.

The K. pneumoniae isolates harbored 44 unique resistance
genes and of these, 25.0% (11/44) were unique to single isolates
(Fig. 7c). Three blaxppm (blanpm.1> blanpm.s, and blagpy ;) and
two blaoxa (blaoxa1s1 and blagxa 23,) carbapenemase genes
were identified. blaypy s was found in K. pneumoniae on ten
surfaces and in all four PAK-H ICU rooms (Supplementary
Fig. 9b). A total of 39.4% (13/33) of K. pneumoniae isolates were
resistant to meropenem and imipenem (Supplementary Fig. 10c).
One-hundred percent of lineage 1 (5/5) and lineage 2 (5/5)
isolates and 60% (3/5) of lineage 3 isolates were susceptible to
these two antibiotics. All (33/33) isolates harbored the fosfomycin
ARG fosA and an efflux pump component ogxA, however all
lineage 4 isolates lacked the second component, ogxB.

P. aeruginosa isolates harbored 15 unique resistance genes
against six classes of antimicrobials. All isolates had aph(3’)-Ib,
blapao, blaoxa-so, fosA, and catB7 (Fig. 7d). Fifty percent (3/6) of
lineage 3 genomes had the carbapenemase blaggs s. All lineage 4
P. aeruginosa isolates and 3/5 lineage 1 isolates were pan-
susceptible to antibiotics (Supplementary Fig. 10d). In contrast,
all (8/8) lineage 2 and 3 isolates were resistant to meropenem,
ciprofloxacin, and gentamicin. Our results demonstrate that the
major abundant HAI pathogens contain a high ARG burden and
exhibit profound levels of multidrug resistance. Infections from
these bacteria could have limited treatment options due to high
phenotypic multidrug resistance.

ARGs against almost all antimicrobials are shared between
species. Given the extensive diversity and burden of high-risk
ARGs found in A. baumannii, E. faecium, K. pneumoniae, and P.
aeruginosa, we analyzed potential lateral transfer of ARGs
between all collected species. To accomplish this, we concatenated
identified acquired ARGs within each species and created a net-
work diagram connecting each taxa with its ARGs (Fig. 8a). The
high connectivity of this network highlights the extensive pro-
miscuity of ARGs we observe in these data. Strikingly, 57 ARGs
were found in two or more species. These genes were expected to
confer resistance against all classes of antibiotics, excluding
vancomycin. E. faecium contained the macrolide resistance gene
erm(B), which was also shared with E. coli. Given that E. faecium
is the sole gram-positive species in this collection, it unsurpris-
ingly had the most species specific ARGs (n =17). Sull was the
most promiscuous ARG within our cohort, as it was identified in
22 different species, including those in Acinetobacter, Achromo-
bacter, Alcaligenes, Atlanibacter, Citrobacter, Escherichia, Enter-
obacter, Klebsiella, Ochrobactrum, Pseudomonas, Providencia,
Shewanella, and Superficieibacter. B-lactam ARGs were the most
abundant class in our cohort, with a total of 57 identified from all
four Ambler classes. Alarmingly, 40.3% (23/57) of these genes
have putative carbapenemase activity. blaggs.s is the only
Ambler Class A carbapenemase. A total of 34.7% (8/23) of genes
we identified are Ambler Class B Metallo-p-lactamases, from
the blaVIM, blaIMp, blaEBR, bluDIM and blaNDM families. The
remaining 60.8% (14/23) were blagxs variants including the
blaOXA—48—like famlly members blao)(A_wl and blﬂoxp,-232~ blaNDM_l
showed the greatest diversity of host species, as it was identified
11 times in ten different species from Alcaligenaceae, Enter-
obacteriaceae, Moraxellaceae, and Shewanellaceae.

blaypy is a globally proliferated family of carbapenem
resistance genes endemic to India and Pakistan®4l. To better
understand the local genetic context of blaypy.;, we performed

long-read sequencing with the Oxford NanoPore MinION
platform on all blaypy.; positive isolates (Fig. 8b). blaypy.; in
all genetic contexts was adjacent to ble, a bleomycin resistance
gene. The blaypy.; locus region was nearly identical between A.
junii A]_068/A. Iwoffii AL_065/A. variabilis AV_175 and A. junii
A]_351/C. freundii CF_324, E. hormaechei EH_316, and S.
putrefaciens SA70. The isolates A. junii AJ_351, C. freundii
CF_324, E. hormaechei EH_316, and S. putrefaciens SA70
additionally contained blagxa.10 and antl. The isolates A. junii
A]_068, A. Ilwoffii AL_065, and A. variabilis AV_175 had a
different aminoglycoside resistance gene, aph. The isolate A.
johnsonii AJ_082 contained the only rifamycin resistance gene,
arr3. The isolates A. junii AJ_351, C. freundii CF_324, E.
hormaechei EH_316, and S. putrefaciens SA70 also contained the
emrE multidrug resistance transporter. On 72.7% (8/11) of the
loci, blaypy.1 was co-localized with a transposase associated
gene. Our analysis of ARG content across species identified high
interconnectivity between most gram-negative species and
determined blaypy, is situated in similar genetic contexts across
diverse taxonomic groups, suggesting extensive horizontal ARG
transfer.

