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Aims: To individualize treatment, phenytoin doses are adjusted based on free con-

centrations, either measured or calculated from total concentrations. As a mechanistic

protein binding model may more accurately reflect the protein binding of phenytoin

than the empirical Winter–Tozer equation that is routinely used for calculation of free

concentrations, we aimed to develop and validate a mechanistic phenytoin protein

binding model.

Methods: Data were extracted from routine clinical practice. A mechanistic drug

protein binding model was developed using nonlinear mixed effects modelling in a

development dataset. The predictive performance of the mechanistic model was then

compared with the performance of the Winter–Tozer equation in 5 external datasets.

Results: We found that in the clinically relevant concentration range, phenytoin

protein binding is not only affected by serum albumin concentrations and presence

of severe renal dysfunction, but is also concentration dependent. Furthermore, the

developed mechanistic model outperformed the Winter–Tozer equation in 4 out of

5 datasets in predicting free concentrations in various populations.

Conclusions: Clinicians should be aware that the free fraction changes when phe-

nytoin exposure changes. A mechanistic binding model may facilitate prediction of

free phenytoin concentrations from total concentrations, for example for dose indi-

vidualization in the clinic.
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1 | INTRODUCTION

Phenytoin is an effective drug for treatment of generalized and focal

seizures. It putatively acts by causing voltage‐dependent block of volt-

age gated sodium channels.1 Phenytoin is, however, considered a drug

with a small therapeutic window: low exposure may result in inade-

quate therapy and high exposure may even lead to serious neurological

side effects. Careful dose titrating is, thus, warranted to prevent

inadequate drug exposure. There is, therefore, general consensus that

dosing of phenytoin should be individualized based on therapeutic drug

monitoring (TDM).2 For purposes of TDM, a therapeutic range of 10–

20 mg/L is usually advocated for the total plasma concentrations and

a range of 1–2 mg/L for the free plasma concentrations, assuming a

10% free fraction of phenytoin on the population level.2,3 Dose individ-

ualization of phenytoin is hampered by its nonlinear pharmacokinetics,

its variable protein binding and drug–drug interactions. In the therapeu-

tic range, the elimination pathway of phenytoin can become saturated

and an increase in dose may result in more than dose‐proportionalThe authors confirm that the PI for this paper is Rob ter Heine.
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increases of plasma concentrations.4 Furthermore, phenytoin is highly,

yet variably, bound to serum albumin.5,6 As the free phenytoin concen-

tration is responsible for the pharmacological effect, measurement of

free concentrations for TDM purposes is preferred over measurement

of total serum concentrations.2 However, in routine clinical practice,

often only total concentrations are measured, since this is associated

with less cost, a faster time to results and simpler analytical procedures

compared to the quantification of free concentrations. As variation in

serum albumin concentrations is the main driver for variable protein

binding of phenytoin, total concentrations are often corrected for

hypoalbuminaemia to interpret measured concentrations in absence

of a measured free concentration. TheWinter–Tozer formula has been

the gold standard for this purpose in recent decades.7 With this for-

mula, the free phenytoin concentration may be approximated, based

on the total concentration, serum albumin concentration and knowl-

edge on the presence of severe renal dysfunction (SRD), as uraemic

toxins may displace phenytoin from albumin.8

The predictive performance of the Winter–Tozer equation has

often been challenged as factors other than albumin or severe renal

dysfunction are known to impact the free fraction of phenytoin.9 For

example, concomitant valproic acid use and temperature of sample

handling are known to impact the free fraction of phenytoin,10 as

valproic acid may displace phenytoin from albumin and the

phenytoin–albumin dissociation constant is temperature dependent.11

Furthermore, the empirical Winter–Tozer equation assumes a

concentration‐independent free fraction and, thereby, potentially

ignores nonlinear binding kinetics.12 Although several groups have

investigated the free phenytoin pharmacokinetics in population phar-

macokinetic models,13,14 as it stands, no mechanistical model has thus

far been developed for the in‐vivo phenytoin binding kinetics of phe-

nytoin. As, from a theoretical standpoint, a mechanistic protein bind-

ing model may more accurately reflect the protein binding of

phenytoin than an empirical model, e.g. the Winter–Tozer equation,

our aims were to: (i) develop a mechanistic protein binding model for

phenytoin; and (ii) to compare the predictive performance of the

mechanistic model with the Winter–Tozer equation. Translating the

findings of such a mechanistic model may facilitate improved predic-

tions of free phenytoin concentrations from total concentration mea-

surements for purposes of dose individualization in the clinic.

