Skip to main content
. 2019 Sep 6;8(9):333. doi: 10.3390/plants8090333

Figure 1.

Figure 1

Infected cell with a differentiated bacteroid in an indeterminate nodule. Nitrogenase reduces di-nitrogen (N2) into ammonia (NH3) in the inner space of the bacteroid (high pH), which is then protonated into ammonium (NH4+) in the symbiosome space (low pH). Leghemoglobin (Lb) transports O2 to the bacteroid cytochrome (Cyt) of the electron transport chain (ETC). Sucrose is downloaded in the cytoplasm, where it is transformed by glycolysis pathways (PEPC-MDH) into malate, the main source of carbon skeletons for N transport out of the nodule and reductant power for driving N2 fixation. Malate is transported by dicarboxylate transport (Dct and DctA), either placed in the peribacteroid membrane (PBM) or the bacteroid membrane. A cation channel permeable to NH4+ has been proposed as exporting NH4+ across the PBM [69]. NH4+ is transformed into asparagine (Asn) through the GS-GOGAT pathway using oxaloacetate (OAA) as a substrate. Asn is most likely involved in a negative feedback regulation of N2 fixation. Part of the CO2 from the tricarboxylic acid (TCA) cycle is recycled by the phosphoenolpyruvate carboxylase (PEPC). Nodule-specific cysteine-rich (NCR) peptides drive the final transformation of bacteria into a bacteroid by a recognition protein system (BacA) located in the bacteroid membrane. Figure adapted from: Fischinger [70], Oldroyd et al. [67], Udvardi and Poole [63], and Sulieman and Tran [20].