A. baumannii and E. faecium have synergistic biofilm inter-
actions. Bacteria harboring diverse ARGs may be recalcitrant to
treatment regimens and could continually transmit from patients
onto ICU surfaces, likely forming sessile biofilms to survive the
dry conditions*?>43. Indeed, biofilms composed of MDROs have
been previously demonstrated to contaminate 93% (41/44) of
hospital surfaces surveyed?*. To assay potential microbe-microbe
interactions that may explain long-term surface persistence, we
examined co-occurrences between abundant species in the first
three collection months using permutation testing (Supplemen-
tary Data 8). To remove potential bias from overrepresentation of
certain taxa, we performed this analysis with both total counts
(Supplementary Data 9) and relative frequency (Supplementary
Data 10). Both metrics demonstrated A. baumannii and E. fae-
cium co-occurred on surfaces more often than predicted by
chance (P <0.00001 for A. baumannii and P = 0.0083 for E. fae-
cium (permutation test)) (Fig. 9a, b).

We then obtained isogenic strains of E. faecium (TX82/
TX5645) and A. baumannii (ATCC-17978, 17978 Apgl) capable
of, or deficient in, biofilm formation, respectively**4>. Using
every pairwise combination between the different species, we
found co-culture of E. faecium TX82 with A. baumannii ATCC-
17978 or A. baumannii 17978Apgl, and E. faecium TX5645 with
A. baumannii ATCC-17978 resulted in statistically significant
increases (P < 0.0001 (Mann-Whitney U test)) in biofilm biomass
relative to either of the parent strains (Fig. 9b). This effect did not
occur when both species were incapable of forming biofilms
individually (Fig. 9e).

As dead cells may be included in total analysis of biofilm
biomass, we next specifically quantified the population of total
viable cells between each pairwise interaction. Like results for
total biofilm biomass, the number of viable cells increased
significantly in E. faecium TX82/A. baumannii ATCC-17978 and
E. faecium TX82/A. baumannii 17978Apgl compared to either
parent strain (P <0.0001 (Mann-Whitney U test)) (Fig. 9d).
However, in contrast to the increase in biofilm biomass observed
for E. faecium TX5645/A. baumannii ATCC-17978 relative to
both parent strains, we found a decrease in viable cells compared
to A. baumannii ATCC-17978 (Fig. 9f). Quantification of biofilm
biomass synergy values between each strain combination shows
all interactions except those between E. faecium TX5645 and A.
baumannii 17978Apgl are synergistic. For viable cells, interac-
tions between E. faecium TX5645 and A. baumannii 17978 Apgl
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stained ¢ biofilm biomass and d XTT reduction for A. baumannii and E. faecium model biofilm strains grown in single and in co-culture (P-values were
generated using unpaired, nonparametric Mann-Whitney statistical tests are indicated using the following mapping: **<0.01, ***<0.001, ****<0.0001). y-
Axis for both plots is optical density at 590 nm and 450 nm, respectively, and error bars are 1 standard deviation. Synergy scores of dual vs single strain
cultures for e biofilm biomass and f viable cells. Source data for all panels are provided in the source data file
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and A. baumannii ATCC-17978 versus E. faecium TX5645/A.
baumannii  17978Apgl are synergistic. These data suggest
interspecies interactions between organisms identified on PAK-
H ICU surfaces may enable increased survival due to synergistic
growth inside biofilms. Importantly, relative efficacy of those
interspecies biofilms depends strongly on individual strain
capabilities.

Discussion

HAIs are a substantial patient health threat and economic bur-
den®. While pathogenic bacteria that often cause HAIs can be
transferred via invasive medical procedures or directly between
patients or healthcare providers, inanimate surfaces and shared
equipment are also an important reservoir for bacterial
transmission!>#2. Here we report an in-depth, year-long inves-
tigation of bacterial colonization of hospital surfaces in two ICUs
in Pakistan (PAK-H) and the USA (USA-H). We found sub-
stantially more contamination by MDROs on PAK-H surfaces
compared to USA-H surfaces using identical differential and
selective culture conditions.