2 | METHODS

2.1 | General approach

We collected development and validation datasets with phenytoin

protein binding data from routine clinical practice. The development

dataset was used to develop a mechanistic model for phenytoin pro-

tein binding. External evaluation was then performed with the valida-

tion dataset from the same clinic and 4 other datasets. For this

purpose, the predictive performance of the mechanistic model was

compared with that of the Winter–Tozer equation.

2.2 | Data collection

We collected 1 model development dataset and 5 validation sets (val-

idation dataset 1–5) from routine clinical practice, containing paired

observations of total and free phenytoin concentrations and informa-

tion on the relevant covariates of serum albumin concentration, severe

renal dysfunction and concomitant valproic acid use.

2.2.1 | Development dataset and validation dataset 1

For the model development dataset and validation dataset 1, we col-

lected data from the Utrecht Patient Oriented Database (UPOD).15

Besides paired observations of total and free phenytoin concentra-

tions, data on serum albumin concentrations and blood urea nitrogen

were collected within 48 h before and after the phenytoin concentra-

tion observations. Furthermore, information on age and sex were col-

lected as well as the concomitant use of valproic acid, based on its

recorded use. Presence of severe renal dysfunction was based on a

blood urea nitrogen concentration of 14 mmol/L (39.2 mg/dL) or

higher16 and coded as a binary covariate. Phenytoin concentrations

were measured using a validated fluorescent polarization immunoas-

say (FPIA) or liquid chromatography coupled with tandem mass spec-

trometry assay. Free phenytoin concentrations were obtained by

ultracentrifugation at ambient temperature. For the development

dataset, data were collected from UPOD between January 2005 and

January 2011. For validation dataset 1, data were collected from the

UPOD database from January 2011 until November 2017. The institu-

tional review board approved the use of these anonymized data for

our research. A pragmatic approach was used for splitting of the

dataset for the development dataset and validation set 1. The initial

extraction was performed in 2011 and based on these data a mecha-

nistic model was developed. Since new data had been collected in rou-

tine practice since this last extraction, a validation dataset was

collected in the time frame after 2011.

2.2.2 | Validation datasets 2–5

For external validation sets, we searched PubMed for recent research

with the following keywords: “phenytoin”, “free”, “fraction”, “sheiner‐

What is already known about this subject

• Phenytoin is a pharmacotherapeutic cornerstone for

treatment of epilepsy. Dosing individualization of

phenytoin is hampered by nonlinear pharmacokinetics

and variable protein binding.

What this study adds

• We show that protein binding of phenytoin is

concentration‐dependent and that the traditionally used

Winter–Tozer equation to predict free concentrations is

inferior compared to a mechanistic protein binding model.
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tozer”, “winter‐tozer”. The retrieved publications were screened for

relevant literature. The corresponding authors were contacted with a

request for data sharing. Selection of these data were based on will-

ingness of the researchers to share their data and the presence of

information on total and free phenytoin concentrations, as well as data

on renal function and concomitant valproic acid use.

2.3 | Data analysis

2.3.1 | Model development

Statistical analysis of the data was performed by means of nonlinear

mixed effects modelling with the software package NONMEM V7.4.1

using the prediction ($PRED) subroutine. Throughout the analysis, the

first order conditional estimation method was used. Parameter uncer-

tainty was calculated with the covariance option in NONMEM and pre-

sented as relative standard error of the estimate (RSE).

