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Abstract
Complement is a complex protein network of plasma, and 
an integral part of the innate immune system. Complement 
activation results in the rapid clearance of bacteria by im-
mune cells, and direct bacterial killing via large pore-form-
ing complexes. Here we review important recent discover-
ies in the complement field, focusing on interactions rele-
vant for the defense against bacteria. Understanding the 
molecular interplay between complement and bacteria is of 
great importance for future therapies for infectious and in-
flammatory diseases. Antibodies that support complement-
dependent bacterial killing are of interest for the develop-
ment of alternative therapies to treat infections with antibi-
otic-resistant bacteria. Furthermore, a variety of novel 
therapeutic complement inhibitors have been developed 

to prevent unwanted complement activation in autoim-
mune inflammatory diseases. A better understanding of 
how such inhibitors may increase the risk of bacterial infec-
tions is essential if such therapies are to be successful.

© 2018 S. Karger AG, Basel

Complement in Innate Immune Defenses Against 
Bacteria

The human body is constantly exposed to bacteria that 
may be present in the environment, shed by other indi-
viduals, or living in symbiosis with the host. Normally, 
physical barriers (skin or epithelial cell layers) success-
fully protect the body from bacterial infections. However, 
when bacteria cross these barriers and invade the human 
body, the innate immune system provides the first line of 
response, capable of clearing bacteria within minutes to 
hours upon infection [1]. Complement is essential for this 
rapid elimination of invading bacteria. Complement pro-
teins are present in the blood and body fluids as inactive 
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precursors but are rapidly activated upon contact with 
bacterial cells. An activated complement cascade on the 
bacterial surface triggers a variety of responses that help 
to kill the bacterium. The most rapid response is the for-
mation of ring-structured pores (the membrane attack 
complex, MAC) that directly kill Gram-negative bacteria 
within minutes (Fig. 1a) [2–4]. This potent bacteriolytic 
activity was recognized in 1895 by Nobel laureate Jules 
Bordet, who discovered complement as a system in serum 
that allows antibodies in vaccinated animals to kill bacte-
ria without the help of immune cells [5]. Nowadays, we 
understand that complement is not only essential for the 
direct killing of Gram-negatives, but that it also triggers 
many other innate processes such as the production of 
chemoattractants, and the labeling of bacteria for phago-
cytosis and intracellular killing by professional phago-
cytes [2–4] (Fig. 1).

The main effector functions of complement are driven 
by the cleavage of 2 central complement proteins: C3 and 
C5 [2, 3]. The complement cascade is triggered by the 
recognition of bacteria via soluble pattern-recognition 

molecules or antibodies that bind both Gram-positive 
and Gram-negative bacteria (separated based on differ-
ent cell wall composition) [4, 6]. All recognition path-
ways converge in the formation of convertase enzymes 
on the surface of the bacterium. First, C3 convertases 
cleave complement protein C3 to generate C3b that ex-
poses a reactive thioester bond; this can covalently attach 
to hydroxyl groups of carbohydrates on the bacterial sur-
face [7, 8]. When C3b molecules are covalently deposited 
onto the bacterial surface, these efficiently trigger and 
facilitate phagocytosis by immune cells. C3b (and its 
breakdown product, iC3b) are recognized by comple-
ment receptors (CR) on myeloid (CR1, CR3, and CR4) 
and Kupffer cells (CRIg), and enhance the engulfment of 
opsonized particles, leading to intracellular (microbial) 
killing [9, 10] (Fig. 1b). The labeling of bacterial cells with 
C3-derived activation products also stimulates an adap-
tive immune response (review [11]) by directing the 
transport of bacteria to lymphoid organs and by enhanc-
ing antigen presentation to adaptive immune cells 
(Fig. 1c) [11–13]. Another role of the deposited C3b mol-

Direct killing of gram-negatives Stimulation of adaptive
immune cells
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 phagocytic killing
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Fig. 1. Antibacterial effector functions of complement. a Comple-
ment activation results in formation of the membrane attack com-
plex (MAC or C5b-9; blue) that rapidly kills Gram-negative bacte-
ria (orange) without the help of immune cells. Gram-positive bac-
teria are resistant to MAC. b Complement labels bacteria with 
C3-derived products (C3b and C3bi; green) that stimulate engulf-

ment of bacteria by phagocytes. Release of complement peptide 
C5a is crucial for attraction of phagocytes to the site of infection.  
c Bacterial labeling with C3-derived products also enhances anti-
gen presentation to B cells and thereby triggers the development 
of an adaptive immune response.
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ecules is to alter the specificity of the C3 convertase. At 
high local C3b densities, C3 convertases change into C5 
convertases, meaning that they switch substrate from C3 
to C5 [14].