In addition to commonly recognized HAI causing bacteria, we
found many potentially opportunistic pathogens and novel gen-
omospecies from commonly pathogenic genera (Pseudomonas,
Stenotrophomonas, Brevundimonas). The first novel genomos-
pecies from this collection to be fully characterized, S. electus, is a
new genus of Enterobacteriaceae that harbored extended spec-
trum PB-lactamases and was multidrug resistant3!. A previous
taxonomic investigation determined that species from another
novel genus of Enterobacteriaceae, Pseudocitrobacter faecalis and
Pseudocitrobacter anthropi, harbored blaypy., carbapenemases,
and were identified in fecal samples from patients at hospitals in
Pakistan?’. Currently no clinical evidence indicates these three
species are human pathogens, but it is concerning that they exist
proximal to known pathogens, encode clinically relevant ARGs,
and are phenotypically resistant to multiple drugs. Furthermore,
increasing implementation of WGS in clinical laboratories is
enabling identification of emerging pathogens, which were pre-
viously misidentified by traditional methods, such as the first
report of a bloodstream infection by Kosakonia radicincitans*S.
Our results provide additional utility for the implementation of
WGS for bacterial delineation from clinically relevant environ-
ments. Further comparative analysis and molecular and pheno-
typic evidence for pathogenesis is required to demonstrate that
this level of identification is clinically relevant or actionable.

A. baumannii, E. faecium, K. pneumoniae, and P. aeruginosa,
the four most abundant bacteria in our cohort, are also common
pathogens and common HAI agents. Interestingly, through
core genome phylogenetic analysis, we found that our A. bau-
mannii and E. faecium isolates are dominated by single lineages,
but K. pneumoniae and P. aeruginosa have nearly equal numbers
of isolates from multiple lineages. Previous reports of K. pneu-
moniae and E. cloacae isolates from a US hospital system and
Italy showed they were similarly composed of diverse sequence
types?9:50,

Timepoint of sample collection was the variable that showed
greatest concordance with phylogenetic lineage. Lineage 7, the
main group of A. baumannii isolates, was composed of several
sequence types, including ST218, ST208, and ST195. These STs
correspond to major strains collected of blagxa.,3 bearing A.
baumannii in Indonesia; additionally, blagxa.»3 positive ST195
isolates were responsible for an outbreak of infections in North
China®1>2. The four ST208 USA-H A. baumannii isolates were
genomically similar to the PAK-H isolates, although the PAK-H
isolates harbored blagxa.,3 whereas the USA-H isolates have
blaoxa_s1- This parallels a previous investigation that whichfound

near identical genomes and plasmids from carbapenem-resistant
Enterobacteriaceae in the US and Pakistan, but US isolates
exclusively contained blaxpc while blaypy was only found in
isolates from Pakistan®0. The most abundant E. faecium sequence
type, ST132, was primarily contained in lineage 4. Isolates from
this sequence type have been reported as both etiological agents of
urinary tract infections and as commensal bacteria in
animals®34,

Though A. baumannii and E. faecium were dominated by a
single lineage, we found that the six clones of E. faecium came
from all four lineages, but that 3/6 of the clones were from the
dominant lineage 4 group. In contrast, all identified A. baumannii
clones were in the dominant lineage 7. Given that clone 5 of E.
faecium was found in 8/9 timepoints during our collections,
including the first and last weeks of the year-long sampling
period, it is possible that PAK-H surfaces are being colonized by a
common seeding source or that these isolates represent the pre-
dominant clone circulating in the PAK-H region. Source inves-
tigation of carbapenemase producing organisms in a US hospital
system determined that plasmids mobilizing the ARGs originated
from building plumbing®. As further evidence of this, we found
that A. baumannii and E. faecium clones are more likely to co-
localize in space and time than if they were randomly distributed.
This may have important clinical ramifications, as one analysis
determined that although only 8.7% of ICU bacteria sequenced
are from a clonal lineage, they were associated with clinical
infection in 62% of occurrences®®. Therefore, eradication of the
common contaminating source could drastically reduce spread of
these clones and thereby reduce potential of spread to hospital
patients. If bacteria are transmitting between surfaces, spatial and
temporal linkage of these surfaces could mean effective decon-
tamination of surfaces will have a combinatorial effect.