We developed a protein binding model, independent of the phar-

macokinetics of phenytoin. Therefore, in our model, the free concen-

tration (Cfree) was used as dependent variable. The dependent

variable was predicted from the total concentration and serum albu-

min concentrations under the assumption of 1 site specific binding,

as described by equation 1.12

Equation 1: 1 site specific binding

Ctotal ¼ Cfree þ Bmax×Cfree

KD þ Cfree

In this equation, Ctotal is the total concentration (mg/L), Cfree

is the free concentration (mg/L), Bmax is the maximum binding

constant (mg/L) and KD is the dissociation constant (mg/L). With the

assumption that the free fraction (FU) can be described with equation

2,12 equation 1 and 2 can be arranged to equation 3. It follows from

equation 2 that if the free concentration is negligible when compared

to KD, the free fraction is independent of the free concentration and

that if the observed free concentrations are of the approximate same

order of magnitude as the KD, there will be a positive correlation

between the free concentration and the free fraction.12

Equation 2: Free fraction

FU ¼ Cfree

Ctotal
¼ KD þ Cfree

Bmax þ KD þ Cfree

Equation 3: Free fraction for 1 site specific binding model

FU ¼
−KD − Bmax þ Ctotal þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KD þ Bmax−Ctotalð Þ2 þ 4*Ctotal*KD

q

2*Ctotal

In the base model, the dependent variable Cfree was calculated from

the free fraction from equation 3 and the measured total concentra-

tion. In the base model, the maximum binding capacity was assumed

to be proportionally related to serum albumin concentrations and this

relationship was calculated as described in equation 4.

Equation 4: relationship between serum albumin and Bmax

Bmax ¼ ΘALB1 × 1þ ΘALB2 × ALBi − 27ð Þð Þð Þ

In this equation, ΘALB1 is the estimate for Bmax for an individual

with a serum albumin of 27 g/L, ΘALB2 is the estimate for the gradient

of change in Bmax when the individual serum albumin concentration

(ALBi, in g/L) differs from 27 g/L. After fitting of a specific binding

model with 1 site, we tested the presence of a second binding site

with both specific binding as nonspecific binding.

Interindividual variability in KD, that may originate from interindi-

vidual differences in affinity of the interaction between albumin and

phenytoin, was assumed to be log‐normally distributed and for the

residual error we tested additive, proportional and combined additive

and proportional error models.

After fitting of the base model, we tested concomitant valproic

acid use and severe renal dysfunction as binary covariates for Bmax

using a forward inclusion backward elimination approach. These

covariates were tested on Bmax, because drug protein displacement

causes are represented by Bmax and not by a change in individual affin-

ity between the drug and the protein, which is described by KD. The

relative change in Bmax was calculated by multiplying the Bmax (equa-

tion 4) with ΘSRD
COV or ΘVALP

COV, where COV has the value of 1 or

0 in, respectively, the presence or absence of the binary covariate.

The parameters ΘSRD and ΘVALP can then be interpreted in the frac-

tional change of Bmax as a result of the presence of severe renal dys-

function and concomitant valproic acid use, respectively. A binary

covariate for severe renal dysfunction was chosen as it is known that

protein binding is only relevantly affected in severe renal dysfunction.

Statistical significance during likelihood ratio testing of nested

models was derived from the objective function in NONMEM, that

follows a χ2 distribution. A level of significance of P < .01 was used

for both the forward inclusion and the backward elimination.

2.3.2 | Validation

For validation purposes, we compared the performance of the devel-

oped mechanistic model and the Winter–Tozer equation (equation 5)

to predict the free concentration in the validation datasets. Predictive

performance was assessed with the mean prediction error (MPE) and

root mean squared error (RMSE), as proposed by Sheiner et al.17 For

calculation of the predictive performance of the mechanistic model,

we calculated the unbound concentration from the total concentra-

tions and covariates from using the population parameter estimates

from our model.

Equation 5

Cfree ¼ 0:1 ×
Ctotal

a × ALBi þ 0:1

a ¼ 0:2 in normal renal function

a ¼ 0:1in serve renal dysfunction

In this equation, ALBi is the individual serum albumin concentra-

tion in g/dL.
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2.4 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in http://www.guidetopharmacology.org, the com-

mon portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY,18 and are permanently archived in the Concise

Guide to PHARMACOLOGY 2017/18.19

3 | RESULTS

3.1 | Data extraction

Results of the data extraction are shown in Table 1, together with the

characteristics of the external datasets. In the development dataset

we had a total of 379 paired observations of total and free phenytoin

concentrations in 144 individuals with age ranging from 0 to 92 years.

