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Abstract
The nasal administration of vaccines directed against diseas-
es caused by upper respiratory tract infections of pathogens, 
such as the influenza virus, mimics the natural infection of 
pathogens and induces immunoglobulin A (IgA) production 
in the nasal cavity to effectively protect viral entry. Therefore, 
the development of a nasally administered vaccine is a re-
search objective. Because the antigenicity of influenza split 
vaccines is low, nasal inoculation with the vaccine alone 
does not induce strong IgA production in the nasal cavity. 
However, the addition of adjuvants activates the innate im-
mune response, enhancing antigen-specific IgA production 
and the T-cell response. Although the development of suit-
able adjuvants for nasal vaccinations is in progress, the 
mechanism by which adjuvants promote the immune re-
sponse is still unclear. In this review, we discuss the mucosal 
immune response, especially in the nasal-associated lym-
phoid tissue, induced in response to the intranasal inocula-
tion of an influenza vaccine and adjuvants in animal models.

© 2018 S. Karger AG, Basel

Introduction

Influenza, caused by the influenza virus, spreads 
throughout the world every year and mortality in the  
elderly and infants is high. Therefore, individuals are vac-
cinated against the virus to prevent the severe pathologi-
cal conditions it causes. However, subcutaneous inocula-
tion with an influenza vaccine does not prevent the viral 
infection itself [1]. The influenza virus is susceptible to 
antigen shift and antigen drift, and the prediction of epi-
demic strains is also difficult, so many problems must be 
solved to develop a vaccine that has the desired infection-
preventing effect [2].

Nasally administered vaccines that mimic natural in-
fections have been shown to be effective in preventing 
influenza virus infection [1]. After the intranasal admin-
istration of an influenza vaccine, immunoglobulin A 
(IgA) is secreted into the nasal mucosa and can prevent 
infection after viral exposure [3]. Furthermore, because 
IgA is cross-reactive, even if the vaccine strain and the 
epidemic strain differ, an infection-preventing effect can 
be induced [4]. However, because safe split vaccines have 
low antigenicity, it is necessary to administer them intra-
nasally together with an adjuvant to induce IgA produc-
tion. The selection of an appropriate adjuvant is essential 
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for the development of a safe and effective vaccine, but 
the mechanism of action of adjuvants in the nasal mu-
cosa is unclear. New findings have recently been reported 
regarding the adjuvant effect in the nasal-associated lym-
phoid tissue (NALT), which is considered to regulate the 
mucosal immune response in the nasal mucosa and upper 
respiratory tract. In this paper, the mechanisms of anti-
body production induced by adjuvants after their nasal 
administration are discussed.

Nasal-Associated Lymphoid Tissue

NALT is one of the mucosal-associated lymphoid tis-
sues, and is located on the nasal cavity side of the upper pal-
ate in rodents, including rats, hamsters, and mice [5]. In 
rodents, the NALT is considered to be equivalent to Waldey-
er’s ring and the adenoid, tubal, palatine, and lingual tonsils 
in humans [5]. In contrast to other mucosal lymph nodes 
(Peyer’s patches), the NALT develops after birth. Although 
the development of Peyer’s patches requires lymphotoxin 
(LT)-a, LT-b, and LT-b receptor, these molecules are essen-
tial for the development of the NALT. Id2–/– mice have an 
impaired NALT structure [6, 7]. The NALT differs from the 
lymphoid tissues involved in other mucosal immunity in 
terms of its organizational development. Furthermore, 
NALT formation is suppressed in germ-free mice com-
pared with wild-type mice, suggesting that the formation of 
the NALT is established by an interaction with the indige-
nous bacteria in the nasal cavity after birth [8].