In our variant analysis, we identified that most cliques (com-
plete subgraphs within the network where each node in the clique
is connected to each other node in the clique) were time
restricted, but a few cliques persisted across multiple collections.
These persistent cliques subsequently showed room restriction.
Several contamination routes could explain these results. For
example, seeding bacteria may originate from patients occupying
hospital rooms®®. Bacteria coming from different patients are
likely genetically distinct in variant analysis; even within a patient,
multiple lineages of the same species could co-exist®’. Seeding
events from patient to surface would represent a bottleneck event
and persistence on surfaces would represent another bottleneck.
Bacteria passing the first bottleneck would be detected within a
single collection time, and bacteria passing the second would be
found in multiple collection times. Bacterial clones on many
surfaces would have higher chances to spread to other surfaces in
the same room or different rooms. Similar contamination pat-
terns could also be observed due to water contamination in the
hospital®®>. PAK-H uses tap water with Virkon S disinfectant
tablets (Lanxess) to clean hospital surfaces. If tap water has high
bacteria burden or if not enough tablets are used, the disinfectant
protocol could contaminate rather than decontaminate surfaces.
This tap water environmental source could contain a poly-
microbial community, thus acting as reservoir for multiple bac-
terial lineages®®. With tap water, the first significant bottleneck
would be getting from the water system to surfaces, but sub-
sequent steps would be in line with the patient contamination
scenario. In support of these potential contamination routes, the
bacteria we observe in this study are a mixture of human fecal
bacteria and water environmental bacteria®®®0. This analysis
demonstrates how a surface focused sampling and analysis
approach can generate epidemiologically meaningful insights for
future investigation. In our case, the hospital water system and
ICU room patients can both be tested as potential reservoirs for
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observed ICU surface bacterial contaminants, and a longitudinal
sampling scheme similar to the one used in our study would
enable estimation of transmission dynamics between these
putative contamination sources and sinks.

The A. baumannii, E. faecium, K. pneumoniae, and P. aerugi-
nosa isolates we recovered from PAK-H surfaces had high ARG
burdens and were often phenotypically resistant to multiple
classes of antibiotics commonly used as treatment against them.
This is particularly troublesome for local patient safety at PAK-H
given that a retrospective cohort analysis found significant
increases in 30-day mortality after infection when comparing
patients infected by multidrug-resistant versus susceptible
organisms®!. Particularly problematic are the three A. baumannii
isolates we recovered that were resistant to all antibiotics tested
with CLSI interpretive criteria, similar to 20 pandrug-resistant
isolates recovered from countries bordering the Mediterranean
Sea®?. While we were unable to determine directionality of
transfer, linkage analysis between acquired ARGs and species
harboring them show numerous instances of identical ARGs in
different species. This is best exemplified by blaxppm.; presence in
ten different species. Using long-read nanopore sequencing, we
found blanypn.; situated in a variety of genetic contexts, even
between the two A. junii isolates that contained it. Similar to
previous reports of blaypy.; in isolates recovered from Pakistan
patient stool samples, the mobilization element ISAbal25 was co-
localized with blaypy.1 in 4/11 of our isolates®3, Additionally, 4/
11 isolates also contained blaxpp.; close to blagxa.10, Similar to
numerous blaypy; harboring Enterobacteriaceae isolates from
hospitalized patients®3.

Bacteria surviving in the built environment likely exist in ses-
sile biofilms, which can make them difficult to eradicate®s.
Numerous studies have determined that dual- or multi-species
biofilms have distinct characteristics to enhance survival and
pathogenicity®4-%. Direct sampling of ICU samples showed
polymicrobial biofilms are widespread?4. Biofilm formation is an
important component for pathogenesis of Enterococcus and
Acinetobacter®”-%8. In both organisms, biofilm formation often
requires extracellular attaching proteins including LH92_11085
and OmpA in A. baumannii or the Emp pilus in E. faecium®-71,
Variation has been observed among the ability of A. baumannii
clinical isolates to form biofilms, but several strains are capable of
growing on urinary catheter surfaces’2. In E. faecium, adaption to
a biofilm is associated with changes in the transcriptional pro-
gram’3. 16S rRNA gene sequencing of high-touch surfaces at
large public hospitals in Brazil identified both E. faecium and A.
baumannii co-localized to the same surface’?. Despite this
observation and the role of individual genes in biofilm formation
for both species, there is a dearth of relative knowledge on specific
interactions between these two species that may occur in the built
environment. Our analysis of co-occurrence between organisms
indicates A. baumannii and E. faecium isolates were cultured
together more frequently than expected by chance. Additionally,
we found co-culture of model E. faecium and A. baumannii
biofilm-forming and biofilm-deficient strains resulted in changes
in total biofilm biomass and total viable cells dependent on the
biofilm formation capacity of input strains. These results are
consistent with a previous report on changes between Enter-
ococcus faecalis and P. aeruginosa biofilms, where synergistic
interactions between the exopolysaccharide produced by P. aer-
uginosa is responsible for spatial segregation of the two species in
biofilms”>. It is therefore possible that conserved interspecies
interactions between Enterococcus spp. and gram-negative non-
fermenting bacteria may explain prolonged surface survival.