In validation dataset 1, a total of 115 paired observations in 53 individ-

uals were collected.

The validation datasets 2–5 were respectively obtained from previ-

ous research by Kane et al.,20 Soriano et al.,21 Joerger et al.,22 and

Krasowski and Penrod.23 The studied populations in these validation

sets were either selected cross‐sectionally, or from end‐stage renal dis-

ease patients, neuro‐intensive care patients or cancer patients. For the

details of the data collection process and population types we would

like to refer to the original manuscripts. In validation dataset 2, by Kane

et al.,20 severe renal dysfunction was coded as blood urea nitrogen

>14 mmol/L. The validation dataset 4, by Joerger et al.,22 contained

some cases with missing covariate data, and these were excluded from

the dataset. A summary of all datasets can be found inTable 1. Valida-

tion dataset 5, by Krasowski and Penrod,23 contained data from

patients that had paired total and free phenytoin measurements along

with a serum/plasma albumin measurement within 7 days of the phe-

nytoin values. The original dataset was updated to identify patients

with severe renal dysfunction with blood urea nitrogen concentration

of 14 mmol/L or higher (approved as retrospective study by University

of Iowa Institutional Review Board, protocol # 201610760).

3.1.1 | Exploratory analysis of the development
dataset

As expected, the observed free fraction increased at lower serum

albumin concentrations. A significant negative correlation was found

with a Spearman's ρ of −0.678 (P << .001). In the development dataset

concentrations up to approximately 9 mg/L were observed, showing

that in routine clinical practice supratherapeutic concentrations are

not uncommon. Surprisingly, we observed a highly significant positive

correlation between free phenytoin concentrations and the free frac-

tion (Spearman's ρ 0.414, P << .001), indicating that the free fraction

depends on the free concentration and that, therefore, the observed

free concentrations are in the same order of magnitude as the KD.

Although the relationship was highly significant, the correlation was

moderate (Spearman's ρ 0.414), which led to variability in the free

fraction, potentially caused by protein displacement of phenytoin by

other drugs or uraemic toxins, variable albumin concentrations and

bioanalytical assay error. Figure 1 shows the plotted free fraction vs

albumin and free concentration in panel A and B, respectively.

3.1.2 | Model development

We successfully fit the proposed mechanistic binding model to the

observed data. A proportional error model best described the residual

error. A second specific or nonspecific binding site could not be iden-

tified in our data. The binary covariates severe renal dysfunction and

concomitant valproic acid use significantly decreased the maximum

binding capacity of albumin for phenytoin when tested univariate

(P < .01). When including both parameters in the model, the model

fit was even further improved (P < .0001), showing that severe renal

dysfunction and concomitant valproic acid use both and indepen-

dently explain variability in Bmax. Both covariates were, therefore,

retained in the final model. In the final model, severe renal dysfunction

and concomitant valproic acid use decreased the Bmax, respectively, by

14.7% (ΘSRD = 0.853, RSE 5%) and 30.2% (ΘVALP = 0.698, RSE 4%),

respectively. These parameters could be accurately assessed in the

FIGURE 1 Free fraction vs serum albumin (A) free phenytoin (B) concentrations in the development dataset

2364 TER HEINE ET AL.



development dataset, supported by the low relative standard error of

the estimates.