Activation of C5 results in the release of peptide C5a, 
a strong chemoattractant that helps to recruit phagocytes 
towards the site of infection and induces an oxidative 
burst. Additionally, C5a-mediated stimulation of baso-
phils and mast cells triggers the production of histamine 
and subsequent vasodilatation (review [15]). Concomi-
tant generation of C5b triggers the assembly of the MAC 
(C5b-9) (Fig.  1a); this specifically kills Gram-negative 
bacteria. Gram-positive bacteria are protected from 
MAC-dependent killing, likely because their thick pepti-
doglycan outer layer prevents insertion of the MAC into 
the cell membrane [16].

Complement-dependent bacterial killing is one of 
the most rapid ways to kill an invading bacterium 
(Fig. 1). While both the labeling of bacteria with C3b 
and the MAC-dependent killing of Gram-negatives oc-
cur within minutes, phagocyte attraction and subse-
quent intracellular killing takes longer (we estimate 30 
min to 1 h). The importance of complement in the clear-
ance of bacterial infections is clearly illustrated by the 
recurrent infections in patients with genetic comple-
ment deficiencies [17]. Furthermore, the fact that patho-
genic bacteria have evolved mechanisms to resist vari-
ous steps in the complement cascade strongly supports 
the crucial role of complement in human defense against 
bacteria [18].

Molecular Insights into Complement Activation

In the past years, many excellent studies have opened 
up our molecular view of complement activation mecha-
nisms. As outlined in Figure 2, the complement cascade 
is a step-wise reaction that occurs in a defined order. The 
sequence of events is mostly determined by protein bind-
ing and enzymatic cleavage reactions [3, 19]. Thanks to 
advances in structural biology, the structures of many 
complement proteins and their activation products have 
now been revealed, and these explain how conformation-
al changes in complement proteins are crucial to control 
the order of the complement cascade. The complement 
cascade can be divided into 3 main steps: first, different 
recognition molecules bind “foreign” elements on the mi-
crobial surface (“recognition”); second, recognition mol-
ecules drive the formation of convertase enzymes that 
cleave the major proteins C3 and C5 (“convertase forma-
tion”); third, newly generated C5b molecules initiate the 
formation of MAC (“MAC assembly”). Below, we explain 
in more detail how complement reactions occur and 
highlight some of the recent insights into complement 
activation mechanisms that, in our view, are important to 
understand the activity of complement molecules on bac-
teria.

Recognition
An important route to trigger complement activation 

on a bacterial surface is via antibodies. Since antibody 
molecules, or immunoglobulins, are produced by the 

Recognition C3 cleavage and C3b deposition C5 cleavage and C5a/MAC formation

C1
C3 C5

C5b MAC
C5a

C3b C3b

Antibody

Bacterial antigens C3 convertase C5 convertase

Fig. 2. The complement reaction. Recognition of bacterial cells oc-
curs via soluble pattern-recognition molecules (lectin pathway) or 
antibodies (classical pathway). Antibody-mediated complement 
activation is depicted here. C1 binds to antibodies on the surface 
and triggers formation of a C3 convertase enzyme that converts C3 

into C3b. At high C3b densities on the surface, the C3 convertase 
switches substrate, from C3 to C5, and is now called a C5 conver-
tase. C5 convertases convert C5 into the chemoattractant C5a and 
C5b that trigger formation of the MAC (C5b-9).
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cells of the adaptive immune system, this so-called “clas-
sical pathway” (CP) can be viewed as an integrated re-
sponse of both innate and adaptive immunity. While an-
tibodies bound to surface epitopes can directly bind Fc 
receptors on phagocytes, the engulfment of bacterial cells 
is strongly enhanced in the presence of C3-derived opso-
nization [20, 21].