One limitation of our study is some bacterial species may be
more robust than others in surviving on surfaces and in the
sampling protocol. For example, bacteria could exist transiently

between sampling times in concert on surfaces. However, the
number of rare species we collected helps to allay this concern.
We also did not concurrently characterize isolates recovered from
clinical specimens. Therefore, we are unable to determine if
lineages found on surfaces correlate with lineages associated with
clinical infection in the hospital and in addition, we cannot
corroborate linkage of lineages (e.g. P. aeruginosa in week 4) or
clones (e.g. E. faecium clone 5) with time to determine if out-
breaks occurred. Detailed analysis of temporally matched clinical
isolates may additionally inform associations of identified A.
baumannii, E. faecium, K. pneumoniae, or P. aeruginosa lineages
with specific infection niches and elucidate novel virulence factors
or identify contaminated medical equipment. Additionally, syn-
chronous sampling of patient/healthcare workers’ skin, stool, or
oral microbiota, or of the room plumbing system could be used to
further track transmission of the recovered MDROs to a specific
source.

Our work represents a thorough longitudinal analysis of hos-
pital surface contamination in Pakistan. We unequivocally
demonstrate that MDRO burden is higher on PAK-H surfaces
than on analogous USA-H surfaces. Using WGS we found that
while the recognized human pathogens A. baumannii, E. faecium,
K. pneumoniae, and P. aeruginosa are the most abundant
organisms, a variety of potentially pathogenic taxa and novel
genomospecies were also recovered. Analysis of lineages in the
four most abundant species and clones in A. baumannii and E.
faecium provide evidence of a common point source of con-
tamination. Particularly alarming is our determination that these
isolates harbor a high burden of ARGs, are often phenotypically
multidrug resistant, and that identical ARGs are housed on a
variety of genetic platforms in multiple species. Synergistic
growth of E. faecium and A. baumannii in dual-species biofilms
may explain statistically significant co-occurrence on PAK-H
surfaces. The complex built-environment microbial ecology
revealed by our hospital sampling highlights that common
human pathogens and rare species frequently colocalize and share
clinically relevant genes. Rapid dissemination of bacterial
pathogens and plasmid borne ARGs stress the importance of
surveilling bacterial isolates in high-risk areas to protect vulner-
able hospitalized patients around the globe.

Methods

Sample collection and culturing. ICU rooms were sampled every other week for
3 months and then at 6 months and 1 year after the initial sampling. At each time
point, five surfaces were sampled in each patient room (if available in that room):
the nursing call button (sampled the call button that is attached to the right of the
bedside rail, swabbing as much of the surface as possible), the bedside rail
(swabbing approximately 6 inches of the rail, swabbing the side that is closest to the
room door), the main room light switch (swabbing the entire switch and switch
plate), the sink handles (swabbing the handles on the sink inside the patient room,
swabbing both handles, front and back), the alcohol hand foam dispenser (swab-
bing the one closest to the patient room, swabbing the high touch area of the
dispenser). If a bedpan, commode or toilet was present in the patient room, this
was also sampled, including the seat and handle. The Eswab collection and
transport system (Copan, Murieta, CA) was used to collect all specimens; swabs
were moistened prior to sample collection. Two swabs were held together for
specimen collection. Specimens collected in Pakistan were shipped to the US site
for workup and analysis.

One Eswab specimen was vortexed and 90 uL of eluate was inoculated to each of
the following culture medium: Sheep’s blood agar (Hardy Diagnostics),
MacConkey agar (Hardy Diagnostics), VRE chromID (bioMerieux), Spectra MRSA
(Remel), HardyCHROM ESBL (Hardy), Pseudo agar (Hardy), and MacConkey
agar with cefotaxime (Hardy). Plates were incubated at 35 °C in an air incubator
and incubated up to 48 h prior to discard if no growth. Up to four colonies of each
colony morphotype (as appropriate for the agar type) were subcultured and
identified using matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) with the VITEK MS system’¢-80. A second Eswab
specimen was used for Clostridioides difficile culture with a heat-shock broth
enrichment method as previously described®!. All isolates recovered were stored at
—80°C in TSB with glycerol.
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Antibiotic susceptibility testing. Antimicrobial susceptibility testing was per-
formed using Kirby Bauer disk diffusion, interpreted according to CLSI
standards3®.

Illumina WGS. Unique colony morphotypes from the initial swab plates were
streaked for isolation on blood agar. After a culture was deemed pure by visual
determination, ~10 colonies were suspended in deionized water with a sterile
cotton swab. Total genomic DNA was extracted from the suspension using the
bacteremia kit (Qiagen, Germantown, MD, USA). DNA was quantified with the
Quant-iT PicoGreen dsDNA assay (Thermo Fisher Scientific, Waltham, MA,
USA). A total of 5 ng/uL of DNA was used as input for Illumina sequencing
libraries with the nextera kit (Illumina, San Diego, CA, USA)32. The libraries were
pooled and sequenced on a NextSeq HighOutput platform (Illumina) to obtain 2 x
150 bp reads. The reads were demultiplexed by barcode, had adapters removed
with Trimmomatic v.36, and contaminating sequences with Deconseq v.4.383:84,
Processed reads were assembled into draft genomes using the de-novo assembler
SPAdes v3.11.08%. The scaffolds.fasta files were used for all downstream analysis.
Assembly statistics on the assemblies was quantified using QUAST v4.5%. Prokka
v1.12 was run on the scaffolds file to identify open reading frames >500 bp in
length33.