The parameter estimates and for the base and final model can be

found inTable 2. Goodness‐of‐fit plots of the final model are shown in

Figure 2. As can be seen in panel A and B of this figure, the observed

vs the individual and population predicted concentrations (black dots)

are evenly distributed around the line of unity (solid black line). Fur-

thermore, the dashed trend line with confidence interval (grey area)

closely resembles the line of unity, indicating a good model fit. As

observed in panel C, the normalized prediction distribution errors are

evenly scattered around zero and do not show a trend when plotted

vs the population predicted free concentration, indicating an unbiased

prediction across the complete concentration range. Lastly, it can be

observed in panel D that the simulated and observed data are well‐

TABLE 2 Parameter estimates for the base and final model

Parameter

Base model Final model

Estimate (RSE) Estimate (RSE)

ΘALB1 (mg/L) 105 (16%) 117 (14%)

ΘALB2 (L/g) 0.0325 (6%) 0.0345 (5%)

ΘSRD ‐ 0.0853 (5%)

ΘVALP ‐ 0.698 (4%)

KD (mg/L) 15.1 (18%) 16.2 (15%)

Inter individual variability

KD (%)

26.6% (8%) 24.8 (8%)

Residual variability (%) 14.8% (9%) 13.2 (9%)

Objective function −521 −600

FIGURE 2 Goodness‐of‐fit plots. (A) observed vs population predicted free phenytoin concentrations. (B) observed vs individually predicted free
phenytoin concentrations. (C) normalized prediction distribution error vs population predicted free phenytoin concentration. (D) prediction‐
corrected visual predictive check of the free vs the total concentration, based on 1000 simulations

TER HEINE ET AL. 2365



aligned in the prediction‐corrected visual predictive check. In this

panel, the scattered dots are the observed prediction‐corrected data

and the dashed lines the observed 10th, 50th and 90th percentiles.

The shaded areas are the prediction intervals for these respective

percentiles.

3.1.3 | Validation

After the development of the mechanistic binding model in the devel-

opment dataset, we compared the predictive performance of the

mechanistic model and the Winter–Tozer equation (equation 5) on

independent datasets. The results are presented in Table 3. In this

table, the predictive performance of the developed mechanistic model

and the Winter–Tozer equation are presented side by side per dataset.

As observed in Table 3, the mechanistic model consequently

resulted in superior accuracy in validation set 1–4, as observed in

the reduced bias (mean prediction error) of the mechanistic model

when compared to the Winter–Tozer equation. Worse performance

in terms of accuracy was observed for validation dataset 5. In terms

of precision, the mechanistic model performed better for validation

sets 1–3, as observed in the lower RMSE.

4 | CONCLUSION AND DISCUSSION

To the best of our knowledge, we are the first to report and character-

ize the nonlinear in vivo protein binding of phenytoin. Our findings indi-

cate that the empirical Winter–Tozer equation, which assumes a fixed

free fraction in the clinically relevant concentration range. The

observed free phenytoin concentrations in our dataset were in the

same order of magnitude as the KD and allowed assessment of the non-

linear protein binding. The clinical implications of these findings are

that, besides saturable clearance of phenytoin, saturable protein bind-

ing complicates dose titrations. When a dose is increased or reduced,

while the serum albumin concentrations are stable, one should consider

the possibility of an altered free fraction. Second, we showed that, in

general, the mechanistic model had superior predictive performance

over the Winter–Tozer equation to predict free phenytoin in external

validation datasets, in terms of bias (in 4 out of 5 validation datasets)

and precision (in 3 out of 5 validation datasets).

Third, despite the superior predictive performance of the mecha-

nistic model in the majority of the external validation datasets, the

predictive precision (RMSE) varied from 0.45 to 1.00 mg/L for the

mechanistic model. Considering the fact that the precision (RMSE) of

our model was in the same order of magnitude as the therapeutic

range of free phenytoin (1–2 mg/L), we conclude that even a mecha-

nistic model for phenytoin protein binding should not be considered

an alternative for measuring free concentrations for purposes of

TDM. Nonetheless, if this is not possible, a mechanistic model to pre-

dict the free concentration should be preferred over the Winter–Tozer

equation. Furthermore, it appeared that validation dataset 5 was dis-

tinct from the other datasets, as the mechanistic model consequentlyT
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showed poor predictive performance in comparison with Winter–

Tozer equation.

