Skip to main content
. 2019 Jul 24;8(3):100. doi: 10.3390/antibiotics8030100

Table 1.

Strategies employed by bacteria for achieving resistance to colistin.

Genes Involved Resistance Mechanism Bacteria Ref
LPS modifications
arnBCADTEF operon and pmrE Modification of the lipid A with aminoarabinose Salmonella enterica, Klebsiella
pneumoniae, Escherichia coli,
Proteus mirabilis, Proteeae bacteria, Serratia
marcescens and P.
aeruginosa
[38,39,40,41,42,43,44,45]
crrB (crrC) The regulatory systems of two-component PhoP-PhoQ and PmrA-PmrB (response regulator/sensor kinase) K. pneumoniae CG43 [25,46]
pmrAB, pmrD, phoPQ, parRS, mcr L-Ara4N and PEtn modification of lipid A E. coli, Salmonella enterica, P. aeruginosa [25,40,47]
ParR/ParS, ColR/ColS and CprR/CprS LPS
modification with aminoarabinose
P. aeruginosa [11,21]
mgrB Structural modifications of the lipid A subunit K. pneumonia [22,23]
lpxACD, lptD Loss of LPS Acinetobacter baumannii [24,48]
pmrC Modification of the lipid A phosphoethanolamine S. enterica, K. pneumoniae, E. coli
and Acinetobacter baumannii
[38,49]
mcr-1 to mcr-8 Inactivation of lipid A biosynthesis E. Coli and K. pneumonia [11,50]
Pag, PagL, LpxM and LpxO Modifications on cell surface regarding electrostatic repulsion of colistin
Decreasing membrane fluidity/permeability
K. pneumoniae, E. coli, S. enterica and Legionella pneumophila [25,51]
Bmul_2133/Bmul_2134 phosphorylation, dephosphorylation, glycylation and glucosylation of lipid A Burkholderia multivorans [28,52]
Repulsion mechanism
dlt-ABCD, graXSR, dra/dlt, liaSR and CiaR operons Adding D-alanine (D-Ala) to teichoic acids, thereby increasing net positive charge Staphylococcus aureus, Bordetella pertussis, Streptococcus gordonii, Listeria monocytogenes and Group B Streptococcus [53,54]
Membrane remodelling
siaD, cps operon, ompA, kpnEF, phoPQ and rcs Loss of polymyxin target and capsule polysaccharide (CPS) overproduction Neisseria meningitidis, K. pneumoniae and S. enterica [40]
virB, suhB Bc, bvrRS, epsC-N, cgh, vacJ, waaL, rfbA, ompW, micF, pilMNOPQ operon, parRS, rsmA, bveA, ydeI (omdA), ompD (nmpC), ygiW (visP), ompF, rcs Altered membrane composition Brucella ovis, S. enterica, Brucella melitensis, Burkholderia cenocepacia, Vibrio cholerae, Brucella abortus, K. pneumoniae, P. aeruginosa, N. meningitidis and Brucella melitensis [29,40]
cas9, tracrRNA, scaRNA, Lol, TolQRA Altered membrane integrity Stenotrophomonas maltophilia, Vibrio fischeri, B. cenocepacia, E. coli, P. aeruginosa, Salmonella Typhimurium, Campylobacter jejuni and Haemophilus influenzae
spgM, pgm, hldA, hldD, oprH, cj1136, waaF, lgtF, galT, cstII, galU Lipooligosaccharide (LOS) and LPS modification
Modifications to OM porins and overexpression of efflux pump systems
OmpU, OmpA and PorB Mutations in outer membrane porins N. meningitidis and V. cholerae [32]
MtrC –MtrD –MtrE, RosAB, AcrAB–TolC An important role in tolerance toward polymyxin B E. coli [33]
NorM, KpnEF and VexAB Neisseria gonorrhoeae
dedA playing an important role in membrane homeostasis E. coli [34,35,36,37]