Complement activation via antibodies depends on  
the large C1 complex, that consists of the recognition 
molecule C1q and the serine proteases C1r and C1s (ratio 
1: 2: 2). C1q has 6 globular head residues that each can 
bind an antibody molecule [22]; C1r and C1s are proen-
zymes that are activated when the complex binds to a tar-
get surface. Activated C1s subsequently cleave C4 and C2 
to deposit a C3 convertase enzyme (C4b2a) onto the tar-
get surface. Among the different immunoglobulin sub-
classes, IgM is the strongest complement activator. Like-
ly, this is due to the structure of the IgM molecule, which 
comprises a multimer of 5 (pentamers) or 6 (hexamers) 
immunoglobulins [23] that allow the 6 globular C1q 
heads to bind multiple antibody subunits at the same 
time. Interestingly, recent cryo-electron tomography 
(cryo-ET) studies revealed that IgG molecules also need 
to form higher ordered structures (hexamers) to induce 
complement activation [24]. Structural analyses of C1q 
bound to antigen-coated liposomes revealed that the 6 
antibody-binding headpieces of C1q could simultaneous-
ly bind to hexameric IgG, which is held together by non-
covalent Fc-Fc interactions [24]. Since clustering of anti-
bodies is most efficient on a target surface (where local 
antigen densities are high), these insights help to under-
stand how surface-bound antibodies efficiently trigger 
complement activation while these interactions are pre-
vented in the circulation.

Similarly, recognition of foreign microbes in the “lec-
tin pathway” (LP) is a surface-specific process. Recogni-
tion molecules of the lectin pathway are collectins (col-
lectin 11 and mannose-binding lectin, MBL) and ficolins 
(Ficolin-1, also named M-Ficolin or p35-related protein; 
Ficolin-2, also named L-Ficolin, p35, or Hucolin; and Fi-
colin-3, also named H-Ficolin, HAKA1, or hakata-anti-
gen). Collectins are bundles of different polypeptide 
chains that each have a carbohydrate recognition domain 
to bind terminal monosaccharides exposing horizontal 
3’- and 4’-OH groups (e.g., mannose, glucose, and N-ace-
tyl-glucosamine). Although the individual recognition 
domains bind with low affinity to monosaccharides, the 
simultaneous binding of multiple head groups to repeat-
ed sugar/acetyl patterns generates a stable interaction [25, 
26]. Since such repeated sugar/acetyl groups are uniquely 

present on bacteria and fungi, the collectins specifically 
recognize microbial surfaces. Similarly, ficolins use their 
fibrinogen-like domain to recognize repeated acetylated 
structures (e.g., GlcNAc), which are commonly found on 
bacterial and fungal cell walls.

Just like C1q associates with C1r and C1s in the classi-
cal pathway, collectins and ficolins are in complex with 
MBL-associated serine proteases (MASPs) that cleave C4 
and C2 and form the C3 convertase C4b2a. Although it 
was previously thought that activated MASP-1 can cleave 
both C2 and C4, its ability to cleave C4 was later disprov-
en [27]. Activation of MASP-2 turned out to be essential 
for the cleavage of C4 and thus for C4b2a C3-convertase 
formation. The exact activation route of the MBL-MASP 
complex is strongly debated; some believe that autoacti-
vated MASP-1 induces MASP-2 activation via transacti-
vation of the proenzymes [26]. Others speculate that 
MASP-2 can activate via cis-activation in the absence of 
MASP-1, leading to the cleavage of C2 and C4. The lower 
complement activating efficiency of MBL-MASP-2 com-
plexes in the absence of MASP-1 still implies that MASP-
1 is important for lectin pathway activation [28].
The “alternative pathway” (AP) plays 2 different roles in 
the complement reaction. First, the alternative pathway 
proteins, factor B and factor D, play a well-defined role in 
amplifying the number of C3b molecules deposited via 
the classical and lectin pathways. As outlined below, fac-
tor B and factor D can react with deposited C3b molecules 
to make an alternative pathway C3 convertase (C3bBb) 
that has functional properties similar to C4b2a. Ongoing 
C3 cleavage by C3bBb and the formation of new C3bBb 
convertases create an “amplification loop” that dramati-
cally increases the density of C3b molecules on the bacte-
rial surface. Second, some also consider the alternative 
pathway as a third “recognition” pathway, next to the 
classical and lectin routes. However, the exact molecular 
mechanism by which the alternative pathway discrimi-
nates foreign surfaces from self-surfaces is not as clear as 
that of the other pathways and is often disputed. One 
route by which the alternative pathway can be directly 
activated is the spontaneous hydrolysis of circulating C3 
into “hydrolyzed C3” (C3H2O). Since C3H2O adopts a 
structure similar to deposited C3b, it can react with factor 
B and factor D to make a convertase. Although such low-
level hydrolysis of C3 occurs in vitro, it remains uncertain 
(and difficult to prove) whether this also occurs in vivo. 
Furthermore, CP and LP independent complement acti-
vation may be triggered when other serum-derived (less 
specific) proteases convert C3 into C3b-like molecules 
that are deposited on the bacterial surface [29]. 
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Lastly, it has been proposed that alternative pathway 
activation could be triggered via the molecule properdin. 
While multimeric properdin functions as a stabilizer of 
inherently labile C3bBb convertase, some studies suggest 
that properdin may bind directly to apoptotic, necrotic, 
and microbial cells. Properdin binding to the proteogly-
cans on apoptotic T cells and the DNA of late apoptotic 
and necrotic cells has been claimed to stimulate C3 con-
vertase formation in a serum environment, in the absence 
of CP or LP activation [30, 31]. These results should be 
interpreted carefully, given that the experiments were all 
done in a serum environment in the presence of intact C3. 
Others have shown that, in serum, properdin binding to 
multiple targets is fully dependent on C3 [32].