The free phenytoin measurements in validation dataset 5 used

ultrafiltration methods similar to datasets 1–4 but were obtained by

enzyme‐multiplied immunoassay technique (EMIT) using the Syva

EMIT 2000 assay. The other datasets used FPIA or LC/MS as the

method for free phenytoin measurement. There is little published liter-

ature comparing free phenytoin measurements using immunoassays

from different manufacturers, but a study by Roberts et al. in 2001

compared 4 different immunoassays for free phenytoin determina-

tions.24 This study included comparisons of EMIT and FPIA methods,

showing differences in bias between methods relative to high‐

performance liquid chromatography as the gold standard. To our

knowledge, there are no publications since the 2001 Roberts et al.

study comparing free phenytoin measurements; thus, it is unknown if

these differences between EMIT and FPIA methods occur with more

recent instrument platforms and immunoassay versions and this should

be subject for further study. Nonetheless, our analysis shows the

necessity of external validation of the current model in a new popula-

tion and assay method before it is applied in routine clinical practice.

One may argue that the use of blood urea nitrogen as a covariate

in our study may have limitations, as other factors other than renal

function, such as hydration state or high protein diet, may impact

blood urea nitrogen levels. Nonetheless, as the hypothesis is that

uraemic toxins are responsible for the displacement of phenytoin from

albumin, we think that blood urea nitrogen is an adequate surrogate

marker for uraemia.25 In our data, we could identify interindividual

variability in the binding constant KD, as a source for variability in

the free fraction. Although knowledge on this variability is not neces-

sarily useful to predict the free phenytoin concentration from a total

concentration, the mechanistic model including all sources of

variability may be implemented in an existing or new population‐

pharmacokinetic model of phenytoin to predict individual free concen-

trations, e.g. to perform TDM. Previous observations of the free con-

centrations in an individual may then be used to more accurately

predict a future free concentration. A methodological limitation of

our approach may nonetheless be that in our model we assume that

there is no error in the independent variable. However, since it is likely

that the error in the independent variable (total concentration) is equal

to or less than that of the error in the dependent variable (free con-

centration) and because our analysis reflects the situation that will

be used in clinical practice, we think our approach is justified.

Our in vivo protein binding data of phenytoin were all retrospec-

tively collected from routine clinical care. Although a real‐world set-

ting like this has many advantages, as it truly resembles clinical

practice, one should realize that this approach may have limitations.

For example, cases with incomplete covariate data were discarded

from the development dataset. In clinical practice, laboratory mea-

surements are performed as a part of a diagnosis or in the context

of clinical disease monitoring. Including only individuals with complete

data on renal function and serum albumin, may therefore introduce a

selection bias. Consequently, the generalizability of our findings to

other populations should be studied. Nonetheless, the saturable

protein binding of phenytoin in the clinically relevant concentration

range is a drug‐specific characteristic and not a population‐specific

characteristic. Therefore, this phenomenon should be considered in

other populations as well. Furthermore, the retrospective nature of

our data collection strategy may have introduced bias. For example,

if no data on concomitant valproic acid use were found, we con-

cluded that the individual did not use valproic acid. Although we con-

sider our database to be exhaustive, missing data may not be ruled

out. In the latter example, this may have resulted in under‐estimation

of the effect of concomitant valproic acid use on the protein binding

of phenytoin. Although valproic acid is most notorious for displace-

ment of phenytoin from albumin, other less frequently used drugs

such as salicylic acid and some sulfonamides have been reported to

be able to displace phenytoin from albumin.26 These drugs have not

been investigated as covariates for protein binding in our model nor

have they been incorporated in the Winter–Tozer equation, which

is considered the gold standard for protein binding correction in the

clinic. Despite these limitations, our main finding, that the phenytoin

protein binding is saturable in clinically representative concentrations,

still holds. Importantly, our mechanistic model outperformed the

empirical Winter–Tozer equation in the majority of the external vali-

dation datasets of various populations, indicating that our model per-

forms relatively well in different settings. Finally, future studies are

recommended to validate the equations' impact on actual patient effi-

cacy and toxicity outcomes and to quantify the effect of other covar-

iates on protein binding of phenytoin, for example other drugs and

the bioanalytical assay type.
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