For the 11 isolates chosen to be sequenced with Nanopore technology, Genomic
DNA was extracted using the Genomic-Tip 500/G (Qiagen) and genomic DNA
buffer set (Qiagen) per manufactures instructions. The DNA was converted into a
sequencing library on with the Rapid Barcoding Kit (Nanopore, Cambridge, MA,
USA) per manufactures instructions and sequenced on the MinION platform. The
output fastq files were used in a hybrid assembly with SPAdes v3.11.0 and
processed Illumina reads.

These assemblies are uploaded to NCBI under BioProject PRINA497126
(https://www.ncbi.nlm.nih.gov/bioproject/497126).

Taxonomic assignment. All isolates were initially identified using the VITEK MS
MALDI-TOF MS v2.3.3. Following draft genome assembly, the species determi-
nation for all isolates were then investigated using an in silico approach. MASH
was performed against all of the isolate genomes®”. Isolates that had 100% con-
cordance between the MALDI-TOF MS assignment and the top 10 MASH hits
were determined to be the species assigned by MALDI-TOF MS. Isolates that had
discrepant analysis were then manually investigated further, by using RNAmmer
v1.2 to identify the 16S rRNA sequence, submission of that sequence to the EZ
BloCloud taxonomic database, and finally ANT analysis with the mummer method
between the isolate in question and the appropriate type genome (if available) using
the JSpecies webserver (http:/jspecies.ribohost.com/jspeciesws)38-%0. Species were
determined if the genome in question had >95% ANIm with the type genome (if
available), or >99% 16S rRNA identity (if type genome is not available)1:2. Iso-
lates that did not pass either of these thresholds are therefore considered to be
novel genomospecies. Finally, all the isolates sequenced in this study were used to
construct a Hadamard matrix, representing the product of the ANI and percent
genome aligned, with the ANIm method from pyANI (https://github.com/
widdowquinn/pyani). The matrix was visualized using the python package Seaborn
(http://seaborn.pydata.org) and annotated for initial MALDI-TOF MS identifica-
tion, and in silico assignment if discrepancies were identified.

Core genome alignment. The gff files produced from Prokka for A. baumannii, E.
faecium, K. pneumoniae, and P. aeruginosa were used to construct a core genome
alignment with Roary v3.8.0 and PRANK v1.034%3, fastGEAR was ran on the
respective core_genome_alignment.aln output of Roary to identify instances of
recombination within these species®. The recombinant regions were removed
using custom python scripts. The recombination purged core genome alignment
was used to generate a maximum likelihood tree with RAXML v8.2.113%, The
output newick file was visualized in iTOL. In silico multilocus sequence typing
(MLST) was performed with the MLST program. The sequence type information,
week of collection, room of collection, and surface was viewed as a color strip in
iTOL%. Lineages identified by hierBAPS during fastGEAR were also marked on the
trees®.

Clonality analysis. Pairwise SNP counts between all isolates in the recombinant
corrected core genome alignment were calculated. All paired distances >5 SNPs
were excluded from further clonality analysis. Pairwise groupings with five or fewer
SNPs were imported to Gephi as an unweighted pairwise links table. Gephi’s built
in modularity analysis was used to isolate perfectly reciprocal groupings. R was
used to visualize these groupings in Fig. 4.

Pairwise SNP distances were calculated as the number of SNPs between two
isolates divided by the total number of positions in the core genome alignment.

Linking A. baumannii and E. faecium clones to accessory genomes. Principal

coordinates analysis was done using a gene presence or absence matrix from Roary.
Core genes were removed from the matrix and the vegdist function from the Vegan
package in R and pcoa function from the ape package in R were used to compute
the distance matrix and principal coordinate decomposition respectively for each
bacteria. Centers of gravity for each clonal group and for the non-clonal bacteria

were calculated. This entire process was repeated without the non-clonal bacteria.
R was used to visualize the first and second axis for each principal coordinate
decomposition.