In a non-serum environment, binding of purified pro-
perdin to Neisseria gonorrhoeae and Chlamydophila 
pneumoniae was claimed to stimulate alternative pathway 
activation by recruiting C3b and C3H2O, which, upon ad-
dition of FB and FD, formed C3bBb convertases [33, 34]. 
Whereas properdin did not bind to wild-type Escherichia 
coli or Salmonella enterica serovar Typhimurium strains, 
it did bind to mutants lacking the O-antigens of their li-
popolysaccharides (LPS). N. gonorrhoeae expresses li-
pooligosaccharides (LOS) on its surface (that also lacks 
O-antigens), suggesting that properdin binding sites on 
the bacterial surface are shielded in the presence of LPS. 
Indeed, shorter LPS has been correlated with higher pro-
perdin binding and faster AP activation [35]. However, 
obtaining clear mechanistic results with purified proper-
din is hampered by the fact that this protein is prone to 
aggregation [36]. The physiological, non-aggregated pro-
perdin form turned out not to bind to Neisseria, even 
when LOS hexose extensions (that could prevent binding 
of native properdin) were mutated [37]. Altogether, 
whereas it is generally accepted that properdin functions 
as a stabilizer of the C3bBb convertase, the role of proper-
din as an innate recognition molecule is strongly debated.

Convertases
Central to the complement cascade are the convertase 

enzymes that generate the main complement effectors via 
the cleavage of C3 and C5. In recent years, significant 
progress has been made in understanding the molecular 
activation mechanisms of alternative pathway C3 conver-
tases, which consist of the noncatalytic subunit C3b that 
is reversibly bound to protease fragment Bb. First, (crys-
tal) structures of C3 and activated C3b [38, 39] highlight-
ed how C3 activation results in a large conformational 
change that translocates the thioester domain of C3b 85 
Å away from its original position and allows it to cova-

lently bind the target surfaces [38, 39]. Later on, it became 
clear how the C3b molecule reacts with factor B to form 
the proconvertase C3bB, which can then be cleaved by 
factor D to generate C3bBb [40]. The structure of C3bBb, 
stabilized by an immune evasion protein SCIN, suggests 
that C3b forms a dimer with its substrate C3, and, since 
Bb is bound to a flexible domain in C3b, it can swing to-
wards the substrate and cleave the scissile bond in C3 to 
release C3a and generate more C3b [41]. The structures 
of C4b2a [42] revealed that the classical/lectin C3 conver-
tase is very similar to the alternative pathway C3 conver-
tase C3bBb. 

Ongoing C3 cleavage by C4b2a and C3bBb increases 
the density of C3b molecules on the bacterial surface. The 
noncatalytic subunits of C3 convertases (C4b or C3b) are 
thought to associate with extra C3b molecules and form 
multimeric C4b-C3bn or C3b-C3bn complexes that have 
an increased affinity for C5 [14]. These complexes 
(C3bBbC3b and C4b2aC3b) are known as C5 convertas-
es, and they cleave C5 into C5a and C5b [43]. The exact 
molecular arrangement of C5 convertases is unclear and 
complicated to study due to their surface-specific confor-
mation.