The NALT, which consists of T cells, B cells, dendritic 
cells (DCs), macrophages, and microfold cells, is located in 
the nasal cavity and is the first immune tissue exposed to 
inhalant antigens and pathogens [5, 9, 10]. Inhalant anti-
gens are transported to the NALT by microfold cells lo-
cated in the epithelium overlying the NALT and are taken 
up by DCs, resulting in their presentation to T cells [7]. 
After T-cell activation, a cytokine environment suitable for 
IgA is considered to form at the inductive site of mucosal 
immunity, promoting IgA class switching and affinity 
maturation in the germinal centers formed in the NALT. 
Activated T cells and IgA-producing B cells reach the ef-
fector site to produce antigen-specific IgA in the nasal cav-
ity to protect it against pathogen invasion [11]. Therefore, 
the NALT is considered to be the inductive site of the mu-
cosal immune response in the upper respiratory tract.

Intranasal vaccination induces strong local and sys-
temic immune responses in the respiratory and genito-
urinary tracts but induces only weak immune responses 
in the local intestinal tract (Table 1) [7, 12]. One of the 
reasons for directivity of mucosal immunity induction by 
intranasal route is that mucosal B cells induced at the in-
ductive site have different characteristics. B cells induced 
by NALT express α4β1-integrin and CCR10, and there-
fore strongly migrate to the respiratory and genitourinary 
tracts highly expressing their ligands, VACM-1 and 
CCL28 [13–15]. Indeed, B cells co-cultured with lung 
DCs have been shown to more extensively migrate to  
the lung than to the intestinal tract [16]. On the other 
hand, B cells induced by intestinal inductive sites, Peyer’s 

Table 1. Comparison of nasal and intestinal mucosal immunity

Nasal mucosal immunity Intestinal mucosal immunity Ref.

Inductive sites NALT Peyer’s patch and isolated lymphoid follicles 7, 12

Effective sites Upper airways, lacrimal, nasal, and 
salivary glands

Small and large bowels 7, 12

T cells Naïve T cell Memory T cell 18, 19

B cells CD62L, α4β1, CCR7, CCR10 α4β7, α4β1, CCR9, CCR10 13–17

DCs CD103+CD11b– CD103–CD11b– 9, 20, 21
CD103+CD11b+ CD103+CD11b–CD8α+CX3CR1–

PDCA-1+ pDC CD103+CD11b+CX3CR1low

CD11b+CD64–F4/80– CD103–CD11b+CX3CR1int

Macrophages CD11b+CD64+F4/80+ CD64+CX3CR1hi 9, 20, 21

Immune response Th1/Th2 Th2 > Th1

DCs, dendritic cells; NALT, nasal associated lymphoid tissue.
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patches and isolated lymphoid tissues, express CCR9 and  
α4β7-integrin, and therefore, preferentially migrate to  
intestinal tracts expressing their ligands, CCL25 and 
MAdCAM-1 [15, 17]. Although T cells of NALT show 
Th0-type dominant cytokine signature and are able to 
differentiate into Th1 or Th2 cells immediately after an-
tigen inoculation by the nasal route [18], T cells in Peyer’s 
patches show memory phenotype [19]. DCs and macro-
phages are different between NALT and intestinal tracts 
(Table 1) [9, 20, 21]. NALT has a low frequency of CD103+ 
DCs, and CD11b+CD64–F4/80– DCs occupy the majority 
of DC subsets in NALT. By contrast, Peyer’s patches have 
a high frequency of CD103+ DCs [9]. Both CD103+ DCs 
in NALT and intestinal tracts are able to incorporate an-
tigens and migrate to draining lymph nodes. Oral vacci-
nation induces a strong mucosal immune response in in-
testinal tracts but not in the upper airways. Antigens re-
quire modification for oral vaccination to be protected 
from digestion before reaching the intestinal tract, and 
oral vaccines tend to induce immune tolerance to anti-

gens [22]. Taken together, in several immunological re-
spects nasal vaccines are superior to oral vaccines against 
pathogens that infect the respiratory tract. 