Spatiotemporal clone linkage analysis. Pairwise spatial and temporal distances
for all surfaces in the first 3 months of collections were calculated. For spatial
distance, the pairwise distance of the same surface from different times of collection
was given a distance of 0. Pairwise distances of surfaces in the same room were
given distances of +1 and pairwise distances of surfaces from different rooms were
given distances of +2. For temporal distance, each 2-week span was counted as a
distance of +1. Thus, surfaces 4 weeks apart in collection time were given a
distance of 2. Spatiotemporal linkage analysis was conducted for clones present in
the first 3 months of collection with more than one isolate. Observed distances
were calculated by adding together the spatial or temporal distances for that clone
using their observed collection locations and times. Expected distributions were
calculated by conducting 10,000 permutations of the spatial and temporal distances
in the dataset and then logging the permuted distances for each clone. For Fig. 4c, d
observed distances for all clones were summed to get the observed values and all
clones were summed by permutation number to get the expected distance dis-
tributions. R was used to visualize these observed values and permuted
distributions.

Variant calling. Snippy v4.3.8 (https://github.com/tseemann/snippy) was used to map
forward and reverse reads for each isolate to the type strain complete genome assembly
(GCF_000746645.1 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000746645.1/) for
A. baumannii and GCF_000174395.2 (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000174395.2/) for E. faecium) and to call variants. Resultant VCF variant files
were merged using BCFtools v1.9 with -m all option for multiallelic records. Merged
VCF files were parsed using vcfR% and custom python scripts to get pairwise variant
distances between all isolates. See Supplementary Fig. 6 for a brief overview of this
process.

Isolate clique grouping by pairwise variant distance. Isolates were grouped into
cliques at every pairwise distance cutoff found between isolates starting from two
most similar isolates and ending at the most similar out of lineage comparison. At
each distance cutoff, the variant pairwise distance matrix was filtered to only
include comparisons below the cutoff threshold. The pairwise distance matrix was
converted to a weighted edgelist. Weights were assigned using Eq. 1.

1 — (variant_distance/max(variant_distance)). (1)

This weighted edgelist was used to make a undirected graph using the
graph_from_data_frame function in igraph v1.2.4.1. Perfectly reciprocal cliques of
maximal graph coverage were then identified using a greedy approach. The
maximal.cliques function was used to identify perfectly reciprocal (fully connected)
cliques. The identified cliques were then sorted by the highest minimum edge
weight to get clique with strongest internal connectivity. The nodes from this
“strongest” clique were then removed from the edgelist and the algorithm was run
recursively until all possible fully connected cliques with two or more nodes were
identified. See Supplementary Fig. 8 for a brief overview of this process.

Calculate temporal and spatial distances for variant cliques. Spatial and tem-
poral analysis for variant distance for variant cliques used the same distances as
core genome SNP linkage analysis. Spatiotemporal linkage analysis was conducted
for isolates in the first 3 months of collection. For each cutoff value, observed
distances were calculated by adding together the spatial or temporal distances
within clique and expected distributions were calculated by conducting 10,000
permutations of the spatial and temporal distances using the sample function in R
v3.53. Thus, permutations kept clique structure, but shuffled distance information.

ARG identification. Acquired ARGs against aminoglycosides, amphenicols, -
lactam, folate pathway inhibitors, fosfomycin, macrolides/lincosamides/strepto-
gramins, quinolones, rifamycin, tetracycline, vancomycin were annotated using the
ResFinder BLAST identification program3’. For the abundant species, the pre-
sence/absence matrix of ARGs was visualized in pheatmap (R). Associated meta-
data was displayed as a color strip to represent bacterial isolate demographics and
expected resistance to antibiotics. To identify connectivity between the recovered
species from the Pakistan ICU, we constructed a Source/Target/Edge formatted file,
where each source represented a novel or curated genomospecies, a target was the
unique ARG, and Edge weight was determined to be the number of times that ARG
was identified within that species. The file was visualized in Cytoscape v3.4.0%7.

blanpm-1 loci annotation and comparison. A ~6-2 kB series of nucleotides
flanking the blanpa. loci in all positive strains was manually retrieved from
SPAdes output of MinION & Illumina hybrid assembly. The nucleotides were re-
annotated with prokka. The .gff file was used as input for Roary, to identify
identical genes within the loci pan-genome. The .gbk files from prokka were viewed
for open reading frames and BLAST similarity in EasyFig®®. The sequences were
ordered by their relationship from the newick tree created from the presence/
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absence matrix of genes. All loci in the pan-genome were submitted to BLASTX
against the refseq_proteins in October 2017 to identify a putative function®. The
pairwise BLAST similarity was visualized on the EasyFig v2.2.2 construction by
BLASTn similarity between the fasta files.