The MAC
Following conversion of C5 by convertases, newly 

formed C5b associates with components C6, C7, and C8, 
and multiple copies of C9 to form the lytic MAC. Recent 
cryo-ET maps of the structures of MAC pores on lipo-
somes revealed that the MAC indeed consists of single 
copies of C5b, C6, C7, and C8, and 18 C9 molecules [44, 
45]. Together, these molecules form a heterogeneous 
pore with an inner diameter of 100 Å, an outer diameter 
of 25 nm, and a trans-membrane domain of < 10 nm high 
[44]. Although these structural insights increase our 
knowledge on the composition of the MAC, it remains 
unclear how this pore disrupts the complex cell envelope 
of Gram-negative bacteria in which the cytoplasmic 
membrane (inner membrane) is protected by a thin pep-
tidoglycan layer and an additional outer membrane with 
LPS [6].

Complement Evasion Strategies by Pathogenic 
Organisms
The important role of complement in the clearance of 

invading microbes is shown by the fact that pathogenic 
bacteria have evolved mechanisms to resist complement 
attack [4, 46–48]. There are several ways by which bacte-
rial pathogens block the complement system; these in-
clude capsule production [49, 50], modification of LPS 
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[51, 52], recruitment of human complement regulators to 
the bacterial surface (C4BP, factor H, and FHL-1) and 
production of proteases that cleave complement compo-
nents [46]. Furthermore, bacteria produce specific com-
plement inhibitory molecules that block specific steps in 
the complement cascade; for example, bacteria can frus-
trate the activation of C1s [53, 54], block C3 and C5 con-
vertases [20, 55], block C5 cleavage [56, 57], prevent C5aR 
activation [58], or inhibit MAC formation [59]. For more 
detailed information on these evasion mechanisms, we 
refer to an extensive review on this topic [46].

Exploiting the Action of Complement in Immune 
Therapies against Bacteria

Because complement activation can be specifically trig-
gered via antibodies, the development of complement-en-
hancing antibodies represents an attractive strategy for 
antibacterial therapies. The accelerated emergence of an-
tibiotic resistance underscores the need to examine non-
traditional antibacterial treatment strategies that offer 
more specific eradication of a certain pathogen. Thanks to 
the success of antibody therapy in cancer treatment [60], 
there is now growing interest in the use of monoclonal 
antibodies for treating bacterial infections. Complement-
enhancing antibodies could offer several advantages over 
the currently existing antibodies in clinical human studies 
that mainly function by neutralization of bacterial viru-
lence factors. Since bacterial virulence factors are often 
associated with certain disease conditions (one bacterium 
can cause several different diseases), these neutralizing 
antibodies cannot be used to treat all infections by a cer-
tain pathogen. Complement-enhancing antibodies would 
not be condition-specific and could potentially be used as 
a global therapy. Furthermore, since complement is an en-
zymatic cascade with several amplification loops, it is ex-
pected that one complement-enhancing antibody will 
provide stronger protection than an antibody neutralizing 
a single bacterial virulence factor (since bacteria express 
hundreds of different virulence factors).

The main challenge is still to identify antibodies and 
bacterial antigens that drive potent complement activa-
tion, but the first successes have been made in the field of 
Klebsiella pneumoniae [61, 62] and N. gonorrhoeae [63]. 
With the advancement of new antibody-discovery tech-
nologies (immune receptor identification), we believe 
that this promises to be a rapidly growing field in the near 
future. Generation of complement-activating antibodies 
is also considered important for the protective action of 

multivalent Neisseria vaccines that trigger the formation 
of antibodies that kill bacteria via MAC or phagocytosis 
[64, 65]. A potent vaccine candidate in N. meningitidis is 
factor H-binding protein (fHBP), an outer membrane-
associated lipoprotein that recruits factor H and thereby 
downregulates complement activation. Two fHBP-tar-
geting vaccines were recently approved when vaccine-
generated antibodies were demonstrated to kill Neisseria 
isolates in a serum bactericidal assay.