Mucosal Adjuvants for IgA Production in the Upper 
Respiratory Tract

Cholera toxin (CT) and Escherichia coli heat-labile en-
terotoxin are major mucosal adjuvants. These toxins acti-
vate the immune response to antigens, and the intranasal 
inoculation of influenza hemagglutinin (HA) antigen 
with these toxins strongly induces antigen-specific IgA 
production in the upper respiratory tract [23–26]. CT trig-
gers Th2-type cytokine production [27] and enterotoxin 
increases the Th1- and Th2-type immune responses, lead-
ing to the production of IgA in the mucosa [26]. Deriva-
tives of these toxins, the B subunit of enterotoxin, non-
toxic enterotoxin K63, and the B subunit of CT, have been 
developed to improve the safety of the adjuvants [26, 28].
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Fig. 1. Ligands for pattern recognition receptors and signaling 
pathways. TLRs are present in cell membranes and in endosomes. 
Surface TLRs recognize components of the bacterial membrane 
and endosomal TLRs recognize the nucleic acid components of 
pathogens. TLRs activate the transcription factors NF-κB, IRF3, 
and IRF7 via the adaptors MyD88 and TICAM1, leading to the 
production of type I IFNs and inflammatory cytokines. TLR4, 
which recognizes lipopolysaccharide, uses both MyD88 and TI-
CAM1 as adaptors, whereas TLR3 uses only TICAM1 as an adap-
tor. Cytosolic RIG-I and MDA5 sense RNA and signal to activate 
NF-κB and IRF3 via MAVS on the mitochondria. Cytosolic DNA 

is converted to cGAMP by cyclic GMP-AMP synthase (cGAS) and 
is sensed by STING, resulting in the activation of NF-κB, IRF3, and 
IRF7. Orange and blue colors indicate the molecules involved in 
the RNA and DNA recognition pathways, respectively. CDN, cy-
clic dinucleotides; cGAMP, cyclic GMP-AMP; cGAS, cGAMP 
synthase; IFN, interferon; IRF, interferon regulatory factor; MDA, 
melanoma differentiation-associated protein; MyD, myeloid dif-
ferentiation primary response gene; RIG-I, retinoic acid-inducible 
gene I; STING, stimulator of interferon genes; TICAM1, toll-like 
receptor adaptor molecule 1; TLR, toll-like receptor.
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Pathogen-associated molecular patterns (PAMPs) are 
pathogen molecules sensed by pattern recognition recep-
tors, including the toll-like receptors (TLRs) and RIG-I-
like receptors (RLRs), in host cells (Fig. 1). The activation 
of the innate immune response by PAMPs evokes a sub-
sequent acquired immune response against invading 
pathogens. Recent studies of the innate immune system 
have shown that PAMPs function as adjuvants (Table 2). 
The intranasal inoculation of a split vaccine against the 
influenza virus together with PAMPs promotes mucosal 
IgA production. For example, monophosphoryl lipid A, 
a ligand of toll-like receptor 4 (TLR4), drives the Th1 re-
sponse and IgA production [29]. Polyinosine-polycyti-
dylic acid (polyI:C), a synthetic analog of double-strand-
ed RNA, is recognized by endosomal TLR3 and cytosolic 
RLRs, which then activate the innate immune response, 
resulting in IgA production [4]. Flagellin, a component of 
bacteria, is recognized by TLR5, which enhances IgA pro-
duction [30, 31]. Unmethylated CpG oligodeoxynucleo-
tide, a synthetic analog of short single-stranded DNA and 

a ligand of TLR9, activates DCs and B cells, resulting in 
the induction of IgA [32, 33]. These PAMPs induce the 
activation of immune cells and produce type I interferons 
(IFNs), which confer resistance to viruses in both myeloid 
and nonmyeloid cells. Therefore, type I IFNs are also used 
as intranasal mucosal adjuvants to promote the expres-
sion of HA antigen-specific IgA [34, 35]. The activation 
of DCs by IFNs might be one explanation for the mecha-
nisms underlying the adjuvanticity of IFNs [36]. How-
ever, studies of IFN-α receptor knockout (KO) mice have 
shown that the adjuvanticity of TLR ligands does not nec-
essarily depend on type I IFNs [37, 38].

After antigen stimulation, IgA class switching occurs in 
B cells via T-cell-dependent (TD) and T-cell-independent 
(TI) mechanisms [39, 40]. Transforming growth factor 
(TGF)-β signaling in B cells is necessary for both TD and 
TI pathways. TD IgA class switching requires binding of 
CD40 on B cells to CD40L on CD4+ T cells. The interac-
tion between CD40 and CD40L leads to the activation of 
the transcription factor NF-κB, resulting in the transcrip-

Table 2. Representative nasally administered influenza vaccine adjuvant and immune responses

Adjuvant Receptor Immune responses Ref.