A. baumannii and E. faecium co-association permutation testing. Testing for
significant association of A. baumannii and E. faecium was conducted using
MALDI-TOF MS identifications from the first 3 months of PAK-H collections. The
number and type of unique bacteria on each surface was tabulated. The number of
surfaces with both A. baumannii and E. faecium was recorded as the observed
frequency of co-occurrence. Absolute number and relative frequency expected
distributions for A. baumannii and E. faecium co-occurrence were calculated using
permutation tests with 10,000 random subsamples. For absolute number, the exact
number of each bacterial species we collected was randomly distributed to a blank
surface space with the restriction that each surface could not have more than one of
the same species and that each surface had to get the same number of bacteria that
was originally collected from the surface. This resulted a new permuted collection
space with the same overall number of each bacterial species, but with randomized
placement for each bacterium. The co-occurrence of A. baumannii and E. faecium
for this permuted collection space was then recorded for the expected distribution.
For relative frequency, the number of each species collected was used to calculate
the frequency of that bacterial species in the collections. During permutation
species were randomly chosen, weighted by their frequency in the collections. R
was used to visualize the A. baumannii and E. faecium co-association expected
distributions and observed values.

Biofilm assays. Frozen cultures of A. baumannii ATCC-17978 (17978), A. bau-
mannii ATCC-17978Apgl, E. faecium TX82, and E. faecium TX5645 were streaked
onto tryptic soy agar (Difco, Detroit, MI, USA) and grown overnight at 37 °C.
Isolated colonies were suspended in tryptic soy broth (Difco, Detroit, MI, USA)
supplemented with 0.5% glucose (MP Biomedicals, Santa Ana, CA, USA) to pro-
mote the growth of E. faecium biofilm and quantified for OD600 using a 1:10
dilution. In concordance with previous investigations using respective strains, the
A. baumannii isolates were normalized to 0.05 OD600 and the E. faecium were
normalized to 0.10 OD600, for functional assays.

To grow biofilms, 200 pl of each single strain or 100 pl of A. baumannii and
100 ul of E. faecium dual species biofilms were added to tissue-culture-treated 96-
well polystyrene microtiter plates (Sigma Aldrich, St. Louis, MO, USA) in triplicate.
We additionally plated cell-free controls to ensure that no contamination occurred
and to subtract out background absorbance reading. After pipetting, the plates were
gently pipetted up and down to ensure that the strains mixed thoroughly. The
plates were covered with breath ez membrane (Diversified Biotech, Dedham, MA,
USA) and grown on the benchtop at ~22 °C for 16 h.

Following a growth period, the biofilm plates had planktonic cells removed by
washing thoroughly with 250 ul of sterile phosphate buffered saline (PBS) (Thermo
Fisher Scientific, Waltham, MA, USA) three times. To obtain the total biofilm
biomass, the washed biofilms were fixed with 250 pl of bouin’s solution (Sigma
Aldrich) at 22 °C on the benchtop for 30 min. The fixative was washed three times
with 200 pl of sterile PBS and then stained with 250 ul of 0.01% crystal violet
(Sigma Aldrich) in water for 30 min at 22 °C on the bench. Finally, the unstained
crystal violet was removed by washing three times with PBS and then the biomass
was solubilized with 250 pl of 100% ethanol (Sigma Aldrich). The amount of
biofilm biomass was quantified using nanometers absorbance with a Synergy H1
(BioTek) spectrophotometry machine. All raw absorbance values were adjusted by
removing the background values obtained from the cell-free TSB controls. The
conditions had average and standard deviation calculated.

For quantification of total viable cells in the biofilm, the biofilms were formed as
previously described. After 16 h growth at 22 °C, planktonic cells were removed by
washing thoroughly with 250 pl of PBS. The XTT cell viability kit (Cell Signaling
Technologies, Danvers, MA, USA) was then performed according to manufacturer’s
instructions. The plates were read in the Synergy H1 spectrophotometry machine
after 5-h incubation in the dark.

For the crystal violet and XTT reduction assays, the biofilm synergy scores were
calculated as previously reported for dual-species biofilms. For each pairwise
comparison, the synergy scores were reported as the difference between the average
plus standard deviation for the single species biofilm and average minus standard
deviation of the dual species biofilm.

Biofilm synergy = (AverageDualspecies — Standard DeviationDualspeci%)
@)

_ ( Averageg; lespecies T Standard Dev1at10n5inglespedes)

Statistics. Unpaired, nonparametric Mann-Whitney statistical tests were used to
compare the adjusted ODsgy and OD,s values between the total biofilm biomass
and total viable cells in the dual versus single species biofilms.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Assemblies and sequencing reads are available from NCBI under BioProject accession

code PRJNA497126 (https://www.ncbi.nlm.nih.gov/bioproject/497126). Source data for
all data figures are included as a Source Data zip file with additional subfolders by figure.

Code availability
Example code for variant clique grouping depicted in Supplementary Fig. 8 is included
as Supplementary Software.
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