Therapeutic Complement Inhibitors in Inflammatory 
Diseases

Understanding the interplay between complement 
and bacteria is also relevant for the inflammatory disease 
therapeutic market. There is a large list of autoimmune 
diseases in which dysregulated complement activity 
causes damage to the body’s own cells. In the past decade, 
many promising complement inhibitors have been devel-
oped; 2 of these (the C5 blocking antibody eculizumab 
and a C1-inhibitor) have been approved for clinical use, 
and others are currently being evaluated in clinical trials 
[66]. Since these inhibitors target essential elements of the 
host response to bacteria and other pathogens, the use of 
complement-inhibitory therapies has raised concerns 
about the increased risk of infections [29, 67]. Below, we 
discuss the associated risks and recommended preventive 
measures of eculizumab therapy.

Complement-Related Diseases
Excessive complement activation on host cells may be 

caused by four different mechanisms. First, the presence 
of autoantibodies may drive classical pathway activation 
on host cells (e.g., autoimmune hemolytic anemia, AIHA 
[68]; neuromyelitis optica [69]; and systemic lupus ery-
thematosus, SLE [70]). Second, “change-of-function” 
mutations in specific complement proteins can make the 
system hyperactive. An example of this is atypical hemo-
lytic-uremic syndrome (aHUS), which is often character-
ized by mutations in alternative pathway regulators (loss-
of-function mutations) or components of the amplifica-
tion loop such as C3 and factor B (gain-of-function 
mutations) [71]. Third, autoantibodies to specific com-
plement components can trigger both loss of function 
(e.g., anti-factor H in aHUS) or gain of function (e.g., C3 
nephritic factors) of their target. Finally, deficiencies in 
surface-bound complement regulators result in comple-
ment attack on human cells. This is evident in patients 
with paroxysmal nocturnal hemoglobinuria (PNH), 
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where a deficiency for glycosylphosphatidylinositol-an-
chored regulators of convertases (CD55) and the MAC 
(CD59) renders erythrocytes susceptible to uncontrolled 
MAC-dependent hemolysis [72].

Eculizumab
In 2007, the FDA approved eculizumab (Soliris®, 

Alexion Pharmaceuticals, USA), a recombinant human-
ized monoclonal antibody targeting C5, for the treatment 
of patients with PNH [73]. Eculizumab forms a 1: 1 com-
plex with C5, and sterically hinders convertases from 
binding and cleaving C5 into C5a and C5b [74]. Eculi-
zumab successfully prevents intravascular hemolysis and 
thrombosis and has revolutionized disease management 
of PNH [75]. It has also been approved for the treatment 
of aHUS [76] and, more recently, myasthenia gravis [77]. 
Furthermore, the use of eculizumab in other clinical dis-
orders is currently being explored [67]. Since patients re-
ceiving eculizumab are at risk for infections with Neisse-
ria, the FDA has requested the implementation of a risk 
evaluation and mitigation strategy to minimize these in-
fections. 

Neisseria meningitidis (or meningococcus) is a Gram-
negative bacterium that colonizes the nasopharynx in up 
to 35% of the population [78, 79]. While colonization is 
often harmless, N. meningitidis occasionally penetrates 
mucosal barriers to enter the bloodstream and cause life-
threatening sepsis [80], and/or cross the blood-brain bar-
rier to cause meningitis [81]. The incidence of meningo-
coccal disease is higher for children < 5 years and teenag-
ers. Meningococcal meningitis and sepsis cause 
devastating consequences if not treated immediately; 
death or permanent disability occurs in 20–50% of the 
patients within 24 h after the first recognizable symp-
toms. Because of the known risk of Neisseria infection in 
individuals with C5 or later-acting MAC component de-
ficiencies, vaccination against Neisseria, together with the 
education of patients and other elements of a risk and 
mitigation program, has always been mandatory for sub-
jects treated with eculizumab. Vaccination with menin-
gococcal vaccines (MenACWY and MenB) before start-
ing eculizumab therapy is regarded as the most important 
measure. In addition, it is recommended that patients re-
ceive antibiotic prophylaxis (penicillin V or ciprofloxa-
cin) until 2 weeks after vaccination, and patients are mon-
itored for early signs of meningococcal infections. Fur-
thermore, for patients < 18 years (and certain risk groups) 
vaccination against Haemophilus influenzae and Strepto-
coccus pneumoniae infections is recommended. The exact 
relevance of meningococcal vaccination is still under de-

bate because it is still not certain whether antibodies can 
really support Neisseria killing in a patient treated with 
C5 inhibitors. Certainly, the “protective” antibody titer 
based on bactericidal killing assays with C5-sufficient se-
rum will not reflect the activity of the antibody under ec-
ulizumab therapy that blocks MAC formation. 