Cholera toxin, CTB Ganglioside IgA induction 23, 24, 26, 27
Protection of viral challenge
T cell response

Escherichia coli heat-labile enterotoxin Ganglioside IgA induction 25, 26
Enterotoxin B subunit Protection of viral challenge

PolyI:C TLR3 IgA induction 4
RIG-I Protection of viral challenge
MDA5 T cell response

Monophosphoryl lipid A TLR4 IgA induction 29
T cell response

Flagellin TLR5 IgA induction 30, 31
Protection of viral challenge
T cell response

Unmethylated CpG oligodeoxynucleotide TLR9 IgA induction 32, 33
Protection of viral challenge
T cell response

Cyclic-di-nucleotides STING IgA induction 46
Protection of viral challenge
T cell response

Type I IFN IFNAR IgA induction 34, 35
Protection of viral challenge

CTB, cholera toxin B subunit; IFN, interferon; IFNAR, interferon alpha receptor; MDA5, melanoma differ-
entiation-associated gene 5; polyI:C, polyinosine-polycytidylic acid; RIG-I, retinoic acid-inducible gene-I; 
STING, stimulator of interferon genes; TLR, toll-like receptor.
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tion of the activation-induced cytidine deaminase (Aicda) 
gene, which is an essential factor for class switching [39]. 
TI IgA class switching requires TLR signaling or the bind-
ing of B-cell-activating factor (BAFF) or proliferation-in-
ducing ligand (APRIL) to the transmembrane activator 
and calcium modulator and cyclophilin ligand interactor 
(TACI) on B cells rather than the CD40-CD40L interac-
tion required by the TD pathway [39, 40]. TLR signaling 
and TACI binding induce NF-κB to transcribe the Aicda 
gene. The IgA induction mechanism in mucosal tissues 
has been predominantly studied in the intestinal tract, and 
the mechanism of IgA induction in the nasal mucosa is 
still largely unclear. However, to develop an efficient vac-
cine against a virus that enters the host cells in the upper 
respiratory tract, it is necessary to determine the molecu-
lar mechanisms by which the vaccine induces IgA produc-
tion in the nasal mucosa. The molecular mechanisms by 
which adjuvants induce IgA in the upper respiratory tract 
mucosa are becoming clearer.

PolyI:C Induces IgA Production via the TLR3 Pathway

PolyI:C, a synthetic analog of double-stranded RNA, 
is recognized by endosomal TLR3 and the cytosolic RLRs, 
RIG-I and MDA5, which induce type I IFN production 

via their adaptor molecules, TLR adaptor molecule 1  
(TICAM1, also called TRIF) and mitochondrial antivi- 
ral signaling protein (MAVS, also called VISA, IPS-1, and 
Cardif), respectively (Fig.  1) [41]. PolyI:C robustly up-
regulated the production of antigen-specific IgA in the 
nasal mucosa when mice were intranasally inoculated 
with a combination of an HA split vaccine and polyI:C, 
protecting against viral challenge not only with the same 
influenza viral strain but also with different strains [4]. 
The intranasal inoculation of polyI:C upregulates the 
production of Th2- and Th1-type cytokines in the NALT 
[4]. A recent study using KO mice clearly showed that the 
adjuvanticity of polyI:C during vaccination is dependent 
on the TLR3-TICAM1 pathway, but not on the RLR- 
MAVS pathway [37]. IgA and IgG production, the T-cell 
response, the formation of the germinal centers, and ex-
pression of the Aicda gene after the intranasal inoculation 
of a vaccine with polyI:C were significantly impaired in 
TLR3-KO and TICAM1-KO mice, but not in MAVS-KO 
mice. The intranasally inoculated polyI:C was incorpo-
rated into the NALT CD103+ DCs, which express TLR3, 
and colocalized with endosomal TLR3. BAFF expression 
was induced on NALT CD103+ DCs by polyI:C in a TLR3-
TICAM1-dependent manner. Mice lacking CD103+ DCs 
showed reduced vaccine-specific Ig production and a re-
duced T-cell response. Together, these data indicate that 
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Fig. 2. PolyI:C enhances IgA production in the NALT via the 
TLR3-TICAM1 pathway. After the intranasal administration of an 
HA vaccine and polyI:C, CD103+ DCs incorporate polyI:C and are 
activated through the TLR3-TICAM1 pathway. CD103+ DCs ex-
press BAFF and APRIL to activate B cells. PolyI:C also induces 
Th2-type cytokines, including IL-4, IL-6, and IL-10, in a TLR3-
dependent manner. Furthermore, polyI:C enhances the formation 
of germinal centers and the expression of the Aicda gene, coding 

AID protein. Th2-type cytokines and TGF-β signaling promote 
IgA class switching in the NALT. The secretory IgA produced is 
secreted to the nasal mucosa through the polymeric immunoglob-
ulin receptor expressed on epithelial cells in the NALT. AID, acti-
vation-induced cytidine deaminase; BAFF, B-cell-activating fac-
tor; DC, dendritic cell; HA, hemagglutinin; TGF-β, transforming 
growth factor β; TLR, toll-like receptor.
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the intranasal inoculation of polyI:C exerts its adjuvantic-
ity by activating the TLR3-TICAM1 pathway in the NALT 
CD103+ DCs and the expression of cytokines that skew 
IgA production in the NALT (Fig. 2) [37]. In terms of ad-
verse effects, an adjuvant that activates only TLR3 is ex-
pected because the expression of TLR3 is restricted among 
the myeloid cells to CD103+ and CD8α+ DCs [42, 43]. A 
TLR3 adjuvant caused the regression of tumor growth in 
mice without a cytokine stream [44]. 

Cyclic-di Nucleotides Induce IgA Production in a 
STING-Dependent Manner

Cyclic di-nucleotides (CDNs), including cyclic (c) gua-
nosine monophosphate (GMP)–adenosine monophos-
phate (AMP) (cGAMP), c-di-GMP, and c-di-AMP, are 
recognized by STING, which is located on the endoplas-
mic reticulum membrane. CDNs exert potent adjuvantic-
ity on the vaccine effect, including Ig production, the  
T-cell response, and the formation of germinal centers,  
via the STING pathway [38, 45–47]. The adjuvanticity of 
c-di-GMP is more effective than that of cGAMP because 
it enhances antigen uptake by DCs and the selective acti-
vation of pinocytosis-efficient cells [38]. CD11c-specific 
STING-KO mice displayed impaired Ig production and a 
defective T-cell response after intranasal inoculation with 
c-di-GMP [45], so the adjuvanticity of c-di-GMP mainly 
depends on the activation of STING-expressing DCs. Al-
though c-di-GMP also induces interleukin 33 and thymic 
stromal lymphopoietin TSLP in epithelial cells via the 
STING-independent pathway, the molecular mechanism 
of STING-independent cytokine production is unknown.

Conclusions

Although intranasal vaccination is less painful and 
simpler than previous vaccines using syringes and nee-
dles, these vaccines need strong adjuvants without side 
effects. Successful intranasal vaccination requires the de-
velopment of appropriate adjuvants, but it is essential to 
clarify the mechanism of action of adjuvants as a pre-
liminary step. Antigen-producing B cells induced by the 
mucosal vaccine accumulate in the effector site close to 
the inductive site, so it is very important to vaccinate the 
site where pathogens are likely to invade. Due to directiv-
ity of mucosal immunity induction by intranasal route, 
the development of a nasal administration vaccine is ex-
pected as a vaccine against pathogens causing upper re-
spiratory tract infection such as the influenza virus, RS 
virus, Streptococcus pneumoniae, and Haemophilus influ-
enzae. Since nasal vaccination also upregulates IgA pro-
duction in genitourinary tracts, it may be one of the ef-
fective routes for the administration of vaccines against 
HIV and HPV.
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