In theory, the only way antibodies could function un-
der eculizumab therapy is via triggering Fc-receptor and/
or C3b-dependent opsonization of Neisseria and subse-
quent phagocytic killing. However, it is often questioned 
whether phagocytes contribute to the killing of Neisseria 
in vivo. The fact that genetic MAC deficiencies lead pre-
dominantly to an increased risk of Neisseria infection has 
led many immunologists to believe that Neisseria is only 
cleared by the MAC. Rather, we think that phagocytes can 
contribute to the killing of Neisseria, but that the rapid 
progression of meningococcal disease (with > 50% fatality 
if untreated) makes the fast action of the MAC more im-
portant than the (relatively slower) killing by neutrophils. 
This idea is supported by the reported link between CD32 
and CD16b polymorphisms and efficacy in clearing Neis-
seria in MAC-deficient individuals [82]. Furthermore, 
the finding that vaccination against Neisseria in MAC-
deficient patients protects the majority against recurrent 
infections [83] suggests that boosting phagocytic killing 
via antibodies helps to clear this bacterium more rapidly. 
However, physicians should be careful and not fully rely 
on the action of the vaccine. Despite the current precau-
tions, a significant increase in Neisseria infections can be 
seen in eculizumab-treated individuals [67, 84]. It is an-
ticipated that the neutrophil response under eculizumab 
therapy is less effective since the patient is not able to 
form C5a, which is crucial to attract neutrophils [85].

Vaccine efficacy is further complicated by the fact that 
eculizumab and MAC-deficient patients can be infected 
with less invasive meningococcal strains that are not in-
cluded in current vaccines [67, 86]. Also, in acute cases of 
PNH or aHUS, postponing eculizumab therapy to await 
the response to vaccination may be detrimental and out-
weigh the risks of developing a meningococcal infection. 
Whereas the FDA recommends concomitant use of pro-
phylactic antibiotics until antibody titers may be protec-
tive, it is often advised to continue prophylactic antibiot-
ics for the duration of the eculizumab treatment [87–89]. 
Assessment of the function of anti-Neisseria antibodies 
under C5 inhibitory therapies, e.g., by developing stan-
dardized laboratory assays to assess phagocyte dependent 
bacterial killing, while currently not feasible on a routine 
basis, is something that could be considered in the future 
and would add to confidence in vaccine effectiveness.



Heesterbeek/Angelier/Harrison/
Rooijakkers

J Innate Immun8
DOI: 10.1159/000491439

Finally, it is anticipated that complement inhibitory 
treatment might also predispose patients to bacteria oth-
er than Neisseria, especially if the use is extended to more 
immunocompromised patients. In general, there is a clear 
difference in a person’s susceptibility to bacterial infec-
tions if we compare community settings to hospitalized 
patients. “True” bacterial pathogens like N. meningitidis 
and S. pneumoniae can cause serious diseases in nonhos-
pital settings. However, in the hospital, patients are much 
more susceptible to infections by “opportunistic” micro-
organisms that are part of the patient’s own microbiota 
or have colonized during hospitalization. Opportunistic 
bacteria more readily infect immunocompromised pa-
tients who undergo medical procedures than they would 
immune-competent individuals (e.g., via surgery, intra-
venous catheterization, or ventilation). An example is 
Staphylococcus aureus, well-known for causing outbreaks 
in health care centers, but rarely causing an epidemic in 
the healthy population. In infected patients, > 80% of dis-
ease is caused by endogenous carriage strains [90, 91]. 
Although it is often stated that C5 and the MAC are only 
crucial to protect against Neisseria, we believe that the 

overall immune status of the patient receiving comple-
ment inhibitory therapy will determine their susceptibil-
ity to additional infections. Indeed, recent case reports 
showed that eculizumab treatment also predisposes pa-
tients to bacteria other than Neisseria (Pseudomonas ae-
ruginosa [92, 93], E. coli, and Enterococcus faecium [94]), 
thus underscoring the eminent role of C5 and MAC in 
defense against all invading bacteria.
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